
gCad: A Near-Miss Clone Genealogy Extractor to
Support Clone Evolution Analysis

Ripon K. Saha∗ Chanchal K. Roy† Kevin A. Schneider†
∗The University of Texas at Austin, USA
†University of Saskatchewan, Canada

ripon@utexas.edu, chanchal.roy@usask.ca, kevin.schneider@usask.ca

Abstract—Understanding the evolution of code clones is im-
portant for both developers and researchers to understand the
maintenance implications of clones and to design robust clone
management systems. Generally, a study of clone evolution
starts with extracting clone genealogies across multiple versions
of a program and classifying them according to their change
patterns. Although these tasks are straightforward for exact
clones, extracting the history of near-miss clones and classifying
their change patterns automatically is challenging due to the
potential diverse variety of clone fragments even in the same clone
class. In this tool demonstration paper we describe the design and
implementation of a near-miss clone genealogy extractor, gCad,
that can extract and classify both exact and near-miss clone
genealogies. Developers and researchers can compute a wide
range of popular metrics regarding clone evolution by simply
post processing the gCad results. gCad scales well to large subject
systems, works for different granularities of clones, and adapts
easily to popular clone detection tools.

Index Terms—Type-3 clones; clone genealogy; clone evolution

I. INTRODUCTION

After a decade of active research, it is evident that code
clones have both a positive [3] and a negative [5] impact
in the maintenance and evolution of software systems. Code
cloning is inevitable in software development, and in order to
exploit the advantages of clones while lowering their negative
impact, it is important to understand the evolution of clones
and manage them accordingly.

Generally, a clone evolution study starts with detecting
clones in multiple versions of a program, and constructing
genealogies by mapping clones across the different versions.
A clone genealogy tells us how the code fragments of a clone
class change through versions during the evolution of a subject
system. Researchers have proposed and implemented a number
of clone genealogy extractors (CGEs) to study the evolution
of clones. However, most of the tools were designed focusing
on some particular tasks of interests and for only Type-1 and
Type-2 clones. Thus CGEs rarely meet the current diverse
requirements such as fast construction and classification of
near-miss clone genealogies and adaptation/integration of a
third party clone detection tool. Furthermore, most of the
reported tools are not publicly available.

The recently developed incremental clone detection meth-
ods [2] improve the genealogy construction time considerably
by integrating clone mapping with clone detection. However,
these methods have their own set of limitations. First, they

are unable to utilize the results obtained from a classic non-
incremental clone detection tool as the detection of clones and
their mapping is tightly integrated. Since most existing clone
detection tools are non-incremental, they restrict developers
and researchers to using a limited number of clone detection
tools. For flexibility it is important to have a clone evolution
analysis tool that is independent of the clone detection tools.
Second, with each new revision or release of the subject
system, the entire detection and mapping process needs to
be repeated, because clones are detected and mapped con-
currently. Since clone management is likely being conducted
on a changing system, it is a disadvantage for an approach
to require detecting clones for all versions each time a new
revision/version is produced. Third, the incremental approach
is fast enough for both detecting and mapping for a given set of
revisions. However, it might not be as beneficial for the release
level because there might be significant differences between
releases.

In this tool demonstration paper, we describe the design
and implementation of a near-miss CGE, gCad (evolved from
our earlier research [6]) that can extract both exact (Type-1)
and near-miss (Type-2 and Type-3) clone genealogies across
multiple versions of a program, and identify their change pat-
terns automatically. Genealogies are constructed incrementally
by merging current mapping results with previously stored
genealogies to give a complete result. gCad scales well to large
subject systems, works for different granularities of clones, and
adapts easily to popular clone detection tools. Developers and
researchers also can compute many popular metrics of clone
evolution by simply post processing the gCad results.

II. APPROACH AND IMPLEMENTATION

This section describes the overall design and implementa-
tion of gCad. Usually gCad accepts n versions of a program
and their clones, maps clone classes between the consecutive
versions, and extracts how each clone class changes throughout
an observation period. Therefore, it is expected that users will
have detected clones in all n versions of the program before
running gCad. A version may be a release or a revision.
gCad mainly works in the following four steps to construct
and classify genealogies: (1) Function Mapping, (2) Clone
Mapping, (3) Automatic Identification of Change Patterns,
and (4) Constructing Genealogies. The first three steps are



Vi

Vi+1

Fi

Fi+1

Ci

Function 
Mapper

Ci+1

Vi Vi+1

Clone 
Mapper

Vi Vi+1

Clone Mappings (CM)

Function
Extraction

Clone
Detection

Add
Delete

:
Consistently 

Changed
Inconsistently

Changed

Pattern
Classifier

TXL-
based
Parser

Clone 
Detector

Strict/Liberal
Mode

CM with change patterns
 stored in XML file

Fig. 1. The First Three Steps of the gCad Framework

performed for each consecutive version pairs. Finally, gCad
merges all the results to construct genealogies for the n
versions. Figure 1 shows the overall structure of gCad for two
versions of a program.

