
Bug Introducing Changes: A Study with Android

Muhammad Asaduzzaman Michael C. Bullock Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada
{md.asad, michael.bullock, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Changes, a rather inevitable part of software de-
velopment can cause maintenance implications if they introduce
bugs into the system. By isolating and characterizing these bug
introducing changes it is possible to uncover potential risky
source code entities or issues that produce bugs. In this paper,
we mine the bug introducing changes in the Android platform
by mapping bug reports to the changes that introduced the
bugs. We then use the change information to look for both
potential problematic parts and dynamics in development
that can cause maintenance implications. We believe that the
results of our study can help better manage Android software
development.

Keywords-Bug; fixes; bug report; change log;

I. INTRODUCTION

Changes are unavoidable in software development and
each change made to a software systems code base presents
a risk that it may introduce a bug.When such a bug occurs
it often goes unnoticed until someone submits a bug report
describing the erroneous behaviour. Once the developers
receive such a report, they evaluate it to ensure that it is
a legitimate issue, and then address the issue. As part of
the resolution process, developers may include an indicator
about the bug they fix in the change log. Linking bug
reports to the revision in which they were fixed can help
us approximate which changes caused bugs. Isolating and
characterizing those bug introducing changes can uncover
potential problematic entities or factors that are correlated
with buggy code.

In this challenge paper we mine the Android changes and
bug reports [8] to uncover information about bug introduc-
ing changes. More specifically, we address the following
research questions:

1) Can we identify changes that fix specific bugs?
2) Which of the system files are buggy?
3) Which days of the week are bugs introduced?
4) Does the number of files in a commit effect how likely

a bug is to be introduced?
Android is of particular interest because it is an open-

source system where anyone can submit changes. To make a
change in Android it is a three-step process, first the change
is submitted, then reviewed, and finally tested then com-
mitted if it passes. Despite this rigorous three-step process
for submitting a change, Android has had over 20,000 bug
reports. Our goal is to characterize problem areas for bugs
in Android so those instances where making a change that
is considered a high risk for containing buggy code can be
completed with more caution than they might otherwise be
given.

Unfortunately it is not possible to directly link a bug
report to the code lines responsible for the bug as the bug
report only gives a description of the problem. We use a
sophisticated linking system that involves locating where the
bug was likely injected into the system through analysis
using the Android changes repository, the Android bug
reports and the Android source trees. First, it is necessary to
create a connection between the changes that potentially fix
bugs to their corresponding bug reports, we call these links.
To do this we look for indicators in the change logs that the
change is associated to a bug report. Generally the set of
links alone is not a good metric for mapping a change to a
bug due to false positives. To increase the level of confidence
in a link we use similarity analysis that involves matching the
parts of a bug report to the parts of the linked change. Links
which achieve a high level of confidence are considered to
be a good link, so we call them fixes. Using the fixes it is
possible to find the bug introducing code by tracking the
lines involved in the fix back through the revision history.
Using the GNU diff command we determine the buggy lines
of code and using the Git blame command we determine
when those lines were changed in the system, approximating
when the buggy code was introduced. Analysis is then
performed on those files for which the buggy code was
introduced to characterize the injection of bugs.

The remainder of the paper is organized as follows. In
section II we explain how we link a change to a bug report
and confirm that it is a fix. Section III involves finding the
buggy code using the fixes and approximating when those
bugs were introduced. Section IV contains our findings and
Section V discusses the related work. Finally, Section VI
concludes this paper.

II. MAPPING CHANGES TO FIXES

In order to determine the bug introducing changes we
must first determine which change(s) fixed a particular bug.
We investigate both the Android bug reports and the Android
change logs and with these sources it is possible to link a
change which resolved a bug to its bug report by looking
for common techniques developers use to report that they
are addressing a bug. We then investigate those changes to
confirm they are a fix.

