
Automatic Ranking of Clones for Refactoring
through Mining Association Rules

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—In this paper, we present an in-depth empirical study
on identifying clone fragments that can be important refactoring
candidates. We mine association rules among clones in order to
detect clone fragments that belong to the same clone class and
have a tendency of changing together during software evolution.
The idea is that if two or more clone fragments from the
same class often change together (i.e., are likely to co-change)
preserving their similarity, they might be important candidates
for refactoring. Merging such clones into one (if possible) can
potentially decrease future clone maintenance effort.

We define a particular clone change pattern, the Similarity
Preserving Change Pattern (SPCP), and consider the cloned
fragments that changed according to this pattern (i.e., the SPCP
clones) as important candidates for refactoring. For the purpose
of our study, we implement a prototype tool called MARC
that identifies SPCP clones and mines association rules among
these. The rules as well as the SPCP clones are ranked for
refactoring on the basis of their change-proneness. We applied
MARC on thirteen subject systems and retrieved the refactoring
candidates for three types of clones (Type 1, Type 2, and Type 3)
separately. Our experimental results show that SPCP clones can
be considered important candidates for refactoring. Clones that
do not follow SPCP either evolve independently or are rarely
changed. By considering SPCP clones for refactoring we not
only can minimize refactoring effort considerably but also can
reduce the possibility of delayed synchronizations among clones
and thus, can minimize inconsistencies in software systems.

Keywords-Clone Change Pattern; Association Rule; Clone
Class; Clone Refactoring;

I. INTRODUCTION

Code cloning is a common yet controversial practice fre-
quently employed by programmers during both development
and maintenance of software systems. Cloning involves copy-
ing a code fragment from one place and pasting it in one
or more additional places in the code-base with or without
modifications causing the same or similar code fragments to
be scattered throughout the system. The original code fragment
(i.e., the code fragment from which the copies were created)
and the pasted code fragments are clones of one another.

Numerous empirical studies [8], [10], [13], [14], [15], [24]
have been conducted identifying the possible impact of clones
on software maintenance. While a number of studies [13], [14],
[8] reported that clones are beneficial to both software devel-
opment and maintenance, there is strong empirical evidence
[15], [10] of the negative effects of clones, including hidden
bug propagation and unintentional inconsistent changes. Also,
higher number of clones indicate higher change-proneness
of the software systems [18] as well as higher maintenance
effort and cost. The negative effects of clones indicate the

Fig. 1. Change history of clone fragments

necessity of clone refactoring. Clone refactoring refers to the
task of merging several clone fragments (that are similar to
one another) into a single one (if possible).

Motivation. A number of clone refactoring techniques [2],
[11], [22], [29], [7], [23] have been proposed by different
studies. Before refactoring, it is important to identify the
clones that are our primary refactoring candidates because,
there can be a large number of clones in a system and not
all of them need to be refactored [12]. That is, we should
identify clones that would be important to refactor. Clone
refactoring may not be able to be fully automated as it may
require critical analysis by the programmer. Thus, a significant
amount of effort and cost might sometimes need to be spent for
refactoring clones. Identifying and ranking clones according to
refactoring need can help us minimize refactoring effort and
cost, because we are able to focus on just those clones that are
important to be refactored, and we can leave the clones where
refactoring is less important or unnecessary. However, there is
no existing study that focuses on how we should identify and
rank the important clones (from the whole set of clones in a
code-base) for refactoring. Zibran and Roy [29] proposed an
optimal scheduling algorithm for clone refactoring considering
all the clones in the code-base. In our study, we propose to
identify only important clones for refactoring based on their
clone evolution history. The scheduling algorithm [29] can
then be applied only on these important clones keeping the
rest out of the desk.

According to our consideration, all clones in a software
system might not need to be refactored with equal importance.
We use the clone change example presented in Fig.1 to explain
this. We see that there are nine code fragments forming

four groups (CG-1 through CG-4). The code fragments in a
particular group are clones of one another. The change history
(in Fig. 1) of these code fragments implies the followings.

(1) The clone fragments, CF-1 and CF-2 in group CG-
1, are likely to be related to each other and they have
received corresponding changes. In other words, it is likely
that the changes were made to these clones focusing on their
consistency. The same is also true for the two code fragments
CF-6 and CF-7 in CG-3.

(2) It is likely that the clone fragments, CF-3 and CF-4 in
group CG-2, have experienced independent evolution. Because
of the independent evolutions, CF-3 and CF-4 might not be
regarded as clones of each other after a particular evolution
period. Out of the three clone fragments in group CG-3, clone
fragments CF-6 and CF-7 seem to be related as they received
corresponding changes. However, the other clone fragment
CF-5 seems to have a tendency of independent evolution.

(3) The clone fragments, CF-8 and CF-9, are not change-
prone and it is likely that in future they will exhibit lower
change-proneness compared to the others. Thus, these clones
are not likely to add change effort during maintenance.

The example in Fig.1 implies that refactoring clone frag-
ments might not always be appropriate, since clones might
evolve independently without preserving similarity. Also, if
some clone fragments do not change during evolution we
might not consider refactoring those clone fragments, since
they do not require additional change effort during software
evolution. Thus, when clone fragments belonging to the same
clone class change consistently during evolution these clone
fragments might be important refactoring candidates. More-
over, a clone class may contain n clone fragments, however, if
it is observed that only a subset of the clone fragments change
consistently while others are either evolving independently or
are rarely changing we should consider refactoring only those
consistently changing clone fragments. If the consistently
changing clones can be merged through refactoring we can
reduce the effort spent for changing clones. The co-change
histories of the clones: (1) CF-1 and CF-2 in CG-1, and (2)
CF-6 and CF-7 in CG-3 indicate that such clone fragments
can be identified by mining association rules among clones.

