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Abstract—In this paper, we describe an empirical study of
a unique method co-change pattern that has the potential to
pinpoint design deficiency in a software system. We automatically
identify this pattern by inspecting the method co-change history
using reasonable constraints on method association rules. We also
investigate the effect of code clones on the method co-changes
identified according to the pattern, because there is a common
intuition that clone fragments from the same clone class often
require corresponding changes to ensure they remain consistent
with each other.

According to our in-depth investigation on hundreds of
revisions of seven open-source software systems considering
three types of clones (Type 1, Type 2, Type 3), our identified
pattern helps us detect methods that are logically coupled with
multiple other methods and that exhibit a significantly higher
modification frequency than other methods. We call the methods
detected by the pattern MMCGs (Methods appearing in Multiple
Commit Groups) considering the pattern semantic. MMCGs can
be considered as the candidates for restructuring in order to
minimize coupling as well as to reduce the change-proneness of
a software system. According to our observation, code clones
have a significant effect on method co-changes as well as on
MMCGs. We believe that clone refactoring can help us minimize
evolutionary coupling among methods.

Index Terms—Association Rules, Evolutionary Coupling, Life
Span, Modification Occurrence Rate, Method Co-change Pattern,
Method Genealogy.

I. INTRODUCTION

Software maintenance is one of the most important phases
of the software development life cycle. Changes to a software
system during maintenance are sometimes critical. A particular
change to a program entity (e.g., files, classes, methods)
without proper awareness of its dependencies (or coupling)
might cause temporarily hidden inconsistencies in other re-
lated entities. Identification and prediction of co-changing
program entities by analyzing the software evolution history
is a well known way of increasing programmer awareness
about entity coupling. The underlying idea is that if two
or more entities change together (i.e., co-change) frequently
during software evolution, then it is very likely that there is a
dependency, that means logical coupling, among these entities.
Co-changeability of program entities has also been termed
‘evolutionary coupling’ [21] in the literature.

There are a number of studies [5]–[8], [11], [12], [21], [25]–
[29] and tools [3], [4], [10] that focused on the identification,
visualization, and prediction of co-changeable program enti-
ties. Co-change analysis can help us to detect entity-couplings
which might not be detected by program analysis [28].

Fig. 1. An example of our investigated method co-change pattern

In this research work, we investigate whether we can detect
highly coupled program entities by analyzing the entity co-
change history. Detection of highly coupled entities is impor-
tant, because the existence of such entities might be indicative
of design deficiencies in the software system. Generally, lower
couplings or dependencies among program entities are always
desirable [20]. When a software system has a high degree
of entity-coupling, changes in one entity might affect other
related entities (ripple effect), and therefore, re-usability of the
code is reduced1. Thus, highly coupled entities are candidates
for restructuring in order to minimize coupling. We conducted
this research considering method level granularity. For the
purpose of our investigation we detected and analyzed a unique
method co-change pattern that has the potential to identify
highly coupled methods. We define the pattern in the following
way.

Pattern Definition: Suppose m1, m2, and m3 are three
methods of a particular software system. During system evo-
lution, these methods changed, such that:
● whenever m1 changed m2 had a corresponding change
● whenever m3 changed m2 had a corresponding change
● m1 and m3 sometimes (or never) co-changed.

In Fig. I, the methods: m1, m2, and m3 have changed
following such a pattern. We see that m1 changed in two
commit operations: C1 and C5. The method m2 changed in
each of these two commits too. Also, in each of the commits
C3 and C7, both m3 and m2 changed together. Thus, m1
and m3 were changed with m2 making two separate commit
groups ((m1, m2) and (m2, m3)) and m2 is common in these

1Software Coupling. http://www.avionyx.com/publications/e-newsletter/
issue-3/126-demystifying-software-coupling-in-embedded-systems.html
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two groups. This is why we denote m2 as a Method appearing
in Multiple Commit Groups (MMCG). From Fig. I we see that
such a strict pattern cannot be obtained by considering any of
the other two methods m4 and m5.

After manually investigating a large number of such patterns
from software evolution histories, we found that in most cases,
MMCGs (e.g. m2) are logically coupled with the methods
in the commit groups (e.g., m1 and m3). However, although
we described the above pattern using only three methods and
two commit groups, we observed many such patterns where
an MMCG appears in more than two commit groups and are
logically coupled with more than two other methods. Thus,
such a co-change pattern can help us in detecting highly
coupled MMCGs.

In this paper we devised and implemented a technique for
extracting MMCGs detecting the method co-change pattern
and ranking MMCGs according to the number of other meth-
ods with which they are logically coupled. Our implementation
automatically inspects the method co-change history with
reasonable constraints from hundreds of commits of a software
system for identifying such patterns.

We also investigated the effect of code clones [9] on method
co-changes that follow the above pattern. Clones are the same
or similar code fragments scattered in the code base. Clone
fragments that are similar to one another form a clone class.
The common intuition is that clones in the same clone class
might require corresponding changes to ensure consistency
among them and thus, clones belonging to the same class have
a tendency to co-change.

We perform a rigorous manual analysis on the detected
MMCGs. Our in-depth investigation on hundreds of revisions
of seven open source subject systems written in three different
programming languages (C, Java, C#), indicates that: (1) Our
proposed approach, implemented for detecting the pattern, can
identify MMCGs that are logically coupled with multiple other
methods, (2) Instability or change-proneness of the MMCGs
is significantly higher compared to the other methods, (3)
MMCGs live significantly longer than the other methods, and
(4) The proportion of MMCGs is positively correlated to the
instability of the entire software system (that is, the higher the
instability of a software system the higher the proportion of
MMCGs in that system).

From our results we realize that: (1) a possible cause for
the higher modification probability of MMCGs is that they
are logically coupled with multiple other methods; and, (2)
as MMCGs appear to be the most change-prone methods as
well as the longest lived methods in a software system, it
is very important for a new maintenance programmer to be
aware and have an understanding of these methods and their
relationships. Thus, the defined pattern, and the MMCGs are
important from the perspective of program comprehension.