A. Function Mapping

For two given consecutive versions, vi and vi+1 of a
software system, first gCad extracts all the function signatures
from both the versions. For extracting functions gCad uses
TXL [1], a special-purpose programming language that sup-
ports lightweight agile parsing techniques. We exploit TXL’s
extract function, denoted by [ˆ], to enumerate all the functions.
For each function gCad stores the function signature, class
name, file name, the start and end line number of the function
in the file, and its complete directory location in an XML
file. A function is the smallest unique element of a software
project if we consider the signature of a function along with
its class name and complete file path. Therefore, gCad uses
these attributes as a composite key to map functions between
two versions, which is computationally very fast. However,
in practice some functions are renamed, or could move to
different files or directories during the evolution of the system.
In those cases, gCad uses the longest common subsequence
count (LCSC) similarity metrics of function name and body
to find the origin of a function.

B. Clone Mapping
Typically a clone detection tool reports results as a col-

lection of clone classes where each clone class has two or
more clone fragments. A clone fragment could be of any
granularities such as function, structural block, arbitrary block
and so on. Let CCi = {cci1, cci2, ..., ccin} be the reported
clone classes in vi where ccij = {CF i

j1, CF i
j2, ..., CF i

jm}.
Here CF i

jk refers to the clone fragments of the clone class
ccij where 1 ≤ k ≤ m. In order to map clones between
two versions, gCad first maps each clone fragment CF i to
its contained (parent) function, F i in vi using the following
algorithm.

boolean isContained(Block CF, Function F) {
return ((CF.FileName == F.FileName)

AND (CF.BeginLine >= F.BeginLine)
AND (CF.EndLine <= F.EndLine))

}

At this point, since all the functions are already mapped,
the problem of mapping clones between two versions of
a program reduces to the mapping of clones between two

versions of a function. Therefore, mapping clones in gCad
is computationally very fast. If F i contains only one clone
fragment, gCad can easily map that clone fragment in vi+1

since it already knows the corresponding mapped function
F i+1 in vi+1. The mapped clone fragment CF i+i will be
found in Fi+1 if it has not been removed. If F i has more than
one clone fragment, gCad uses the LCSC Similarity score to
map corresponding clone fragments in Fi+1. Once the clone
mapping is completed at the fragment level, gCad maps clones
at the class level. A clone class in vi can be split into two or
more clone classes in vi+1 due to inconsistent changes. For
each clone fragment of a given clone class ccij , gCad checks
if they map into single or different clone classes in vi+1. If all
the clone fragments are mapped to the same class, cci+1

x , gCad
maps ccij → cci+1

x . On the other hand, if they are mapped to
multiple classes, {cci+1

x , cci+1
y , ...}, which usually indicates a

split, gCad keeps track of them as ccij → {cci+1
x , cci+1

y , ...}.

C. Automatic Identification of Change Patterns

Automatic and accurate identification of change patterns
is one of the important features of a CGE. Although iden-
tifying whether a Type-1 clone class changed consistently or
inconsistently is straightforward, it is challenging for near-
miss (Type-2 and Type-3) clones due to the diverse variety of
clone fragments in the same clone class. gCad applies a multi-
pass computationally efficient method to identify the change
patterns of both exact and near-miss clones.

In the first pass, gCad identifies the clone classes that did not
change in the next version (Static), and those clone classes that
have split. The program identifies the split clone classes as an
inconsistent change because it is evident that their fragments
changed inconsistently, and thus they are part of two or more
clone classes in the next version.

In the second pass, gCad makes a decision for Type-1 and
those Type-3 clone classes where modifications of different
fragments of the same clone class are only limited to line
additions or deletions but do not have any variable renaming.
If ccij → cci+1

j′ is such a mapping, gCad computes the
differences between each of the clone fragments of ccij with
the corresponding clone fragments of cci+1

j′ using diff. If the
differences for each of the fragment pairs (CF i

jk, CF i+1
j′k′ ) are

the same, then the clone class is classified as a consistent
change, otherwise as an inconsistent change.