Contribution. Focusing on the above discussion we define
a particular clone change pattern called SPCP (Similarity
Preserving Change Pattern) such that the clone fragments that
change following this pattern (i.e., SPCP clones) are likely to
be important candidates for refactoring. We describe SPCP
in Section IV. For the purpose of our study, we develop
a prototype tool MARC (Mining Association Rules among
Clones) that can detect all SPCP clones from a subject system
and then mines association rules among SPCP clones. MARC
ranks these rules according to their support and confidence
values (defined in Section III). According to our investigation
on the rules as well as SPCP clones retrieved by MARC,

(1) SPCP clones can be important candidates for refac-
toring. The clones that do not follow SPCP either evolve
independently or are rarely changed during evolution. Thus,
we can mainly focus on the SPCP clones for refactoring.

Fig. 2. Proposed refactoring step

(2) Overall, only 7.04% of the clones existing in a code-base
are SPCP clones. Also, for each of 63.44% of the association
rules retrieved by MARC, the corresponding SPCP clones
are method clones and also, they belong to the same source
code file. Thus, automatic identification and ranking of SPCP
clones can save a considerable amount of time, effort and cost
for clone refactoring, because we could leave the remaining
92.96% of the clones in the code-base without refactoring.

(3) From our manual analysis on 224 association rules from
all 13 subject systems (considering the top 10 rules of each
clone-type), for overall 64.37% of the association rules we
can suggest a standard refactoring technique1.

(4) A considerable amount (overall 11.64%) of SPCP clones
can receive resynchronizing changes. Thus, refactoring of
SPCP clones can minimize delayed synchronizations among
clone fragments and can minimize unwanted inconsistencies
in software systems.

The rest of the paper is organized as follows: Section II
describes the significance of our study, Section III describes
the terminology, Section IV elaborates on the SPCP (similarity
preserving change pattern), Section V presents experimental
results and discussion, Section VI mentions some threats to
validity, Section VII discusses related work, and Section VIII
concludes the paper mentioning future work.

II. SIGNIFICANCE OF OUR STUDY

Existing clone refactoring studies and techniques mainly
consider four refactoring steps (cf. Fig. 2): (1) detection of
clones, (2) scheduling of clones for refactoring (3) analysis
of refactoring possibilities on the basis of different cloning
situations, and (4) application of selected refactoring. Our
study differs in that we propose an additional step after clone
detection that involves the analysis of the clone evolution
history to determine the clones we should consider as the
primary refactoring candidates. According to our expectation,
this additional step will minimize the clone refactoring effort
and task considerably, because this step filters out a significant
portion of clones from the refactoring target list based on
their change pattern and change-proneness. According to our
analysis the excluded clones do not need to be refactored with
the same importance as the ones included in the target list,
since they either changed rarely or changed independently.

III. TERMINOLOGY

Types of Clones. We conducted our experiment considering
exact (Type 1) and near-miss clones (Type 2 and Type 3

1Refactoring Techniques: http://www.refactoring.com/catalog/

clones). If two code fragments are exactly the same disregard-
ing comments and indentations, they are Type 1 clones of each
other. Type 2 clones are syntactically similar code fragments.
In general, Type 2 clones are created from Type 1 clones
because of renaming variables or changing data types. Type 3
clones are mainly created because of additions, deletions, or
modifications of lines in Type 1 or Type 2 clones.

Clone Class. A group (i.e., two or more) of clone fragments
that are the same (Type 1) or similar (Type 2 or Type 3) to
one another form a clone class.

Cloned Method. If a method contains cloned (Type 1, Type
2, or Type 3) lines, we call this method a cloned method. If all
lines of a method are cloned lines, then this method is a fully
cloned method. If a method contains both cloned and non-
cloned lines, we call this method a partially cloned method.

Method Clones. If two or more methods are clones (Type
1, Type 2, or Type 3) of one another, we refer to these as
method clones. Method clones are fully cloned methods.

Association Rule. An association rule [1] is an expression
of the form X => Y where X is the antecedent and Y is the
consequent. Each of X and Y is a set of one or more program
entities. The meaning of such a rule in our context is that if X
gets changed in a particular commit operation, Y also has the
tendency of getting changed in that commit operation. We can
determine the confidence or strength of a particular association
rule by determining the support of its constituent parts.

Support and Confidence. Support is the number of commit
operations in which an entity or a group (two or more)
of entities changed together. We consider an example of
two entities E1 and E2. If E1 and E2 have ever changed
together, we can assume two association rules, E1 => E2
and E2 => E1, from them. Suppose, E1 changed in four
commits: 2, 5, 6, and 10. E2 changed in six commits: 4, 6,
7, 8, 10, and 13. Thus, support(E1) = 4 and support(E2) = 6.
However, support(E1, E2) = 2, because E1 and E2 changed
together in two commits: 6, and 10. Also, support(E1 => E2)
= support(E2 => E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines the
probability that Y will change in a commit operation provided
that X changed in that commit operation. We determine the
confidence of X => Y in the following way.

confidence(X => Y) = support(X,Y)/support(X) (1)
From the above example of two entities, confidence (E1

=> E2) = support(E1, E2) / support(E1) = 2 / 4 = 0.5 and
confidence(E2 => E1) = 2 / 6 = 0.33. In our experiment
we consider those association rules where each of X and Y
consist of a single clone fragment from the same clone class.
Such a rule can be expressed as x => y where x and y are two
different clone fragments belonging to the same clone class.

IV. SIMILARITY PRESERVING CHANGE PATTERN

Our prototype tool, MARC, mines association rules con-
sidering those clone fragments that followed a similarity
preserving change pattern (SPCP) during evolution. It can also
rank these rules on the basis of change-proneness (described in

Section IV-D) of the participating clones. We define similarity
preserving change pattern in the following way.

A. Definition of Similarity Preserving Change Pattern

If two clone blocks received either similarity preserving
changes or re-synchronizing changes or both during evolu-
tion, then we say that these clone blocks follow a similarity
preserving change pattern (i.e., are SPCP clones).

Definition of Similarity Preserving Change. We consider
two clone blocks CB1 and CB2 that belong to the same
clone class, say CLS1, in revision Ri. Suppose, a commit
operation Ci on Ri changes any (one or both) of these clone
fragments. If in revision Ri+1 (created because of commit Ci)
these two clone blocks, CB1 and CB2, again remain in one
particular clone class (which might not be CLS1), then we
say that CB1 and CB2 have received a similarity preserving
change in commit operation Ci. If both of the clone blocks
(i.e., CB1 and CB2) change preserving their similarity in such
a commit then we call this change a similarity preserving co-
change (SPCO). If the SPCP of two clone blocks contains
SPCOs, then it is likely that the participating clone blocks
have changed consistently (evaluated in Section V-A).