Our investigation regarding the effect of clones suggest
that a considerable amount of method co-changes can occur
because of the consistency ensuring changes to the clones
of the same clone class. Sometimes a significant portion
of the MMCGs can exhibit evolutionary coupling because

of such consistency ensuring changes in clones. We believe
that refactoring of clones can help to minimize evolutionary
coupling among methods.

The remainder of the paper has been organized as follows:
Section II describes how our study is significant compared
to the related studies. Section III describes the detection
procedure of the pattern and MMCGs. Section IV describes our
experimental setup and steps used in our experiment. Section
V provides and discusses the experimental results. Section VI
describes some possible threats to validity and we conclude
the paper by mentioning our future work in Section VII.

II. SIGNIFICANCE OF OUR STUDY

To the best of our knowledge, our study is the first one
regarding the identification of highly coupled program entities
(methods in our study) in a software system through the
analysis of the entity co-change history.

The primary focus of the existing studies [5]–[7], [11],
[12], [15], [21], [26]–[29] was on the accuracy of detecting
and predicting co-changeable program entities. Most of these
studies were conducted on file level co-changeability [5]–[7],
[11], [12], [15], [21], [26]. Only a few [27]–[29] investigated
the co-changeability of finer grained entities such as classes,
method, variables, and lines. None of these studies investigated
how to detect highly coupled entities analyzing the entity co-
change history and how to minimize their coupling.

A number of studies [2], [11], [23], [24] were conducted on
the identification of possible structural weaknesses analyzing
the co-evolution of files [2], [23], [24] or system modules [11].
The underlying idea is that if two or more files from different
folders co-change frequently, this might be an indication
of structural weakness. We believe that existence of highly
coupled methods is another indicator of structural weakness.

The existing co-change visualization tools: Evolution Radar
[10], CCVisu [3], Evolution Storyboard [4], interactive vi-
sualization [23] can clearly indicate file level co-changes.
These tools cannot detect method level co-changes. Rose
tool [28], implemented as a plug-in, can detect which other
entities (variables, methods, classes, files) we might need to
change while changing a particular entity. Although this tool
considers the co-changes among finer grained entities, it was
not designed for detecting highly coupled methods.

In this paper, we advance the state of the art by not only
considering the co-change of a finer grained entity, method, but
also proposing, detecting, and investigating a unique method
co-change pattern that has the potential to pinpoint highly
coupled methods (possible places of restructuring to minimize
coupling) in a software system.

III. DETECTION OF THE PATTERN AND MMCGS

We detect the method co-change pattern as well as MMCGs
by mining and inferring association rules. Association rules
have already been used to determine co-changing program
entities [28]. For detecting the particular co-change pattern we
at first mined method association rules with reasonable con-
straints from the set of commit operations of a subject system.
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Then, we inferred the patterns and MMCGs from the selected
association rules. We describe our detection mechanism in the
following paragraphs beginning with the formal definition of
the association rule and related terminology.

A. Association Rule

An association rule [1] is an expression of the form X => Y
where X is the antecedent and Y is the consequent. Each of X
and Y is a set of one or more program entities. As we consider
only methods in our experiment, the sets X and Y consist of
methods only. The meaning of such a rule in our context is that
if X gets changed in a particular commit operation, Y also
has the tendency of getting changed in that commit operation.

We can determine the confidence or strength of a particular
association rule by determining the supports of its constituent
parts in the following way.

Support: Support is the probability of a method or a group
of methods by which the method or method group appears
(gets modified) in commit operations. The support of a method
set X is calculated according to the following equation.

support(X) = CX
C

(1)

Here CX is the count of commits in which X appears and
C is the total number of commit operations. Support of the
expression X => Y is determined by support (X Y) in the
following way.

support(X => Y ) = support(XY ) = CXY
C

(2)

Here CXY is the count of commits in which both X and
Y appeared.

Confidence: Confidence is the conditional probability of an
association rule X => Y . Confidence of this association rule
determines the probability that Y will appear in a commit
operation provided that X appears in that commit operation.
We determine the confidence of X => Y in the following way.

confidence(X => Y ) = support(X => Y )
support(X) = CXY

CX
(3)

In our experiment we consider only those rules where each
of X and Y consist of a single method. Such a rule can be
expressed as x => y where x and y are two different methods.

B. Constraints for Detecting MMCG

Suppose x, y, and z are three methods of a particular
software system. Let us further assume that their co-change
history obey the following two constraints.

(i) Each of the rules x => y and z => y has confidence 1.
(ii) Each of the rules y => x and y => z has a confidence of

less than 1.
Looking at Fig. I we can see that the methods: m1, m2,

and m3 co-changed following the above constraints. Here,
the method m2 corresponds to y in the described constraints.
These constraints have the following implications.

(1) According to the first constraint, whenever x modifies
y gets a corresponding modification. Also, because of every
change in z there is a corresponding change in y. However, the

second constraint implies that there are some commits during
the evolution where y received some changes but any one or
both of x and z did not receive any change. Thus, the above
two constraints guarantee that x, y and z have co-changed
following the defined pattern. Here, y is the MMCG, and also
y is likely to be logically coupled with both x and z.

(2) The constraints also confirm that the MMCG, y, will be
changed in more commits compared to both x, and z during
the evolution. Thus, these constraints have the potential to
detect frequently modified MMCGs.

(3) As the constraints confirm that y will appear in more
commits compared to both x and z, it is likely (not guaranteed)
that y will have a longer lifetime (in term of how many commit
operation it is remaining alive without getting deleted) com-
pared to the others. Obviously, higher modification frequency
cannot confirm higher longevity.