In the third pass gCad considers the rest of the clone
classes (Type-2 clones and Type-3 clones with identifiers
renaming). Since the clone fragments of these clone classes
have variations in their identifiers, gCad cannot exploit diff
directly because the differences will not be the same even if
the fragments changed consistently. In order to deal with this
issue, gCad consistently renames the identifiers of the clone
fragments using TXL. For example, the first identifier and all
its occurrences in a fragment is replaced by x1, the second
identifier and all of its occurrences will be replaced by x2 and
so on. gCad then computes the differences. As before, if the
differences are the same, gCad classifies the change pattern as
a consistent change, otherwise as an inconsistent change. gCad



<mappings>
<version1>
<version2>
<mapping>

<id>
<clone type>
<change pattern>
<change of fragment>
<clone class of v1>

<id>
<number of nlines>
<number of fragments>
<source>

<file name>
<start line>
<end line>
<source fragment id>

</source>
<clone class of v1>
<clone class of v2>

....
</clone class of v2>

</mapping>
<mapping>

........
</mapping>
........

</mappings>

Fig. 2. XML Structure for Storing Clone Mappings between Two Versions

also reports add and delete patterns based on the number of
fragments in a clone class in the previous and next versions.
All the identified mappings and their change patterns are stored
in an XML file (cf. Figure 2) for future use.

D. Genealogy Construction

At this point, gCad has all the detailed mapping information
for each consecutive version {(v1,v2), (v2,v3), ..., (vn−1,vn)}
stored in an XML file for each version-pair. Then gCad
combines all of the results of each version-pair by matching
clone class ids. For example, if a clone class cc11 in v1 maps
to a clone class cc52 in v2, which again maps to cc43 in v3,
{cc11 → cc52 → cc43} forms a clone genealogy. Now if a clone
genealogy has any inconsistent change patterns during the
propagation, it will be classified as an Inconsistently Changed
Genealogy (ICG). If a genealogy has any consistent change
patterns but does not have any inconsistent change patterns, it
will be classified as a Consistently Changed Genealogy (CCG).
If a genealogy has any Add or Delete change patterns, it will
be classified accordingly.

III. TOOL FEATURES

1) Clone Coverage: gCad can construct genealogies for
both exact and near-miss clones and classifies their change
patterns automatically. gCad also works for any types of clone
granularities (e.g., function clones and block clones) and clone
relationships (clone pairs, clone classes, and RCF [4]).

2) Adaptability: From the clone mapping phase, it should
be noted that gCad uses only file name and line numbers to
find the parent function of a clone, and then uses only clone
code fragments for mapping purposes. Therefore, gCad is
easily adaptable to any clone detectors that report their results
with this information. We have successfully tested gCad for
NiCad, CCFinderX and iClones with high accuracy [6].

V1 V2 Vn-1 VnV3

XML for 
V1 and V2

XML for 
V2 and V3

XML for 
Vn-1 and Vn

gCad gCad gCad

gCad: Genealogy Construction

A

B

C

In
co

ns
is

te
nt

 C
ha

ng
e

A

B

C

A

B

C

A

B

C

C
on

si
st

en
t C

ha
ng

e

N
o 

C
ha

ng
e

A

C

In
co

ns
is

te
nt

 C
ha

ng
e

A Sample Clone Genealogy
Fig. 3. Genealogy Construction

3) Supporting Languages: gCad uses TXL for function
extraction and normalizing source code to classify change
patterns of near-miss clones. Therefore, gCad can support the
wide range of programming languages that TXL supports. We
have tested gCad for C, C#, and Java programming languages.

4) Operating Modes: An issue with classifying change
patterns of Type-3 clones is that whether the changes in the
gap should be considered in determining the change pattern.
One might argue that the changes in the gap in the Type-3
clones should not be considered because they are already not
common between the clone fragments. However, sometimes
although gapped lines are textually different, they are seman-
tically similar. Figure 4 shows such a real world example in
dnsjava. Therefore, developers may miss some unintentional
inconsistent changes if the CGE ignores gaps. gCad supports
both ways in the form of two operational modes.

Liberal Mode: In this mode, gCad ignores changes that
occur in the gaps of each clone pair in the same clone class.
Therefore, a change will be identified as inconsistent change
only when similar lines of any clone pair in the same clone
class change differently with respect to one another.

Strict Mode: In this mode, gCad does not consider the gaps
as a special case. If the changes to the clone fragments are not
the same, it will be considered as an inconsistent change.

5) Flexibility of changing the scope of study: In the geneal-
ogy construction phase, we described how gCad constructs
genealogy incrementally. Therefore, users can add a new
version (e.g., vn+1) anytime easily. She just needs to run gCad
for mapping clones between vn and vn+1 and gCad can add
the new results to form the genealogies from version v1 to
vn+1. Users can also insert a version in the middle (e.g., vi) by
running gCad for mapping clones of (vi−1, vi) and (vi, vi+1).

6) Scalablity: gCad has almost a linear time complexity
with respect to the number of functions in the subject system.
Therefore, gCad scales well to very large systems. A detailed
analysis of the time complexity is discussed elsewhere [6]. We
successfully ran gCad for 45 releases of the Linux kernel.