Definition of Re-synchronizing Change. Suppose, two
clone blocks CB1 and CB2 belong to the same clone class,
CLS1, in revision Ri. The commit Ci on revision Ri modified
any of these clone blocks in such a way that CB1 and CB2
could not be considered as clones of each other in revision
Ri+1 (i.e., CB1 and CB2 may diverge into two different
clone classes or one or both of these might not be regarded
as a clone fragment). However, in a later commit operation,
say Ci+n where n >= 1, any one or both of CB1 and CB2
changed in such a way that CB1 and CB2 become clones of
each other (they converged into one clone class) again. Such a
converging change followed by a diverging change is termed
as a re-synchronizing change in our experiment.

B. Example of a Similarity Preserving Change Pattern

Fig. 3 contains an SPCP followed by the clone blocks, CB1
and CB2. As indicated in the figure, these clone blocks belong
to two methods M1 and M2 respectively. We see that in each
of the commit operations, C2 to C7, the clone blocks CB1
and CB2 received similarity preserving change. In commit
C1, none of the clone blocks were changed. We now consider
the commit operation C2. Before this commit both of the clone
blocks (CB1 and CB2) belonged to the clone class CLS1. After
this commit, the clone blocks belonged to CLS2. Although
CLS1 and CLS2 are different clone classes, we see that before
or after this commit operation both clone blocks belonged
to a single clone class. Thus, CB1 and CB2 preserved their
similarity after commit C2. In other words, CB1 and CB2
received a similarity preserving change in commit C2. We also
see that these two clone blocks received similarity preserving
changes in each of the commits C3 to C7. Moreover, the
similarity preserving changes in commits C2, C5, C6, and
C7, are SPCOs (similarity preserving co-changes). Finally,
the changes in commits C8 to C10 can be considered as an

Fig. 3. Similarity Preserving Change Pattern (SPCP)

example of re-synchronizing change. Because of the change
in C8, CB2 diverged into a different clone class, CLS5, and
thus, CB1 and CB2 could not be considered as clones of each
other. However, the change in commit C10 is a converging
change because, both of the clone blocks again converged into
a single clone class after this commit.

C. Mining Association Rules Considering SPCP
In this experiment, we consider clones residing in methods.

Thus, both fully cloned and partially cloned methods have
been investigated. For a particular subject system, we collect
all of its revisions (mentioned in Table I), then extract the
methods in each revision using CTAGS, and then deter-
mine method genealogies following the technique proposed
by Lozano and Wermelinger [15]. We detect clones in each
revision using NiCad [5] and then map the clones to the
already detected methods of the corresponding revisions. As
method genealogies are already detected, after clone mapping
we can easily track the evolution of each clone fragment.
Finally, we detect changes between every two consecutive
revisions and map these changes to the methods as well as
clones located inside the methods. For the details of these steps
and NiCad setup we refer the readers to our earlier work [17].

Extraction of Association Rules. After the preliminary
steps we determine all possible pairs of clones. A possible
pair of clones consists of two clone fragments CF1 and CF2
from the same clone class such that they together followed an
SPCP during the evolution and are alive in the last revision. As
we map clones to methods, CF1 and CF2 reside in methods.
From such a clone pair we can determine two association rules:
CF1 => CF2, and CF2 => CF1. According to the definition,
these two rules have the same support value. However, their
confidences can be different. We determine support by the
number of similarity preserving co-changes (SPCOs) in the
SPCP followed by the clone fragments in a rule. We extract
all association rules with a minimum support of 1.

D. Ranking of Association Rules

According to our consideration and discussion in the in-
troduction, if a rule detected by our prototype tool has a
higher support value (i.e., higher SPCO count) compared to
the others, we should assume a higher priority for refactoring

the associated clone fragments. Our decision of ranking con-
sidering the support value is reasonable from two perspectives.

(1) Higher support value (i.e., higher SPCO count) for a rule
(consisting of two SPCP clone fragments) indicates a higher
likelihood that the participating clone fragments have changed
consistently during evolution. The underlying assumption is
that in a similarity preserving co-change (i.e., in a SPCO),
the two participating SPCP clone fragments generally change
consistently. We empirically evaluate this in Section V-A.
Intuitively, if two clone fragments have a tendency of changing
consistently, then changes in one fragment in a particular
commit generally require corresponding changes to the other
one in that commit.

(2) Higher support value for a rule is an evidence that
the corresponding SPCP clones have exhibited higher change-
proneness (i.e., changed in higher number of commits) during
the past evolution compared to the other SPCP clones in other
rules. Thus, considering the existing evolution history we rank
the association rules according to the decreasing order of
change-proneness of the corresponding SPCP clones. As it
is difficult to be certain about the future change-proneness
of the rules as well as SPCP clones, our decision of ranking
relying on the past history is reasonable. We assume higher
ranks for those rules as well as SPCP clones that exhibited
higher change-proneness in the past. However, higher support
might also be an indicator of higher change-proneness of the
associated SPCP clones in future. We do not investigate this
issue (i.e., future change-proneness) in this research work.

E. Finding Groups of Refactoring Candidates
Each rule consists of two SPCP clones. This is also possible

that more than two clone fragments from the same class
are preserving their similarity during evolution following a
similarity preserving change pattern (SPCP). Thus, this is
convenient to determine groups of refactoring candidates from
these rules where a group contains two or more clones (from
the same clone class) and all the clones in a group have
evolved following a SPCP. Suppose two clone blocks, CB1
and CB2, formed a rule because they followed a SPCP. If there
is another rule consisting of the clone blocks CB2 and CB3
(CB2 is common in these two rules), then we can form a group
consisting of CB1, CB2, and CB3, because according to the
conditions in Section IV-A these three clone blocks together

Fig. 4. Rules of Type 3 clones sorted in decreasing order of support values

followed a SPCP. Focusing on this fact, MARC determines
groups of refactoring candidates. We term each group as a
SPCP clone-class. In Table II we report the count of groups
for each subject system considering each clone-type.