(4) As the MMCGs are likely to: (i) be coupled with multiple
other methods, (ii) have higher modification frequency, and
(iii) have higher longevity, MMCGs might be correlated with
higher change proneness of a software system.

We have empirically evaluated each of these four implica-
tions in Section V (Experimental Results and Discussion).

C. MMCG Detection Steps
Step 1: In this step we identify the association rules of the

form a => b from commit operations where a and b are two
different methods and

1) a => b has confidence 1,
2) b => a has confidence less than 1, and
3) a and b got modified together in at least a predefined

minimum number of commit operations Cmin. If we
denote the count of commits having both a and b by
Cab, we can specify this condition as, Cab ≥ Cmin.

The third condition has been imposed because it might
increase the possibility of the existence of an underlying
relationship between a and b. It is difficult to choose a
particular value for Cmin. We detected MMCGs with four
different values (1, 2, 3, 4) for Cmin as described in Section
V. For higher values of Cmin we found no MMCGs for
some subject systems (e.g. Each of Camellia, GreenShot, and
MonoOSC). Step-1 is performed with the help of Apriori
algorithm2. Apriori is a frequent item-set mining algorithm
which we have used to identify method pairs appearing in at
least Cmin commit operations.

Step 2: In this step we determine the MMCGs from the
rules identified in Step-1. We identify those methods each of
which appears as the consequent (the method at the right hand
side of a rule selected in Step-1) of more than one association
rules. Each of these methods is an MMCG according to our
definition. We sort the MMCGs in non-increasing order of the
count of their antecedents. For each MMCG we determine
the set of its antecedents so that we can perform manual
investigation on whether an MMCG is logically coupled with
its antecedents. The details of our manual investigation are
presented in Section V-A.

2Apriori algorithm. http://en.wikipedia.org/wiki/Apriori algorithm
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D. Related Terminology

For determining the confidences of association rules and
supports of methods or method groups we need to determine
the number of commit operations in which a particular method
or a particular group of methods appeared. For this purpose
we need to identify the method genealogies. Without method
genealogies we cannot determine whether the same method or
method group has appeared in multiple commit operations.

Method Genealogy: During the evolution of a software
system a particular method might be created in a particular
revision and can remain alive in multiple consecutive revisions.
Each of these revisions has a separate instance of this method.
Method genealogy identifies all of these instances as belonging
to the same method. Therefore, the total number of method
genealogies extracted from the revisions of a system is equal
to the number of methods created in different revisions of
that system. A particular method genealogy corresponds to a
particular method.

Methods Not Selected as MMCGs (MNSM): In our
experiment we investigate only those methods that were
modified during evolution. The methods that did not appear
in the commit operations have not been analyzed, because
these methods did not exhibit evolutionary coupling. After
determining the method genealogies of a particular software
system we identify those genealogies which have received
some changes in their lifetime. By excluding the MMCGs from
these genealogies we obtain the MNSMs.

IV. EXPERIMENTAL SETUP AND STEPS

We implemented our proposed method using the Java pro-
gramming language with MySQL as the backend database
server. We applied our methodology to seven open source
subject systems to determine the MMCGs and MNSMs. Table I
lists the subject systems downloaded from an open source
SVN repository3. The subject systems are diverse, varying in
size, spanning six different application domains, and covering
three different programming languages.

For a particular subject system we completed the following
steps sequentially: (1) Preprocessing of source code, (2) De-
tection of methods along with file name, class name (for Java,
and C#), package name (for Java), method name, signature,
starting and ending line numbers from all the revisions of
the subject system using Ctags4 and storing the methods in
the database, (3) Extraction of method genealogies following
the methodology proposed by Lozano and Wermelinger [16],
(4) Detection of clones using NiCad [9] and storing them in
the database, (5) Locating the clones in the already detected
methods using beginning and ending line information of clone
fragments and methods, (6) Determining the changes between
every two consecutive revisions using diff and locating these
changes to the methods and clones, (7) Identification of
MMCGs and MNSMs, and finally (8) Calculation of metrics.
For the detailed description of the first six steps we refer the

3Source Forge: http://sourceforge.net/
4Exuberant Ctags: http://ctags.sourceforge.net/

TABLE I
SUBJECT SYSTEMS

Systems Domains LOC Revisions

Ja
va DNSJava DNS Protocol 23,373 1635

Carol Game 25,092 1699

C

Ctags Code Def. Generator 33,270 774
Camellia Multimedia 85,015 207
QMail Admin Mail Management 4,054 317

C
# GreenShot Multimedia 37,628 999

MonoOSC Formats and Protocols 18,991 355

TABLE II
METHOD COUNTS

Systems MG MGC MMCG MNSM MMCG MNSM
Cmin = 1 Cmin = 2

Ja
va DNSJava 3752 1244 493 751 128 1116

Carol 5004 943 376 567 122 821

C Ctags 865 362 91 271 14 348
Camellia 307 206 83 123 45 161
QMail Admin 120 59 40 19 22 37

C
# GreenShot 1378 393 102 291 15 378

MonoOSC 604 164 60 104 9 155
MG = Method Genealogies
MGC = Method Genealogies that received some changes
MMCG = Methods appearing in Multiple Commit Groups
MNSM = Methods Not Selected as MMCG

interested readers to our study [18]. We have described the
identification process of MMCGs and MNSMs in Section III.

We calculated the metrics Life Span (LS), and Modification
Occurrence Rate (MOR) for measuring the longevity and
change proneness of MMCGs and MNSMs. We calculated two
other metrics: Count of LOC Modified per Commit (CLMC),
and Modification Count per Commit (MCC) to quantify the
change proneness of the source code of the entire software
system in two different ways. We calculated these metrics to
find a correlation between the proportion of MMCGs and the
source code change proneness of the software systems. The
details of these metrics are described in Section V.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We applied our methodology on each of the seven candidate
systems and obtained MMCGs for four different values of
Cmin (mentioned in Section III-C): 1, 2, 3 and 4. However,
the MMCGs obtained for higher values of Cmin are obviously
the subsets of the MMCGs obtained for lower values of Cmin.
We observe that for some subject systems (e.g. MonoOSC,
Camellia, Ctags, Greenshot) the counts of MMCGs resulted
for Cmin = 3 or 4 are negligible compared to the counts of
MMCGs obtained for Cmin = 1 or 2. Our experimental result
section consists of the results and statistics obtained for two
Cmin values: 1 and 2.