Bug reports contain fields that allow us to filter out the
reports that could not be involved in a fix prior to any
analysis with the changes. For example, the bug report’s type
field indicates whether it is a defect or enhancement. We are
interested in fixes that involve defective code so immediately
we remove all bug reports that are enhancements. Also, a

bug report’s status defines the current state of the bug report,
some examples include new, assigned, released, spam, and
duplicate. A status of released or future release indicates that
the bug has been fixed and one could naively consider only
those bug reports. However, while manually investigating
fixes we found that some status fields are not updated to
indicate that the bug has been fixed. For example, bug fixes
where the status was still set as new occurred several times.
Therefore, we still consider all status codes aside from those
bugs that have been designated as spam or declined as it is
fair to assume they will not be involved in a fix. Next, we
investigate the changes to the Android platform and build the
links to find fixes using the analysis techniques as described
below.
A. Identifying Links

We conducted manual investigation of the Android
change logs to determine in which ways developers
indicate that a change involves a bug fix. We
found that it is often the case that they include
the URL of the bug involved, such as “Fix for
http://code.google.com/p/android/issues/detail?id=15180”
where 15180 would be the bug identifier (bug-id) of the
bug report. It was also common practice to include the
word bug followed by the bug-id such as “bug #: 3158459”.
We consider both of these cases to be strong indicators of
a good match between the change and the bug report. We
refer to them as a BugMatch link. It was also fairly common
for developers to include keywords such as fixes, patch,
or bug, then the bugid together on one line such as “This
fixes issue 3332”. We call these KeywordNumber matches.
This type of match incorporates a higher likelihood of
false positives, as there are different ways to interpret the
number other than a bug-id. We filter out many of the false
positives by only considering numbers after keywords that
are separated by a non-alphanumeric character such as a
colon or comma, still, a message line such as “Fix ULE
decapsulation bug when less than 4 bytes of ULE SNDU is
packed” would match, therefore we do not consider links
made by KeywordNumber matches to be as strong as a
BugMatch. We use the following two regular expressions
to match any part of each line of a change’s message:

BugMatch: (android.∗?id = |bug){1}[\W] ∗ ([0− 9]+)
KeywordNumber:

(fix(e[ds])?|bugs?|patch).∗?\W ([0−9]+)(\W |$)+
Each time a KeywordNumber finds a match we create

a link between the change and the report for which the
bug-id matches. However, if a BugMatch is found to match
the change all the KeywordNumber links for that change
are discarded as the BugMatch link gives us much more
confidence in the link.

B. Similarity Analysis

In order to add strengths to the identified links and confirm
that they are fixes we use similarity analysis on each link.

Similarity analysis involves looking at the parts of a bug
report and the corresponding parts of a change to find
indicators that a change is a fix. Through manual inspection
on randomly selected bug reports we find that high similarity
rating is a very good indicator that a link is a fix. We consider
the following pieces of information when completing the
similarity analysis:

Bug Status. If the bug has been fixed, indicated by its
status being set to either released or future release, we add
1 point to similarity rating.

People involved. There are up to four people involved
in one link, an owner and a reporter in the bug report,
and an author and a committer in the change. We try to
match each person from the bug report to each person in
the change and give +1 similarity rating for each match for
a possible addition of 4 points. Bug reports only provide
partial information on the people involved in the report
(such as “Gir...@gmail.com”). We address this by matching
a minimum the first three characters of the email address,
but more if it is available.

Textual similarity. We investigate the similarity between
the title of the bug report and the title of the change as
well as the similarity between the description of the bug
report and the message of the change using cosine similarity.
For each textual similarity of 0.30 or greater we add a
point to the similarity rating. We chose 0.30 by running
tests on examples and found it to be a reasonable value.
The bug report description can get quite long if it includes
artifacts such as code or stack traces. Because of this we
only consider the first 3 lines of the bug report description,
as it is most likely to contain the general issue of the bug
to match with the change message.

Through observation of the bug reports and changes we
have determined that these criteria for similarity analysis
are well suited to the Android platform. Given that there are
significantly more changes than bugs it is possible we will
have a good number of false positives if we simply consider
that there is a link between the bug report and the change.
We use the link type and similarity ratings of the link to
better filter out links that are less likely to be fixes. Links
that are either a BugMatch, or a KeywordMatch that has a
similarity rating of at least 2 are considered as fixes.

During manual inspection a nontrivial portion of the
BugMatch links appeared to be false positives, even though
the BugMatch was appeared to be good. These were iden-
tified by looking at the BugMatch and doing a manual
similarity analysis. One explanation for this is the possibility
of multiple bug reporting tools being used that are reusing
bug id numbers, another, although less likely explanation is
typographical errors by those involved in making the change.
On another note, the vast majority of matches with similarity
analysis of 3 points or greater were positive matches. With
this in hand, we suggest that similarity analysis is a crucial
component of verifying links in Android.