F. Tool Support

We have developed our prototype tool such that for a
particular clone-type of a particular subject system, it generates
two XML files. One file contains the ranked rules and the
other one contains the SPCP clone groups merging these rules.
While each rule in the first file contains only two SPCP
clones, a group in the second file may contain more than two
SPCP clones. For each SPCP clone (whether in a rule or in a
group) we include the starting and ending line numbers of the
clone fragment, the name of the method containing the clone
fragment, and the starting and ending line numbers of this
method considering the last (i.e., the latest) revision so that
we can easily trace the clone fragment for refactoring in the
latest revision of the candidate software system. Our prototype
tool is now available [16] with instructions on how to use it.
The six XML files containing the association rules and groups
of three types of SPCP clones of our subject system Freecol
are also available on-line [16].

In order to assist in analyzing the evolution of SPCP
clones, our tool also shows important information regarding
the ranked rules including (i) the list of commits where the
SPCOs occurred, (ii) whether the participating clone blocks
are method clones, (iii) whether the clones belong to the same
file, (iv) the support and confidence values, (v) the file paths
and starting and ending line numbers of the clone blocks
and container methods in the revision where the last SPCO
occurred. Such a ranking with all information regarding the
SPCP clones is presented in Fig. 4 that shows the top two
rules of total 481 rules retrieved for Type 3 case of Carol.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We applied our prototype tool MARC on each of the
thirteen subject systems listed in Table I and detected all
SPCP clones and association rules & groups formed by these
SPCP clones considering three clone-types (Type 1, Type 2,
and Type 3) separately. We manually examined the changes
occurred to the SPCP clones. According to our observation,
implementation of the changes (similarity preserving changes
and resynchronizing changes) required proper analysis by the
responsible programmers. The changes were not tool generated

TABLE I
SUBJECT SYSTEMS

System Domain LOC Revisions

Ja
va

freecol Game 91,626 1950
jEdit Text Editor 1,91,804 4000
Plandora Project Management 94,076 73
Carol Game 25,092 1699
OpenYMSG Yahoo Messenger 15,553 297

C

Ctags Code Def. Generator 33,270 774
QMail Admin Mail Management 4,054 317
GNUMake
Uniproc

Auto-build System
for C/C++ Projects

68,095 863

C
MonoOSC Formats & Protocols 14,883 355

GreenShot Multimedia 37,628 999

Py
th

on Pyevolve Artificial Intelligence 8.809 200
Ocemp Game 57,098 438
Noora Development Tool 14,862 140

and thus, these were not just reformatting or code transforma-
tions (e.g., replacement of for loops by for-each loops). In the
following subsections and also in Fig. 6 we have mentioned
and explained such changes. By analyzing our experimental
results we answer the following five research questions.
RQ 1. Can we minimize clone refactoring effort and cost by

considering SPCP clones for refactoring?
RQ 2. Are the changes occurring to the clone fragments in

SPCOs (similarity preserving co-changes) consistency
ensuring changes?

RQ 3. Can SPCP clones be candidates for refactoring?
RQ 4. What are the characteristics of the clones that change

following similarity preserving change pattern (SPCP)?
RQ 5. What ratio of the SPCP clones do receive resynchro-

nizing changes?
Statistics of the important refactoring candidates: Table

II shows the statistics of the clone fragments that followed
SPCP. We regard these cloned fragments as the important
refactoring candidates. For each type of clones of a particular
subject system we determine the followings considering all
revisions: (1) Number of clone classes per revision (CC), (2)
Number of clone fragments per revision (CF), (3) Number
of SPCP clones that is, the number of clone fragments that
followed similarity preserving change pattern during evolution
(SCF), (4) Number of SPCP clone-classes (SCC), (5) The
percentage of SPCP clones (PSCF), and (6) Number of
association rules formed by the SPCP clones (CR). These six
measures for each clone type are presented in Table II. Look-
ing at the percentages (PSCF) of the cloned fragments that
followed SPCP (i.e., the important candidates for refactoring)
we realize that the number of important refactoring candidates
can be considerably smaller compared to the total number of
clone fragments in a system.

From Table II, for each clone type, we also determined
the overall percentages of the SPCP clones (denoted by
Overall-PSCF) considering all subject systems according to
the following equation.

Overall-PSCFTi =
∑for all systems SCFT1

∑for all systems CFT1
(2)

Here, Ti (i = 1, 2, or 3) denotes a particular clone-type
(Type 1, Type 2, or Type 3), SCFTi denotes the number

TABLE II
STATISTICS REGARDING THE IMPORTANT CLONED FRAGMENTS (THE SPCP CLONES) RETRIEVED BY MARC

Type 1 Type 2 Type 3
System CC CF SCC SCF PSCF CR CC CF SCC SCF PSCF CR CC CF SCC SCF PSCF CR

Ja
va Freecol 93 251 27 56 22.31 31 95 259 28 63 24.32 49 255 799 78 180 22.52 147

jEdit 1516 4284 3 8 0.18 7 115 531 27 62 11.67 46 399 2009 51 108 5.37 64
Plandora 77 297 5 10 3.36 5 160 633 2 4 0.63 2 381 1748 19 48 2.74 44
Carol 31 154 15 51 33.11 39 30 185 17 58 31.35 80 69 300 22 127 42.33 481
OpenYMSG 10 24 3 8 33.33 7 10 22 0 0 0.0 0 40 112 7 16 14.28 10

C

Ctags 11 29 3 6 20.68 3 19 46 4 8 17.39 4 56 168 15 33 19.64 21
QMailAdmin 15 49 3 6 12.24 3 11 43 1 2 4.65 1 13 77 4 8 10.38 4
GNUMake Uniproc 144 308 3 6 1.94 3 28 69 0 0 0.0 0 57 199 2 5 2.51 3