Table II provides some basic counts for each candidate
system, specifically: the number of method genealogies (MG),
the number of genealogies that received some changes (MGC),
and the number of MMCGs and MNSMs for Cmin = 1 and
2. The total number of MMCGs and MNSMs is equal to
the number of method genealogies with changes, because we
detected MMCGs considering those genealogies that received
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some changes during the evolution. Inclusion of the methods
that did not change during evolution is not necessary, because
evolutionary coupling cannot be inferred from these methods.

In section III-B we mentioned four implications regarding
the MMCGs detected using our proposed method co-change
pattern. In the following four subsections we empirically
evaluate these implications. We also investigate the effect of
clones on method co-change.

A. Manual Investigation on the Detected MMCGs

In Section III-B we mentioned that the MMCGs detected
according to our proposed pattern are likely to be logically
coupled with multiple other methods. In this subsection we
manually investigate whether the detected MMCGs are log-
ically coupled with their respective antecedents. We have
manually checked all the MMCG results obtained for two
subject systems: Ctags and QMailAdmin. For the purpose of
checking we devised our algorithm to obtain the following
information for each MMCG.

(1) what are the antecedents of a particular MMCG
(2) in which commit operations the method pair consisting

of an MMCG and an antecedent of it (as detected by our
algorithm) have changed together. Obviously, according to our
definition of the pattern, the MMCG has changed in all those
commit operations where the antecedent has changed.

We analyzed the changes to the MMCG and the correspond-
ing antecedents in each of those commit operations where
they changed together. We wanted to determine whether the
changes occurred in an MMCG and its antecedent are related.
Our investigation regarding Ctags is given below.

(1) Investigation of Ctags: In case of Cmin = 1, we
obtained 91 MMCGs (Table II) among which 55 MMCGs
(60% of the MMCGs) can be suggested to be logically
coupled with some of their corresponding antecedents ac-
cording to our manual investigation. The average number
of logically coupled antecedents per MMCG (considering
these 55 MMCGs) was five (highest = 8, lowest = 2).
An example of a highly coupled MMCG is processTo-
ken (file: c.c) which is logically coupled with eight of its
antecedents: accessString, declToTagType, includeTag,
qualifyCompoundTag, qualifyFunctionTag, tagLetter,
tagName, and qualifyV ariableTag in the same file. The
MMCG processToken co-changed with each of these an-
tecedents in different commit operations. In the commit on
revision 242, these nine methods (processToken and its an-
tecedents) co-changed. In this commit, a particular condition
that checks for language CSharp was added in processToken
and corresponding changes (e.g., addition of the same condi-
tion or corresponding statements) also took place to each of the
eight antecedents. This can be easily verified by observing the
changes in these methods comparing the instances of c.c file in
revisions 242 and 243. We obtained five MMCGs in total each
of which was found to be logically coupled with eight of their
antecedents. However, our implementation sorts the MMCGs
in non-increasing order of the count of their antecedents so
that we can consider the first few highly coupled MMCGs

for analyzing and possible restructuring to minimize their
coupling with their antecedents.

The changes occurred between an MMCG and a correspond-
ing antecedent can be divided into the following categories:
(1) addition of string constants in an antecedent and addition
of corresponding case statements in MMCG, (2) addition of
corresponding case statements in both MMCG and its an-
tecedent, (3) addition of string constants in an antecedent and
addition of condition for that constant in MMCG, (4) addition
of the same condition in both MMCG and its antecedent, (5)
deletion of the same method calls from both MMCG and its
antecedent, and (6) changes in the parameters of an antecedent
and corresponding changes to MMCG because MMCG calls
the antecedent. For Cmin = 2, we obtained 14 MMCGs (Table
II). We found 10 MMCGs (71.42% of MMCGs) that are
logically coupled with some of their antecedents.

(2) Investigation of QMailAdmin: According to our inves-
tigation on QMailAdmin, the methods in this system are very
highly coupled. For Cmin = 1, we detected 40 MMCGs in total
(Table II). Through manual analysis we selected 27 MMCGs
(67.5% of the MMCGs) each of which is logically coupled
with 11 antecedents on an average (highest = 15, lowest =
3). The changes between an MMCG and a corresponding
antecedent can be divided into four categories: (1) renaming
of the same variables in these methods, (2) parameter change
to the same method calls in these methods, (3) deletion of the
same method calls, and (4) replacement of the same method
call by another method call in each of these two methods.
We also calculated the percentage of MMCGs for Cmin = 2.
Among 22 MMCGs selected for Cmin = 2, 17 (77.27% of
the MMCGs) appeared to be logically coupled with multiple
antecedents. Thus, we see that considering Cmin = 1 we get
a higher number of MMCGs that are logically coupled with
multiple other methods (antecedents).

We have already mentioned that in case of Cmin = 3
and 4, the number of detected MMCGs is negligible for
some subject systems. We see that the percentage of true
positives (MMCGs that are logically coupled with some of
their antecedents) in case of Cmin = 1 is smaller than the
percentage of true positives obtained for Cmin = 2. Intuitively,
higher values of Cmin increases the likelihood of an existing
logical coupling between an MMCG and its corresponding
antecedents. However, considering Cmin = 1 our algorithm
can retrieve a higher amount of MMCGs that are logically
coupled with their antecedents. We observed that the number
of MMCGs rapidly decreases with the increase of Cmin.