III. LOCATING BUG INTRODUCING CHANGES

In order to detect the bug introducing changes, we first
detect those revisions where bugs have been fixed. If a bug
has been fixed in revision r, then we use the diff algorithm
to determine those lines in revision (r− 1) that were either
deleted or changed to fix the bug. This is accomplished by
diff outputting the code chunks that are different between the
two revisions in question. Clearly, because these lines fixed
the bug they must have also been involved in the buggy
code and as such these are the candidate lines that contain
the bug. We use Git blame command (with option -C -M) to
determine the date and time of the line creation. While -C
finds copies, -M finds code movements [1]. We then filter
out those lines that were created after the user reported the
bug, since the unintended behaviour observed in the bug
report can only be attributed to those lines that were created
before the bug was reported. The remaining lines represent
the bug introducing changes. We did not trace back through
the individual revisions to look at the origin of the lines
because Git tracks the history of lines even when they are
moved or copied. Thus, the time stamp associated with the
remaining lines indicates the date and time of their creation.
We refers these lines as the buggy code.

After the buggy code lines have been identified we
analyze them to attempt to identify issues in the development
process in the Android platform. We first rank all the files
by the number of bugs found in that file to determine which
parts of Android are at a high risk of containing a bug. Next,
using the blame command we identify which day the buggy
code was authored to determine which days of the week
present the highest risk for injecting buggy code.

IV. RESULTS

We consider both Android bug reports and Android
changes in our experiment [8]. There were 20,169 bug
reports, 16,118 of which were defects, rejecting those with a
status of Spam or Declined leaves 13,626 bug reports. Next,
we analyze the 1,171,660 changes in the Android system.
After analysis we find 48,480 links but after filtering the
weaker links we find 854 fixes, 112 of which have had a
similarity value of 2 or higher. We manually investigated 64
of the 112 with high similarity values and confirmed they
were all bug fixes giving us confidence that a high similarity
value is an indicative of a good match. We also investigated
many of the BugMatch links and confirmed that they were
also a good indicator of a bug fix giving us confidence
that our filtering and matching techniques provide a high
precision. By capturing only 854 fixes it may seem as if
recall is very low considering there are 13,626 bug reports
but we note that only 1,825 of the bug reports have a status of
released or future release which indicates that the majority
of bug reports have either yet to be resolved or were not
considered an issue.

Table I
TOP FIVE BUGGY FILES

Rank File Name
1 sound/pci/hda/patch realtek.c
2 drivers/net/wireless/iwlwifi/iwl3945-base.c
3 sound/pci/hda/patch sigmatel.c
4 drivers/ata/libata-core.c
5 drivers/md/raid5.c

Table II
DISTRIBUTION OF BUG INTRODUCING CHANGES BY DAY OF THE WEEK

Category Mon Tue Wed Thu Fri Sat Sun
Fixes(%) 7.89 21.28 15.18 13.99 14.13 15.03 12.50

Non-Fixes(%) 11.40 17.58 17.94 17.25 15.42 12.85 7.56
BIC(%) 7.32 18.95 18.37 10.05 8.54 34.63 2.12

A. Which files are buggy?

We believe it is important to recognize when a particular
portion of the software is consistently causing problems
to the execution of the system. By identifying the files
which contain the most buggy code developers can examine
those files more closely to better reduce the likelihood of
it containing further bugs. Our intuition tells us that the
files with the most bugs will be those files that are used
frequently by other parts of the system. Table I indicates
the top 5 buggy files as ranked by our analysis.

B. Do Android developers need to be careful on Fridays?

Śliwerski et al. [2] found that the likelihood of creating
a bug introducing change is highest on Friday. However,
their results were based on the data available from the
MOZILLA and ECLIPSE projects. Android differs from
those systems in several ways. For example, it uses a
distributed source code management system and projects are
associated with different groups of people. We grouped the
changes by the day of the week that they were authored and
found that largest number of buggy lines are introduced on
SaturdayThus, the developers need to be careful about the
changes that are made on that day of the week more than
any other. See Table II for the breakdown of the percentage
of commits over days of the week. When considering the
number of fixes we find a relatively even distribution across
the week with slightly fewer fixes occurring on Monday and
slightly more on Tuesday. Understanding why certain days
of the week cause more buggy changes than others remains
as a future work.

C. Is there a correlation between large commits and buggy
code?

More specifically, we wanted to know whether there is
a correlation between the bug introducing changes and the
number of files changed in a commit. Changing a large num-
ber of files in a single commit potentially indicates that the
developer is working with different concepts and features.
Comprehending and tracking large number of changes poses
significant threat and could point to a haphazard develop-
ment process which may result in more bug introducing
changes.