C
MonoOSC 4 21 3 6 28.57 3 3 6 1 2 33.33 1 9 23 8 17 73.91 10

GreenShot 168 379 2 4 1.05 2 36 141 11 22 15.60 11 67 279 15 32 11.46 19

Py
th

on Pyevolve 52 117 0 0 0.0 0 13 54 3 6 11.11 3 25 123 4 11 8.94 13
Ocemp 19 50 0 0 0.0 0 24 60 0 0 0.0 0 61 167 3 6 3.59 3
Noora 43 114 4 18 15.78 37 8 40 0 0 0.0 0 26 126 3 10 7.94 12

CC = Number Clone Classes CF = Number of cloned fragments SCC = Number of SPCP Clone classes CR = Count of Rules
SCF = Number of cloned fragments that followed SPCP (i.e., the SPCP clones) PSCF = Percentage of SPCP clones

Fig. 5. Overall percentages of cloned fragments that followed SPCP

of SPCP clones of a particular type (Ti) of a particular
subject system, and CFTi stands for the total number of
clones of type Ti in a particular system. We also calculate
the overall percentage of SPCP clones considering all subject
systems and all clone-types in a similar way. These overall
percentages (Overall-PSCFs) are shown Fig. 5. From this
graph it is clear that a considerable amount (i.e., 97.05%,
89.13%, 90.2%, and 92.96% for Type 1, Type 2, Type 3, and
overall case respectively) of clone fragments (i.e., the clone
fragments that did not follow SPCP) can be filtered out from
our consideration during refactoring because, these cloned
fragments either evolved independently or rarely changed. This
reduction in the number of considerable refactoring candidates
can minimize refactoring effort and cost.

We answered the following four research questions by
analyzing the SPCP clones and rules retrieved by MARC.
A. Answer to research question RQ 1: Are the changes oc-
curring to the clone fragments in SPCOs (similarity preserving
co-changes) consistency ensuring changes?

To answer this question we manually analyzed 485 SPCOs
occurred in the SPCPs of 150 rules (considering Type 3 case
of Carol) involving 73 SPCP clones. For each of 100 rules,
the support value (SPCO count) was greater than 1 (highest
support = 7). Each of the remaining rules had a support of 1.

We know that the clone blocks in each of the rules retrieved
by MARC followed an SPCP. The support value of a rule is
equal to the number of SPCOs in the SPCP of the rule. While
examining the SPCP of a rule our tool stores:

(1) The list of commit(s) where the SPCO(s) occurred.
(2) Start and end line numbers of each of the participating

clone blocks before and after every commit in the above list.

Suppose the clone blocks regarding a particular rule are
CB1 and CB2 respectively and they received an SPCO in
commit Ci applied on revision Ri. Then, for each of these
clone blocks we collect the snapshot in revision Ri and the
snapshot in revision Ri+1 using the line numbers. For each
clone block we determine the differences of the correspond-
ing snapshots. Then, we manually compare the changes that
occurred to CB1 with those that occurred to CB2 and decide
whether the changes were consistent or not.

Investigation details. Among 485 SPCOs that we analyzed
manually, in 477 SPCOs (98.35%), the changes to the par-
ticipating clone blocks (i.e., SPCP clones) were consistent.
According to our observation, in each of these 477 SPCOs,
the corresponding lines (the same or similar lines) of the
two participating SPCP clones were changed in the same or
similar way. Thus, the changes in these 477 SPCOs can be
termed as consistency ensuring changes to clones. In each of
the remaining eight SPCOs, the changes to the clone blocks
were not consistent. However, the associated clone blocks still
preserved their similarity even after these eight SPCOs.

An example of the consistency ensuring changes that oc-
curred to two clone blocks (corresponding to a rule) in an
SPCO on commit 51 of Carol is presented in Fig. 6. The
method bind and the method destroySubcontext in Fig. 6 are
Type 3 clones (full method clone) of each other according to
the clone detection results of NiCad. From Fig. 4 we see that
the rule consisting of these two clone blocks has a support
of 7. That is, these two clone blocks received seven SPCOs
(i.e., similarity preserving co-changes) in their SPCP (i.e.,
similarity preserving change pattern). These SPCOs occurred
in commits: 42, 51, 54, 58, 91, 153, and 156 respectively. The
details of the co-changes in commit 51 (Fig. 6) demonstrate
that the changes occurred to the two clone blocks (i.e.,
method clones), bind and destroySubcontext, are consistent.
As demonstrated in the figure, almost the same if-blocks were
added just after the first line in each of these method clones
in revision 52. The only differences in these two if-blocks are
in the method names and parameters. Also, lines 9 to 12 (in
revision 51) in each of the method clones were changed in

Fig. 6. Changes to Two Type 3 Clone Fragments of Carol in commit 51

the same way as can be seen in revision 52. We observed the
changes occurred to the method clones in the other six SPCOs
too. The changes in each of these SPCOs were also consistent.

We were also interested in identifying the types of changes
that mostly occur to the SPCP clones during similarity preserv-
ing co-changes (SPCOs). The dominant change types were:
addition or deletion of the same or similar statements in
both clone fragments; modification of the same or similar
corresponding statements in both clone fragments in the same
way (e.g., the SPCO occurred in commit 91 on method clones
bind and destroySubcontext); and, addition of the same or
similar if-else blocks.

Answer. Thus, The changes occurring to the SPCP clone
fragments in similarity preserving co-changes (SPCOs) gen-
erally ensure consistency between the clone fragments. Thus,
higher number of SPCOs in a rule indicates higher probability
that the participating SPCP clones are related and will also
change consistently in future commits. So, ranking of rules for
refactoring according to the SPCO count is reasonable.

B. Answer to research question RQ 2: Can SPCP clones be
candidates for refactoring?

For answering this research question we manually examined
the rules and groups of SPCP clones to determine whether
we can suggest particular refactoring for the SPCP clones
included in a rule or a group (defined in Section IV-E). For
each clone-type of a subject system we considered the top
10 rules and groups (for the cases with less than 10 rules or
groups we considered all) totaling 224 rules and 191 groups
from all 13 subject systems. Through our manual analysis
on these rules and groups, we determine how many of these
are refactorable using standard refactoring techniques1 such as
pull up method, extract method, remove method, parameterize
method, replace conditional with polymorphism etc. Then,
for each type of clone we determine overall percentage of
refactorable rules and groups considering all subject systems.