A complete example of changes occurred to an MMCG
and its antecedents: We present an example from QMailAd-
min showing how an MMCG and two of its antecedents
co-changed following our proposed pattern through out the
evolution. For this example, addusernow is the MMCG, and
adduser and delusergo are the antecedents. These methods
belong to the same file qmailadmin/user.c.

The antecedent adduser was modified in three commits
applied to the revisions 139, 143, and 148. The MMCG
addusernow was also modified in these commits. In the first
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commit two calls to the methods count users and load limits
were deleted from adduser. The same change also happened
to addusernow in the same commit. In the second commit,
two calls to exit(0) in adduser were replaced by two return
statements return (142) and return (199). In the same commit,
two corresponding calls in addusernow were also replaced by
return (142) and return (199). In the third commit, the param-
eter of the get html text () was changed in the corresponding
places of adduser and addusernow.

The antecedent delusergo changed in three commits applied
to revisions 76, 143, and 148. The MMCG addusernow also
had corresponding modifications in these commits. In the first
commit the parameter of call hooks method was changed in
the corresponding places of delusergo and addusernow. In
the second commit, a call to the vclose method was deleted
from the corresponding locations of these methods. The third
commit made a change similar to that described in the previous
paragraph.

The ways the methods: addusernow, delusergo, and adduser
got modified obviously indicate that addusernow is related
to the functionalities associated with delusergo and adduser.
Thus, addusernow is an MMCG that is logically coupled with
two other methods (antecedents).

B. Investigation on the Longevity of MMCGs

In Section III-B we mentioned that the MMCGs detected
using our proposed method co-change pattern are likely to
live longer compared to the MNSMs. In this subsection we
investigate the longevity of MMCGs and MNSMs.

Life Span (LS): Life span measures the longevity of a
particular method in terms of the number of commits where
it was alive. Each commit operation creates a new revision.
Suppose a particular method m was created in revision Rc
and disappeared (was deleted) after revision Rd. The life span
of this method will be calculated using Eq. 4.

LS(m) = Rd −Rc + 1 (4)
Here, LS(m) is the life span of the method m.
As we extract the method genealogies examining all the

revisions, we can easily determine the Rc and Rd of a partic-
ular method corresponding to a particular method genealogy.
We have determined the average life spans for MMCGs and
MNSMs according to the following equations.

ALSMMCG = ∑mεMMCG LS(m)
∣MMCG ∣ (5)

ALSMNSM = ∑mεMNSM LS(m)
∣MNSM ∣ (6)

Here, ALSMMCG and ALSMNSM are the average life spans
of MMCGs and MNSMs respectively. MMCG and MNSM are
respectively the sets of all MMCGs and MNSMs. We should
mention that we are investigating only those methods that have
received some changes in their life span. We separated these
methods in two disjoint sets MMCG and MNSM .

ALSMMCG and ALSMNSM for each of the subject systems
are plotted in the bar graph of Fig. 2. We see that for each
of the candidate systems the average life span of MMCGs is
greater than that of MNSMs for both Cmin = 1 and 2. Thus,

MMCGs generally live longer than MNSMs. We wanted to
determine whether the life spans of MMCGs are significantly
longer than those of MNSMs. For this purpose we performed
the following significance test.

Significance test regarding longevity: We performed the
Mann-Whitney U-Test [17] on the observed life spans of
MMCGs and MNSMs for each system. Test details are given in
Table III. This table also contains the significance test results
for another metric (MOR). We will describe this later.

Here, we should mention that for Mann-Whitney U-Tests
the two sets of populations do not need to be normally
distributed. A particular test gives us a U-value associated with
a probability value (two tailed p-value). We have recorded only
the p-values. A p-value smaller than 0.05 indicates a significant
difference between the metric values of MMCGs and MNSMs.
For each of the tests in Table III the sample sizes are the counts
of MMCGs and MNSMs of a particular subject system.

According to the test regarding lifespan, for most of the
subject systems (all systems in case of Cmin = 1, five systems
out of seven in case of Cmin = 2), life spans of MMCGs are
significantly longer than life spans of MNSMs. In other words,
MMCGs generally live significantly longer than MNSMs.

C. Investigation on the Instability of MMCGs

By the term instability we mean the change proneness
of methods (MMCGs and MNSMs). From our pattern def-
inition and detection technique of MMCGs it is likely that
the MMCGs will appear to receive more frequent changes
compared to MNSMs. This is also mentioned in Section III-B.
However, we wanted to investigate whether the instability of
MMCGs is significantly higher than MNSMs. We investigate
the following instability metric for this purpose.

Modification Occurrence Rate (MOR): Modification oc-
currence rate measures the number of modifications taking
place to a method per commit operation. We consider modifi-
cations according to the definition given by Hotta et al. [14].
Just for clarification we can say that a single modification can
affect several (one or more) consecutive lines. Suppose, 10
lines of a particular method has been modified in a particular
commit operation. If these lines are consecutive (without any
gap of unchanged lines among them), the count of modifica-
tions is one. Otherwise, the count of modifications is equal to
the number of gaps among the modified lines plus one. For a
particular method m we calculate its modification occurrence
rate MOR(m) according to the following equation.

MOR(m) = MC (m)
LS(m) (7)

Here, MC (m) is the count of modifications occurring in
method m during its life span. We calculated the modification
occurrence rates for MMCGs and MNSMs of the entire system
according to the following equations.

MORMMCG = ∑mεMMCG MC (m)
∑mεMMCG LS(m) (8)

MORMNSM = ∑mεMNSM MC (m)
∑mεMNSM LS(m) (9)
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Fig. 2. Comparison regarding life span.

Fig. 3. Comparison regarding modification occurrence rates (MOR).

Here, MORMMCG and MORMNSM denote the modifica-
tion occurrence rates of MMCGs and MNSMs respectively.