7) Extensibility: gCad is extensible. We have already de-
veloped an extension of gCad that populates gCad results into
a MySQL database to support SQL query on clone evolution
data. Development of a comprehensive clone evolution visu-
alization tool is in progress on the top of gCad.



public Object sendAsync(final Message query, final ResolverListener listener) {
final Object id;
:
String name = this.getClass() + ": " + query.getQuestion().getName();
WorkerThread.assignThread(new ResolveThread(this, query, id, listener), name);
return id;

}
public Object sendAsync(final Message query, final ResolverListener listener) {

final Object id;
:
String name = getClass() + ": " + query.getQuestion().getName();
WorkerThread.assignThread(new ResolveThread(this, query, id, listener), name);
return id;

}
Fig. 4. A Semantically similar but textually different change in a Type-3 clone class in dnsjava

Fig. 5. GUI for gCad Settings

8) Working with gCad: gCad is very easy to configure and
use. Currently gCad provides a set of GUIs for initiating
various operations. Users just need to set some parameter
values through a simple GUI (shown in Figure 5) as necessary
to run gCad for a given system. gCad reports various results
through a set of XML, HTML, and text files. The gCad tool, a
sample result set for ArgoUML, and all other supporting doc-
uments (a live demonstration and user manual) are available at
https://webspace.utexas.edu/rks848/www/miscellaneous.html.

IV. APPLICATION

Understanding the evolution of code clones is important
to manage clones efficiently and gCad can be a useful tool
for developers to make timely decisions regarding clones
by collecting relevant information regarding clone evolution
without additional efforts. For example, developers can un-
derstand the changing nature or maintenance effort of clones
by observing the proportion of consistently and inconsistently
changed genealogies. They can also choose a set of clone
classes for refactoring that change consistently and frequently,
or can manually check to see if an inconsistent change was
intentional.

Researchers can use gCad to analyze the evolutionary data
of clones from different perspectives to design new techniques
to manage clones. We already performed two empirical studies
using gCad to understand the evolution of Type-3 clones and
to evaluate the conventional wisdom in clone removal. In the
first study [7], we used gCad to compute the proportions of
consistently and inconsistently changed genealogies, change
frequencies, and ages of Type-1, Type-2, and Type-3 clones

separately to understand if the evolution of Type-3 clones is
different from that of Type-1 and Type-2. We also used gCad’s
strict and liberal modes to understand the extent of changes
in gaps for Type-3 clones. We found that the proportion
of consistently changed Type-3 clone genealogies increases
considerably if we ignore gap changes. In the second study [8],
we used gCad to find the clone classes that were removed from
systems. Then we investigated different attributes of the code
clones, such as number of clone fragments, their distributions
in different files, change patterns, change frequencies, and so
on, in relationship to clone removal.

V. SUMMARY

This tool demonstration paper describes the design and
implementation of a near-miss clone genealogy extractor, gCad
to support the analysis of clone evolution. gCad can extract
both exact and near-miss clone genealogies, classify their
change patterns automatically, and provide various important
information regarding clone evolution through a number of
widely used metrics. Our evaluation results from a previous
study [6] show that gCad is accurate, scales well to very
large systems (e.g., Linux Kernel releases) and is adaptable to
different clone detectors, which makes it useful for understand-
ing the various evolutionary phenomena of code clones. We
believe gCad would be helpful not only for clone researchers
but also for developers or maintenance engineers in making
decisions for reducing the negative impacts of code clones.

REFERENCES

[1] J. R. Cordy, “The TXL Source Transformation Language,” Sci. of Com.
Prog., 61(3):190–210, 2006.

[2] N. Göde and R. Koschke, “Studying Clone Evolution using Incremental
Clone Detection,” JSME, 25:165–192, 2010.

[3] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An Empirical Study
of Code Clone Genealogies,” Proc. ESEC-FSE, 2005, pp. 187–196.

[4] J. Harder and N. Göde, “Efficiently Handling Clone Data: RCF and
cyclone,” Proc. IWSC, 2011, pp. 81–82.

[5] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?,” Proc.
MSR, 2010, pp. 72–81.

[6] R. K. Saha, C. K. Roy, and K. A. Schneider, “An Automatic Framework
for Extracting and Classifying Near-Miss Clone Genealogies,” Proc.
ICSM, 2011, 293–302.

[7] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry, “Understanding
the Evolution of Type-3 Clones: An Exploratory Study,” Proc. MSR,
2013, 139–148.

[8] M. Z. Zibran, R. K. Saha, C. K. Roy and K. A. Schneider, “Evaluat-
ing the Conventional Wisdom in Clone Removal: A Genealogy-based
Empirical Study,” Proc. SAC, 2013, pp. 1223–1230.