Overall percentages were calculated following a equation
similar to Eq.2. Finally, we determine the overall percentage
(c.f., Fig. 7) considering all clone-types and subject systems.

Fig. 7 shows that the proportions regarding Type 1 case
are the highest ones compared to the other two cases (Type
2, Type 3). As Type 1 clone fragments are exactly similar
clone fragments, it was easier to suggest refactoring techniques
for them compared to the other two types. Type 2 clones are
syntactically similar with variable renaming and/or changes in
data types. According to our investigation some Type 2 clones
with different data types were not refactorable. We get the
lowest proportions for the Type 3 case, because Type 3 clones
often had dissimilar code fragment and we could not suggest
refactoring for those. Overall, for 64.37% of the association
rules (64.62% of the groups), we could suggest refactoring
techniques for the participating SPCP clones. Here, we should
mention that the groups are formed from the rules (c.f., Section
IV-E). As a group may contain more than two SPCP clones
while a rule contains only two, the top 10 groups regarding a
particular clone type of a particular subject system sometimes
had more SPCP clones compared to the corresponding top 10
rules. Thus, the percentages regarding the rules and groups are
almost the same with little differences.

However, from our investigation we realize that although
we could not suggest refactoring for some rules and groups,
the participating clone blocks in these rules and groups might
often need to be consistently changed. As we generate XML
files containing the rules and groups, these files can suggest
us co-change candidates for any future change in any of the
SPCP clones. While changing a particular SPCP clone, the
developer can look at the other SPCP clones in the same group
to determine whether the changes need to be propagated to
these clones too. However, we have not yet automated this
feature. We also do not investigate the predictability of future
co-change candidates in this research work.

Fig. 7. Overall percentages of refactorable rules and groups

Example of a refactorable rule. As an example we can
consider the rule (with support / SPCO count = 7) consisting
of the method clones, bind and destroySubcontext, mentioned
in Section V-A. The confidence of each of the rules, bind =>
destroySubcontext and destroySubcontext => bind, is one.
Thus, these methods (i.e., method clones) always co-changed
(i.e., in 7 commits), that means, there is no commit where
one changed but the other did not. These methods are almost
the same. The only differences are in the method names and
parameters (bind takes an extra parameter ‘obj’ of Object
type). The first commit where these methods co-changed was
applied on revision 42. In this commit, the same statement
‘e.prntStackTrace();’ was added after the eighth line of each
method. In commit 51 (as mentioned in Section V-A), almost
the same if-blocks were added after the first line of each
method. Also, the lines 9 to 12 in each of these methods where
changed in the similar way (Fig. 6) in this commit. The only
differences in the added if-blocks and changed lines were in
the names of the methods and parameters. In the commit on
revision 54, the same changes occurred at the third line of each
method. In the same way, in each of the other commits (58, 91,
153, 156) these two methods received the same changes at the
same relative line numbers. The changes obviously indicate
that those were made focusing on the consistency of these
method clones. Now we discuss the possibility of refactoring
these method clones (i.e., merging these into one).

We already mentioned that the method bind takes one extra
parameter obj of type Object. The other parameter is the same
(same name and type) as that of the method destroySubcontext.
These two method clones remain in the same file2 and in the
same class (Class Name: MultiOrbInitialContext). According
to our analysis, it is possible to replace these two methods
with a single one that takes the two parameters. The callers
of destroySubcontext can call it using an extra dummy object.
Focusing on this possibility we identified the places where
destroySubcontext was called. We found two places in the
same file2 where both bind and destroySubcontext remain (and
no other places in the code-base) and determined that we
can add an extra dummy object in these calls. This is also
possible that the new method that will replace the old ones will
take an additional context-sensitive string parameter (a third
parameter) for printing purpose. We saw that each of these
methods, bind and destroySubcontext, prints an error message
containing the method name. The only difference is the method
name used in the message. We can replace this method name
by the context sensitive string parameter (that can determine
what type of failure has occurred depending on the caller) if
necessary. So, the rule consisting of the method clones, bind

2File Path: carol/src/org/objectweb/carol/jndi/spi/MultiOrbInitialContext.java

Fig. 8. Statistics regarding SPCP clones and rules

and destroySubcontext, is an important refactoring candidate.
Example of a refactorable group. An example group

of Type 3 clones in Carol contains 4 method clones: list,
listBindings, rebind, and unbind remaining in the same file3,
under the same package and also in the same class (Class
Name: javaURLContext). These method clones are important
candidates for refactoring and can be replaced with a single
method. Three of these methods (list, listBindings, unbind)
perform exactly the same task taking the same parameter. The
remaining one takes an extra parameter. It is possible that we
decide to only refactor the first three. To refactor all four, one
can follow the technique described in our previous example.

Answer. Finally, in answer to the second research question
we can say that a considerable amount of association rules
(overall 64.37%) and groups (overall 64.62%) formed by the
SPCP clones can be refactored using standard refactoring
techniques. Thus, SPCP clones can be considered important
candidates for refactoring. From our experience we realize
that the refactoring task often requires proper analysis by the
expert users. Also, refactoring can be time consuming because
the user might need to analyze the evolution history of the
target clones. Thus, automatic identification and ranking of
important refactoring candidates (i.e., SPCP clones) can help
us minimize refactoring time and effort.

C. Answer to research question RQ 3: What are the char-
acteristics of the clones that change following similarity pre-
serving change pattern (SPCP)?

During manual examination of the rules from Carol we
observed that most of the rules consist of method clones (i.e.,
clone fragments that are full methods). Also, a recent study
conducted by Göde [7] demonstrates that developers generally
consider removing clones that belong to the same source code
file. Considering these two perspectives we determined the
followings to answer this research question.

(1) The overall proportion of SPCP clones that are full
methods (denoted by Overall-PSMC).

(2) The overall proportion of rules where each rule consists
of clones belonging to the same file (denoted by Overall-SF).

Overall proportions were calculated using a mechanism
similar to the one demonstrated in Eq. 2. After calculating
the overall percentages for each clone-type individually, we
also determine the overall proportions considering all clone
types. Finally, we calculate the overall proportions of rules
consisting of SPCP method clones from the same file (denoted
by Overall-PSMC-SF). These proportions are shown in Fig. 8.