We compared the modification occurrence rates of MMCGs
(MORMMCG ) and MNSMs (MORMNSM ) of each of the
software systems by plotting the values of these two metrics
in the graph of Fig. 3. We see that for each of the systems
MORMMCG is much greater than MORMNSM (for each
value of Cmin). Thus, the rate by which MMCGs receive
modifications is always higher than the rate by which MNSMs
receive modifications according to our subject systems. This is
expected considering our definition and detection technique of
MMCGs. However, we wanted to determine whether MMCGs
exhibit significantly higher instability compared to MNSMs.

Significance test regarding instability: For the purpose of
the significance test we calculated the modification occurrence
rate (MOR) of each of the MMCGs and MNSMs according to
the equation Eq. 7. Then we performed the Mann-Whitney
U-Tests on the MORs of MMCGs and MNSMs for each of
the subject system. Based on the test results given in Table III
we can say that the modification occurrence rates of MMCGs
is always significantly higher than those of MNSMs for the
subject systems.

D. Investigation on the Correlation of MMCGs with Change-
proneness of Source Code

From Section V-A we have observed that, most of the
MMCGs are logically coupled with multiple other methods.
Also, we have seen that MMCGs live significantly longer and
exhibit significantly higher instability compared to MNSMs.
From this we suspected that presence of MMCGs can be
an indication of higher change-proneness of source code. To

TABLE III
RESULTS OF MANN WHITNEY WILCOXON (MWW) TESTS

Systems DnsJava Carol Ctags Camellia QMai Green Mono
Admin Shot OSC

p-values regarding LS and MOR for Cmin = 1

p (LS) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <0.001 0.002
p (MOR) < 0.001 < 0.001 < 0.001 < 0.001 0.007 < 0.001 0.035

p-values regarding LS and MOR for Cmin = 2

p (LS) < 0.001 < 0.001 0.071 0.003 <0.001 0.033 0.209
p (MOR) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.026
*Sample sizes are the counts of MMCGs and MNSMs for Cmin = 1 and 2
*Sample sizes are listed in Table II

p (LS) = Two tailed probability value for Life Span (LS)
p (MOR) = Two tailed probability value for MOR

*A probability value < 0.05 indicates a significant difference

TABLE IV
CORRELATION OF MMCG PROPORTION WITH SYSTEM INSTABILITY

Systems DnsJava Carol Ctags Camellia QMai Green MonoOSC
Admin Shot

Cmin = 1, Correlation between PMMCG and CLMC
PMMCG 39.63 39.87 25.13 40.29 67.79 25.95 36.58
CLMC 21.93 42.58 23.62 35.04 128.8 18.98 50.85

Pearson Correlation Co-efficient between PMMCG & CLMC = 0.9232
Cmin = 1, Correlation between PMMCG and MCC

PMMCG 39.63 39.87 25.13 40.29 67.79 25.95 36.58
CMC 10.63 16.87 7.94 18.12 51.31 9.57 22.51

Pearson Correlation Co-efficient between PMMCG & CLMC = 0.9373
Cmin = 2, Correlation between PMMCG and CLMC

PMMCG 10.29 12.94 3.87 21.84 37.29 3.82 5.49
CLMC 21.93 42.58 23.62 35.04 128.8 18.98 50.85

Pearson Correlation Co-efficient between PMMCG & CLMC = 0.8519
Cmin = 2, Correlation between PMMCG and MCC

PMMCG 10.29 12.94 3.87 21.84 37.29 3.82 5.49
CMC 10.63 16.87 7.94 18.12 51.31 9.57 22.51

Pearson Correlation Co-efficient between PMMCG & CLMC = 0.8742
PMMCG = Proportion of MMCGs
CLMC = Count of LOC Modified per Commit
CMC = Count of Modifications per Commit

quantify the change-proneness of source code we measured
the following two metrics.

(i) Count of source code lines modified per commit opera-
tion (CLMC)

(ii) Count of modifications (as defined in Section V-C)
occurred per commit operation (CMC)

We wanted to see the whether the proportion of MMCGs is
correlated with source code change-proneness. Table IV shows
the details of correlation. The strong correlation (indicated
by the correlation co-efficients) of the proportion of MMCGs
(PMMCG) with each of the two metrics (CLMC, and CMC)
implies that higher change proneness in a software system is
an strong indicator of the existence of higher proportion of
MMCGs in that system. While calculating CLMC and CMC
we considered only those commits where some source code
was modified.

E. Investigation Regarding the Effect of Clones on Co-change

A common intuition regarding software clones is that clone
fragments in the same clone class are likely to co-change,
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because changes in one clone fragment might require corre-
sponding changes to other clone fragments in the same clone
class to maintain consistency among the fragments. We inves-
tigated the exact (Type 1) and near-miss clones (Type 2, and
Type 3 clones) in our study. While Type 1 clones are the same
code fragments disregarding the comments and indentations,
Type 2 clones retain syntactic similarity. In general, Type 2
clones are created because of variable renaming and changing
of data types. Type 3 clones are created because of addition,
deletion, or modification of lines in Type 1 or Type 2 clones.
We define the following two co-changes regarding clones for
the purpose of describing our investigation.

Co-change of Clone fragments from the Same Class
(CCSC): If two or more clone fragments belonging to the
same clone class co-change (in a commit operation), then we
term this co-change as a Co-change of Clone fragments from
the Same Class (CCSC).

Consistency Ensuring Co-change to Clones (CECC): If
two or more clone fragments from the same clone class co-
change (in a commit operation) because, changes in one clone
fragment require corresponding changes to the other clone
fragment(s) to ensure consistency among the fragments, then
we call this co-change a Consistency Ensuring Co-change to
Clones (CECC). Intuitively, most of the CCSCs are CECCs.