Table III
NUMBER OF FILES PER COMMIT

Category Mean Max Std Dev.
Fixes 1.927 33 2.46

Non-Fixes 3.123 154916 138.133
Bug Introducing 10.948 7698 121.147

Table III shows the number of files committed per change.
We observe that changes that introduce bugs into the system
are generally larger than the average change. This fits ones
intuition regarding how larger changes impose a greater
threat of introducing a bug. Also, fixes are usually very
precise changes. We cannot go without mention of the very
large maximum value for non-fixes, this value is the result
of an initial Git repository build.

V. RELATED WORK

The term fix-inducing changes, changes that lead to
problems as indicated by the fixes, was first introduced by
Śliwerski et al. [2]. They used a combination of techniques
to determine changes that are later altered to fix bugs. Their
technique is an improvement to previous approaches [5],
[6], [7]. They collected bug reports from the BUGZILLA
bug tracking system and determined the changes that were
made to fix those bugs by analyzing the log messages
of CVS archives using a combination of syntactic and
semantic analysis that we expand on. These changes, also
called fixes were then traced back to determine previous
changes that were made prior reporting the bugs. These
are the changes that caused the later fixes. They extracted
the fix-inducing changes for open-source software systems
(Eclipse and MOZILLA) and reported that changes of this
category have distinct characteristics. First, they found that
fix-inducing transactions are large. Second, they categorized
the changes based on the day of the week and found that
changes made on Friday highly correlated with later fixes.

Although unique, the previous approach suffers from
several limitations as pointed out by Kim et. al. [3] Not all
changes are fix-inducing (such as blank lines). Moreover,
the annotation information provided by the SCM system is
insufficient to capture the origin of fix inducing changes,
since it does not tell us which lines in one revision come
from which lines in the previous revision. To resolve these
limitations, they used annotation graph together with ig-
noring changes that does not change the behaviour of the
program (such as blank lines, comments and changes results
from formatting the code). They validate the effectiveness
of their algorithm through a case study and pointed several
applications of the algorithm. Effort has been also made
to determine factors that correlate with bug introducing
changes [4]. To predict those changes at the file-level,
machine learning techniques have been used. The study
result reveals that by predicting bug introducing changes,
we can separate clean changes from the buggy lines.

Our work differs from the above approaches in that, we
focus on the application of the algorithm. The Android
change data set and the bug reports make an opportunity to
apply the algorithm to determine bug introducing changes
and to uncover issues from the changes that can guide
Android developers to better manage their systems.

VI. CONCLUSION

We were able to successfully create a mapping between
the Android bug reports and the Android changes to locate
the changes which were bug fixes. From these fixes we
identified the buggy code lines from the previous revision
and isolate the date those lines were added to determine the
bug introducing change.

We then mined the bug introducing changes in an attempt
to understand under which circumstances buggy code is
injected into the Android software system. Some of our
findings conflict with those who have done research on
other software systems. We found that Android bugs were
most often committed on Saturday. However, our findings
also fit ones intuition, we investigated the number of files
that were committed in a buggy commit and attempted to
understand whether the number of changes in a commit have
an effect on whether or not that commit injected a bug and
we found that bug introducing changes involve more files
on average than fix commits. Bug introducing changes also
involve more files than the non-fixes but both are associated
with a high standard deviation. Finally, we looked at the files
that contained the most buggy changes to identify which files
authors should be most cautious about changing.

REFERENCES

[1] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git”,
in MSR, pp. 1-10, 2009.

[2] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?”, in MSR, pp. 1-5, 2005.

[3] S. Kim, T. Zimmermann, K. Pa, and E. J. Whitehead, “Auto-
matic Identification of Bug-Introducing Changes”, in ASE, pp.
81-90, 2006.

[4] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?”, IEEE Transactions on Software
Engineering, vol. 34, no. 2, pp. 181-196, 2008.

[5] D. Cubranić and G. C. Murphy, “Hipikat: recommending
pertinent software development artifacts”, in ICSE, pp. 408-
418, 2003.

[6] M. Fisher, M. Pinzger, and H. Gall, “Analyzing and relating
bug report data for future tracking”, in WCRE, pp. 90-99, 2003.

[7] M. Fisher, M. Pinzger, and H. Gall, “Populating a release his-
tory database from version control and bug tracking systems”,
in ICSM, pp. 23-32, 2003.

[8] E. Shihab, Y. Kamei, and P. Bhattacharya, “Mining Challenge
2012: The Android Platform”, in MSR, 4 pp. (to appear), 2012.