3File Path: carol/src/org/objectweb/carol/jndi/enc/java/javaURLContext.java

Fig. 9. Proportions of SPCP clones that received resynchronizing changes

From Fig. 8 we see that each of the three measures,
Overall-PSMC, Overall-SF, and Overall-PSMC-SF appear in
an increasing order from Type 1 case to Type 3 case. Also,
Overall-SF is above 60% for each type of clone. Although,
Overall-PSMC is below 50% for Type 1 case, this value is
above 50% for the other two types with Type 3 case having the
highest value (76.66%). From Fig. 5 we see that the percentage
of clone fragments that follow SPCP is lowest for Type 1 case.
Ultimately, in Fig. 8 the three bars belonging to overall case
(considering all clone types and all subject systems) are mainly
influenced by Type 2 and Type 3 rules and the values of all
three measures are above 60% for the overall case.

Answer. According to our experimental result considering
all systems and all three clone-types we can draw the following
general conclusions: (1) most of the SPCP clones (overall
66.52%) are method clones and (2) most of the rules (overall
63.44%) consist of SPCP method clones from the same file.

In this experiment we detected block clones using NiCad.
However, NiCad also facilitates the detection of method clones
only. In general, clones in the same file might be easier to be
refactored. Clones that belong to different files or folders might
require the creation of a separate library for refactoring. This
may be difficult without programming language support. Thus,
SPCP clones that belong to the same file can be promising
refactoring candidates. According to our observation, we can
mainly focus on detecting and refactoring SPCP method clones
belonging to the same file.

D. Answer to research question RQ 4: What ratio of the
SPCP clones do receive resynchronizing changes?

We have already mentioned that SPCP clones can re-
ceive two types of changes: similarity preserving changes
and resynchronizing changes (elaborated in Section IV-A).
Intuitively, resynchronizing changes indicate delayed synchro-
nization among the clone fragments. Delay in synchronization
might introduce temporary inconsistency to the functionality
of the software systems. We calculated the overall proportions
of the SPCP clones that received resynchronizing changes (i.e.,
delayed synchronizations). For the purpose of calculation we
automatically examine the entire evolution histories of the
two participating SPCP clones of each association rule and
determine whether they received resynchronizing change(s).
These proportions are shown in the graph of Fig. 9. We see
that overall 6.45%, 10.20%, and 13.57% of the Type 1,Type 2,
and Type 3 SPCP clones received resynchronizing changes
considering all subject systems. If we consider all subject
systems and clone-types, this percentage becomes 11.64%.

Answer. Thus, according to our investigation, a consider-
able amount of the SPCP clones can receive resynchronizing

changes during evolution. As delay in synchronizations may
introduce temporary inconsistencies to a software system, it is
important to identify SPCP clones and refactor them.

VI. THREATS TO VALIDITY

In our experiment we detected clones using NiCad [5] clone
detector. However, parameter settings of the clone detector
can be a threat to our empirical study. For different settings
of NiCad, the clone detection results may be different. Thus,
there might be variations in the association rules as well as
the SPCP clones detected for different settings. Wang et al.
[28] defined this problem as the confounding configuration
choice problem and conducted an extensive study considering
six clone detectors to ameliorate the effects of the problem.

However, the settings used in our experiment (as mentioned
in our earlier work [17]) are considered standard [19] and with
these settings NiCad can detect clones with high precision
and recall [20], [21]. Thus, we think that our findings are
significant and can help us minimize clone refactoring effort
considerably. Moreover, the subject systems that we have used
in our experiment are of diverse variety in terms of application
domains, implementation languages, sizes and revisions. Thus,
we expect that our findings are not biased.

VII. RELATED WORK

Numerous studies have been conducted regarding the detec-
tion, impact analysis [8], [6], [25], [12], [4], [13], [15], [24],
[27], management [26], [24] and refactoring [2], [11], [22],
[29], [7], [23], [25] of clones. As our experiment is centered
on clone refactoring, we discuss the refactoring related studies.

A number of refactoring approaches [2], [11], [22] select
clones for refactoring on the basis of the abstract syntax tree
representation of the code base. Higo et al. [9] selected clones
for refactoring (implementing a tool called CCShaper) based
on the lexical analysis of the source code. Zibran and Roy [29]
proposed a conflict aware optimal scheduling algorithm for
clone refactoring on the basis of constraint programming. They
showed that their scheduling algorithm is superior to the other
algorithms those are based on genetic algorithm approaches,
greedy approaches and linear programming. Bouktif et al. [3]
considered the clone refactoring problem as a constrained
knapsack problem where the knapsack consists of all the
clones to be refactored. They found an optimal schedule for
refactoring the clones in the knapsack by applying a genetic
algorithm. Göde [7] performed a case study to determine
why clones are removed from the code base. According to
his observation, developers often consider removing clones
residing in the same source code file. Tairas and Gray [23]
developed an Eclipse plug-in, CeDAR, that can forward the
detected clones to the Eclipse refactoring engine. The Eclipse
engine then handles the refactoring decisions. Tsantalis and
Chatzigeorgiou [25] proposed a historical volatility model for
prioritizing refactoring decisions on the basis of how lately the
entities were changed. However, this model is not specialized
for clone refactoring.

We see that none of the existing studies and techniques
focused on our proposed refactoring step (c.f., Fig. 2) in-
volving the determination of clones that should be considered
as important refactoring candidates. Automatic identification
of important refactoring candidates can help us minimize
refactoring time and effort. We define a particular clone change
pattern, SPCP (Similarity Preserving Change Pattern), and
show that the clones that changed following this pattern can
be important candidates for refactoring. The clones excluded
by this pattern either evolved independently or changed rarely
during the evolution of the subject system. Thus, these clones
should not be our primary targets for refactoring. Our proto-
type tool MARC can detect all SPCP clones in a system.

VIII. CONCLUSION

In this paper, we present an empirical study on the identifi-
cation of clones that can be considered as important refactoring
candidates. We define a particular clone change pattern, SPCP
(Similarity Preserving Change Pattern), such that the clones
that changed following this pattern during evolution can be
considered as important candidates for refactoring. For the
purpose of our study, we implement a prototype tool MARC
that mines association rules among clones that follow SPCP.