Investigation Process: We detected three types of clones
(Type 1, Type 2, and Type 3) from each of the revisions of a
software system using the NiCad clone detector [9], because
NiCad can detect each of these three clone types with high
precision and recall [22]. NiCad provides clone results by
separating them into different clone classes according to the
similarity of the clone fragments. We reflected or located these
clones in the already detected methods using the beginning
and ending line numbers of the clone fragments and methods.
From the previously stored information regarding the changes
between two consecutive revisions, we can identify whether
a particular change occurred inside a clone fragment of a
method. Considering the rules obtained from Step 1 of MMCG
Detection Steps (Section III-C) we determined those rules each
of which obeys the following constraints.

(1) The two methods in the rule contains clone fragments
from the same clone class, and

(2) In a particular commit operation, these clone fragments
(from the same class) of these two methods co-changed.

Such a rule is related to CCSC. According to the common
intuition regarding clones, it is likely that a rule with these
constraints will also be related to CECC. We calculated the
following two proportions for each of the subject systems.

(1) Proportion of Rules Related to CCSC (PRRC):
Suppose, the number of rules obtained from Step 1 of MMCG
Detection Steps (Section III-C) is R, and r of these R rules
are related to CCSC. We determine, PRRC = (r × 100) / R.

(2) Proportion of MMCGs Related to CCSC (PMRC):
Suppose, the number of MMCGs detected from Step 2 of
MMCG Detection Steps (Section III-C) is N , and n of these
MMCGs are also the consequents of some of the rules related
to CCSC. So, each of these n MMCGs is also related to

CCSC. In other words, each of these n MMCGs has clone
fragment which has co-changed with another clone fragment
contained in one (at least) of its antecedents and these two
clone fragments (clone fragment in MMCG and clone fragment
in its antecedent) belong to the same clone class. We determine
the proportion of these n MMCGs related to CCSC. This
proportion is, PMRC = (n × 100) / N.

We show these proportions for Cmin = 1 and 2 in Table
V. According to this table, a considerable amount of rules
(34.43 % for QMailAdmin, Cmin = 2) can sometimes be re-
lated to CCSC. Moreover, a significant proportion of MMCGs
(68.18 % for QMailAdmin, 63.28 % for DNSJava considering
Cmin = 2) can be related to CCSC.

Manual Examination: For QMailAdmin, we manually
investigated: (1) how many of the rules related to CCSC
are also related to CECC (Consistency ensuring co-change to
clones), and (2) how many of the MMCGs related to CCSC
are also related to CECC for Cmin = 2. We found 126
rules and 15 MMCGs that are related to CCSC. According
to our observation, each of these 126 rules and 15 MMCGs
is also related with CECC. As an example we mention the
MMCG addusernow and its antecedent modusergo (both in
file user.c) that co-changed in the commit operation applied on
revision 143. The cloned portions in these methods are Type
3 clones belonging to the same clone class. In the commit
on revision 143, the same called methods vclose() and exit(0)
were replaced by a single return statement return (142) in
both clone fragments of these two methods. Thus, these two
methods (addusernow, and modusergo) received consistency
ensuring co-changes to their clone fragments.

From the above scenario we realize that a significant portion
of the MMCGs can exhibit evolutionary coupling because
of the consistency ensuring changes to the clones of the
same clone class. Also, a considerable amount of the rules
are sometimes created because of such consistency ensuring
changes. Thus, clone refactoring can be helpful in minimizing
co-changes as well as MMCGs. In other words, by refactoring
clones we can minimize evolutionary coupling among meth-
ods. We also determined the counts of rules related to CCSCs
for three types of clones to determine which type(s) of clones
mostly affect co-changing of methods. These counts are shown
in Table VI. According to this table, for most of the subject
systems the rules are mostly related to Type 1 or Type 3 clones.
Thus, in case of refactoring we should possibly focus on Type
1 and Type 3 clones.

F. Investigation Results and Discussion

We summarize our investigation results as follows.
(1) The MMCGs detected following the method co-change

pattern are sometimes highly coupled (i.e. coupled with many
other methods) according to our manual investigation. Thus,
the investigated pattern as well as the algorithm for identifying
this pattern have the capability of retrieving highly coupled
methods from the method co-change history.

(2) The detected MMCGs live significantly longer and show
significantly higher change proneness compared to the other
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TABLE V
PROPORTIONS OF RULES AND MMCGS RELATED TO CCSC

Systems DnsJava Carol Ctags Camellia QMai Green MonoOSC
Admin Shot

Proportions considering Cmin = 1
PRRC 1.75 1.00 0.69 0.49 20.9 0.86 0.57
PMRC 32.86 20.47 7.69 18.07 55 7.84 6.66

Proportions considering Cmin = 2
PRRC 11.14 12.63 0 3.57 34.43 0 2.5
PMRC 63.28 32.79 0 6.67 68.18 0 11.11
PRRC = Proportion of rules related to CCSC
PMRC = Proportion of MMCGs related to CCSC

TABLE VI
COUNTS OF RULES RELATED TO THREE TYPES OF CLONES

Systems DnsJava Carol Ctags Camellia QMai Green MonoOSC
Admin Shot

Counts of rules considering Cmin = 1
Type 1 164 11 0 12 61 0 0
Type 2 0 0 2 6 53 7 0
Type 3 55 214 6 11 38 1 3

Counts of rules considering Cmin = 2
Type 1 78 6 0 7 45 0 0
Type 2 0 0 0 0 46 0 0
Type 3 24 120 0 0 35 0 2

methods not detected as MMCGs. The possible reason behind
the higher change proneness of MMCGs is that most of them
are highly coupled with other methods and higher coupling
can cause increased modifications to coupled entities1.

(3) Higher change proneness in the entire source code is
a strong indicator of the presence of a higher proportion of
MMCGs as well as higher coupling in the software system.

(4) A considerable amount of method co-changes occurs
because of the consistency ensuring changes in the clone
fragments belonging to the same clone class. Also, sometimes
a significant portion of MMCGs exhibit evolutionary coupling
because of such consistency ensuring changes.

As lower coupling is generally regarded as a desirable
attribute (because higher coupling promotes changes), our
primary goal of this research work was to automatically
identify the highly coupled areas in a software system so
that we can think of possible restructuring in those areas
to minimize coupling. We believe that our proposed method
co-change pattern and methodology for detecting this pat-
tern as well as MMCGs are significant contributions towards
achieving this goal. Also, as the detected MMCGs are the
most unstable (change prone) as well as long-lived methods
in a software system, detection and understanding of these
methods along with their relationships is very important for
a new maintenance programmer. The proportion of detected
MMCGs can possibly be regarded as a quantifier of design-
quality attribute of a software system. Higher proportion of
MMCGs is possibly an indication of design deficiency in a
software system. From the correlation Table IV we see that
the subject system QMailAdmin appears to have the highest
proportion of MMCGs for both Cmin = 1 and 2. We also see
that this system exhibits the highest change-proneness. From
Table V we can see that the effect of cloning on the method

co-changes in QMailAdmin is the highest. Thus, QMailAdmin
can be regarded as an example of a badly designed system.

Finally, our clone analysis result suggests that refactoring
of clones can help us in minimizing method co-changes (evo-
lutionary coupling among methods). In the case of refactoring
we can primarily target Type 1 and Type 3 clones, because the
association rules are more related to these two types of clones
compared to the Type 2 clones.

VI. THREATS TO VALIDITY

The study is based on the assumption that co-change
correlates with logical coupling. This is well accepted in
the community. However, there are systems for which the
correlation is not that large. The method co-change pattern
that we investigated excludes a portion of co-changes from
consideration, because these co-changes do not follow the
constraints that we defined for the pattern. However, we
believe that the co-changed methods obtained following the
constraints are more likely to be logically coupled compared
to the other co-changed methods excluded by the constraints.
Thus, our defined pattern is important for detecting highly
coupled entities.

The sample size of our study might not be sufficient to
draw a general conclusion on the characteristics of MMCGs
and MNSMs. However, as our selected subject systems are of
diverse size, application domains, and programming languages
we believe that our observations regarding the MMCGs and
MNSMs cannot be attributed to a chance. Thus, our study
result is important from maintenance perspectives.

VII. RELATED WORK

Association rules introduced by Agarwal et al. [1] have been
frequently used to find associated or co-changing program
artifacts (also known as frequent itemsets) [6], [28].

Zimmermann et al. [28] used association rules to rep-
resent the co-change relationships among different program
artifacts. They implemented a tool called ROSE for extracting
association rules from software evolution history. The ROSE
prototype could predict the files needing to be modified for
a particular change request for 26% of the cases. Canfora
et al. [6] proposed the use of the Granger causality test
for determining whether a particular change occurring in
a program artifact is consequentially related to some other
changes occurring in other artifacts. Jafar et al. [15] performed
a comprehensive study on macro co-changes considering file
level granularity. They introduced two metrics MCC (macro
co-changes), and DMCC (diphase macro co-changes) and
using their proposed approach Macocha they detected how
many files exhibit MCC and DMCC. Beyer [3] implemented
a co-change visualization tool CCVISU for extracting the un-
derlying clustering of artifacts in a software system analyzing
the CVS log files. CCVISU can help us in understanding the
relationships among software artifacts and providing helpful
guidance of changes happening in the maintenance phase.
Gall et al. [11] introduced an approach for discovering logical
dependencies and change patterns among different program
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modules by using the information in the release history of
a system to minimize the structural problems in the system.
D’Ambros et al. [10] implemented evolution radar to visualize
module level and file level logical couplings.

In an empirical study Hassan and Holt [13] showed that
historical co-change information can be used to help develop-
ers during the change propagation process. Zhou et al. [27]
presented a Bayesian network based approach for predicting
change coupling behaviour between source code artifacts.

We see that there are a great many studies on co-
changeabilities of program artifacts. Our empirical study pre-
sented in this paper is different in the sense that we investigate
a unique method co-change pattern that is able to detect highly
coupled methods that are important from the perspective of
program comprehension. We also investigated the effects of
clones on method co-changes with an interesting outcome on
how to minimize method co-changes.

VIII. CONCLUSION

In this paper we investigate a particular method co-change
pattern which is capable of identifying particular methods
(MMCGs) that are likely to be logically coupled with multiple
other methods. We implement our technique for detecting the
method co-change pattern as well as MMCGs. According to
our empirical evaluation with rigorous manual investigation,
the MMCGs detected according to our mentioned method co-
change pattern are often logically coupled with multiple other
methods, live significantly longer and exhibit significantly
higher change-proneness compared to the other methods not
detected as MMCGs. A possible cause behind this higher
change proneness is that MMCGs are logically coupled with
many other methods. Source code change-proneness of the
entire software system is positively correlated with the pro-
portion of MMCGs. Also, a considerable amount of method
co-changes can occur because of the consistency ensuring
changes in the clone fragments from the same clone class.
A significant portion of MMCGs can exhibit evolutionary
coupling because of such consistency ensuring changes.

We come to the conclusion that as lower coupling among
program entities is always desirable1, the highly coupled
MMCGs detected by our technique are areas where it may
be to restructure the system to minimize coupling as well as
change-proneness of the system. Also, as the MMCGs exhibit
significantly higher change-proneness and live significantly
longer compared to other methods not selected as MMCGs,
understanding of MMCGs along with their relationships should
be given a high priority for a new maintenance programmer.

Observing our clone analysis results we believe that clone
refactoring can help us in minimizing evolutionary coupling
among methods. While refactoring we should primarily focus
on Type 1, and Type 3 clones because these two types of
clones are more related with method co-changes compared to
Type 2 clones according to our study.

As future work we plan to develop a visualization tool that
will help programmers in defining, detecting, and visualizing

different method co-change patterns and will identify the
highly coupled methods along with their relationships.
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