Using MARC we detected all SPCPs in each of our 13
candidate subject systems considering three clone-types (Type
1, 2, and 3). MARC also detects association rules among the
SPCP clones and ranks these SPCP clones for refactoring on
the basis of the support values of the rules. More importantly,
MARC determines groups of refactoring candidates by merg-
ing the association rules where a group can contain two or
more clones that together followed a SPCP. According to our
experimental results and manual investigation, we have the
following concluding remarks and suggestions.

(1) SPCP clones are important candidates for refactoring.
The clones that do not follow SPCP either change indepen-
dently or are rarely changed. Thus, while taking refactoring
decision we suggest to mainly focus on SPCP clones.

(2) On an average only 7.04% of the clones existing in
a code-base are SPCP clones. Thus, we can filter-out a
significant amount (92.96%) of clones from our refactoring
decision. We observe that in case of 63.44% of the association
rules (formed by the SPCP clones), the two participating SPCP
clones are method clones and moreover, these method clones
belong to the same source code file. Thus, automatic identi-
fication and ranking of SPCP clones can help us minimize a
considerable amount of clone refactoring effort and cost. In
presence of ranking, we can decide to primarily refactor the
more important SPCP clones.

(3) According to our manual investigation on 224 rules and
191 groups considering all 13 subject systems, overall 64.37%
of the rules and 64.62% of the groups can be refactored using
standard refactoring techniques.

(4) Refactoring of SPCP clones can minimize the possibility
of delayed synchronizations among clone fragments and thus,
can minimize unwanted inconsistencies in software systems.

MARC is now available on-line [16]. It generates useful
XML files containing ranked rules and groups of SPCP clones.

We plan to enhance MARC to visualize the evolution of
SPCP clones. We also plan to explore the possibility of using
association rules to predict future co-change candidates.

REFERENCES

[1] R. Agrawal, T. Imieliski, A. Swami, “Mining Association Rules between
Sets of Items in Large Databases”, ACM SIGMOD, 1993, 22(2):207–216.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis,
“Advanced Clone-Analysis to Support Object-Oriented System Refactor-
ing”, Proc. WCRE, 2000, pp. 98 – 107.

[3] S. Bouktif, G. Antoniol, E. Merlo, M. Neteler, “A Novel Approach to
Optimize Clone Refactoring Activity”, Proc. GECCO, 2006, pp.1885-
1892.

[4] D. Cai, M. Kim,“An Empirical Study of Long-Lived Code Clones”, FASE,
2011, pp. 432 - 446.

[5] J .R. Cordy and C.K. Roy, “The NiCad Clone Detector”, Proc ICPC Tool
Demo, 2011, pp. 219 – 220.

[6] N. Göde, Rainer Koschke, “Frequency and Risks of Changes to Clones.”,
Proc. ICSE, 2011, pp. 311 – 320.

[7] N. Göde, “Clone Removal: Fact or Fiction?”, Proc. IWSC, 2010, pp. 33
– 40.

[8] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65-74.
[9] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Refactoring Support

Based on Code Clone Analysis”, Lecture Notes in Computer Science,
2004, 3009: 220 – 233.

[10] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485-495.

[11] N. Juillerat, and B. Hirsbrunner, “An Algorithm for Detecting and
Removing Clones in Java Code”, SeTra, 2006.

[12] M. Kim, V. Sazawal, D. Notkin, G. Murphy, “An Empirical Study on
Code Clone Genealogies”, FSE, 2005, pp. 187 – 196.

[13] J. Krinke, “A Study of Consistent and Inconsistent Changes to Code
Clones”, Proc. WCRE, 2007, pp. 170-178.

[14] J. Krinke, “Is Cloned Code More Stable than Non-cloned Code?”, Proc.
SCAM, 2008, pp. 57-66.

[15] A. Lozano, and M. Wermelinger, “Assessing the Effect of Clones on
Changeability”, Proc. ICSM, 2008, pp. 227-236.

[16] MARC: https://homepage.usask.ca/∼mam815/tools.php
[17] M. Mondal, C. K. Roy, and K. A. Schneider, “Connectivity of Co-

changed Method Groups: A Case Study on Open Source Systems”, Proc.
CASCON, 2012, pp. 205-219.

[18] M. Mondal, C. K. Roy, and K. A. Schneider, “Comparative Stability of
Cloned and Non-cloned Code: An Empirical Study”, Proc. SAC, 2012,
pp. 1227 – 1234.

[19] C. K. Roy and J. R. Cordy, ”NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion” Proc. ICPC, 2008, pp. 172-181.

[20] C.K. Roy, J.R. Cordy and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
SCP, 2009, 74 (2009): 470–495.

[21] C.K. Roy, J.R. Cordy, “A Mutation / Injection-based Automatic Frame-
work for Evaluating Code Clone Detection Tools”, Proc. Mutation, 2009,
pp. 157–166.

[22] S. Schulze and M. Kuhlemann, “Advanced Analysis for Code Clone
Removal” WSR, 2009.

[23] R. Tairas, and J. Gray, “Increasing Clone Maintenance Support by
Unifying Clone Detection and Refactoring Activities”, Information and
Software Technology, 2012, 54(12):1297 – 1307.

[24] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
Empirical Study on the Maintenance of Source Code Clones”, ESE, 15(1),
2009, pp. 1-34.

[25] N. Tsantalis, A. Chatzigeorgiou, “Ranking Refactoring Suggestions
Based on Historical Volatility”, Proc. CSMR, 2011, pp. 25–34.

[26] R. Venkatasubramanyam; S. Gupta; H. K. Singh, “Prioritizing Code
Clone Detection Results for Clone Management ”, Proc. IWSC, 2013,
pp. 30 - 36.

[27] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei,“Can I
Clone This Piece of Code Here?”, Proc. ASE, 2012, pp. 170 – 179.

[28] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455–465.

[29] M. F. Zibran, and C. K. Roy, “Conflict Aware Optimal Scheduling of
Prioritized Code Clone Refactoring”, IET Software, 2013, pp. 167 – 186.

