
Electronic Communications of the EASST
Volume 63 (2014)

Proceedings of the
Eighth International Workshop on

Software Clones
(IWSC 2014)

Late Propagation in Near-Miss Clones: An Empirical Study

Manishankar Mondal, Chanchal K. Roy, Kevin A. Schneider

17 pages

Guest Editors: Nils Göde, Yoshiki Higo, Rainer Koschke
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Late Propagation in Near-Miss Clones: An Empirical Study

Manishankar Mondal1, Chanchal K. Roy2, Kevin A. Schneider3

1 mshankar.mondal@usask.ca, https://homepage.usask.ca/∼mam815/
2 croy@cs.usask.ca, http://www.cs.usask.ca/∼croy/

3 kevin.schneider@usask.ca, http://www.cs.usask.ca/∼kas/
University of Saskatchewan, Canada

Abstract:

If two or more code fragments in the code-base of a software system are exactly
or nearly similar to one another, we call them code clones. It is often important
that updates (i.e., changes) in one clone fragment should be propagated to the other
similar clone fragments to ensure consistency. However, if there is a delay in this
propagation because of unawareness, the system might behave inconsistently. This
delay in propagation, also known as late propagation, has been investigated by a
number of existing studies. However, the existing studies did not investigate the
intensity as well as the effect of late propagation in different types of clones sepa-
rately. Also, late propagation in Type 3 clones is yet to investigate. In this research
work we investigate late propagation in three types of clones (Type 1, Type 2, and
Type 3) separately. According to our experimental results on six subject systems
written in three programming languages, late propagation is more intense in Type 3
clones compared to the other two clone-types. Block clones are mostly involved in
late propagation instead of method clones. Refactoring of block clones can possibly
minimize late propagation. If not refactorable, then the clones that often need to be
changed together consistently should be placed in close proximity to one another.

Keywords: Code Clone; Late Propagation; Code Evolution; Software Mainte-
nance; Method Genealogy;

1 Introduction

Software maintenance is one of the most important phases of the software development life
cycle. Studies [GH11, GK11, LW08, LW10, Kri07, Kri08, ACD07, TCAP09, BKZ13, KG08,
MRR+12, MRS12c, MRS12b, MRS13] show that code clones have both positive [Kri07, GH11,
GK11, KG08] and negative [LW08, LW10, MRR+12, MRS12c, MRS12b, MRS13, ACD07,
TCAP09] impacts on software maintenance and evolution. Code clones are exactly or nearly
similar code fragments scattered in the code-base of a software system. These are mainly cre-
ated because of the frequent copy-paste activities of the programmers with an aim to repeat the
same or similar functionalities during software development and maintenance. If a code frag-
ment is copied from one place of a code-base and pasted to some other places with or without
modifications, then the original code fragment and the pasted code fragments become clones of
one another.

1 / 17 Volume 63 (2014)

mailto:mshankar.mondal@usask.ca
https://homepage.usask.ca/~mam815/
mailto:croy@cs.usask.ca
http://www.cs.usask.ca/~croy/
mailto:kevin.schneider@usask.ca
http://www.cs.usask.ca/~kas/


Late Propagation in Near-Miss Clones: An Empirical Study

Evolution of clones [KSNM05, ACD07, TCAP09, BKZ13] has been investigated by different
studies in different ways. In this study we investigate a particular clone evolution pattern which
is known as late propagation in clones according to the literature [ACD07, TCAP09, BKZ13].
There are strong empirical evidences [ACD07, TCAP09, BKZ13] that late propagation is directly
related to bugs [ACD07, TCAP09] and inconsistencies [BKZ13] in the code-base. Researchers
have investigated different specific patterns [BKZ13] of late propagation and identified which
patterns are more related to bugs, faults, and inconsistencies. However, the existing studies
regarding late propagation in clones have the following draw-backs.

(1) None of the studies investigate the intensities of late propagation in different types of clones
separately. Such a study is important because, if late propagation is observed to be more intense
in a particular clone type compared to the others, we might consider being more conscious while
changing clones of that particular type. Also, we might want to refactor clones of that particular
type with higher priority.

(2) None of the studies considered Type 3 clones while investigating late propagation. Ac-
cording to a recent study [SRSP13], the number of Type 3 clones can be considerably higher
compared to the other two clone types (Type 1, and Type 2). Thus, if we do not consider Type
3 clones in late propagation study, we might miss a significant amount of inconsistencies and
faults introduced by late propagation in Type 3 clones.

(3) The existing studies have not emphasized on the identification of the possible causes of
late propagation. Also, the possibilities of minimizing late propagation have not been well in-
vestigated.

Focusing on the above issues, we investigate late propagation in three types of clones (Type
1, Type 2, and Type 3) separately and answer the following important research questions which
were not answered before.

• RQ 1. Are the intensities of late propagation different in different types of clones?

• RQ 2. Do the participating clone fragments in a clone pair that experience late propaga-
tion generally remain in different files?

• RQ 3. Do block clones or method clones exhibit higher intensity of late propagation?

According to our experimental results on thousands of revisions of six subject systems written
in three different programming languages,

• The intensity of late propagation in Type 3 clones is higher compared to the other two
clone types.

• Refactoring of block clones can help us minimize late propagation considerably.

• If not refactorable, the clones that often need to be changed together consistently should
remain in close proximity to one another so that while changing a particular clone frag-
ment, a programmer does not forget to look at the other fragments to determine whether
changes need to be propagated to these fragments too.

Proc. IWSC 2014 2 / 17



ECEASST

The rest of the paper is organized as follows. Section 2 describes the related terminology,
Section 3 elaborates on the detection of late propagation in clones, Section 4 discusses the ex-
perimental steps, the experimental results are presented and analyzed in Section 5, Section 6
discusses the related work, Section 7 mentions possible threats to validity and finally, we con-
clude our paper by mentioning future work in Section 8.

2 Terminology

Types of Clones. We conduct our experiment regarding late propagation considering exact (Type
1) and near-miss clones (Type 2 and Type 3 clones). As is defined in the literature [Roy09], if
two code fragments are exactly the same disregarding the comments and indentations, they are
Type 1 clones of each other. Type 2 clones are syntactically similar code fragments. In general,
Type 2 clones are created from Type 1 clones because of renaming variables or changing data
types. Type 3 clones are mainly created because of additions, deletions, or modifications of lines
in Type 1 or Type 2 clones.

Clone Class. A group (i.e., two or more) of clone fragments that are the same (Type 1) or
similar (Type 2 or Type 3) to one another form a clone class. We detect clones using NiCad
[CR11, RC08] clone detector that reports clones by grouping them into classes.

Clone Pair. Two clone fragments belonging to the same clone class form a clone pair. Thus,
every possible pair (i.e., combination) of two clone fragments in a particular clone class is a
clone pair. From each of the clone classes reported by NiCad [CR11] we determine all possible
clone pairs for conducting our experiment.

Cloned Method. If a method contains cloned (Type 1, Type 2, or Type 3) lines, we call this
method a cloned method. If all lines of a method are cloned lines, then this method is a fully
cloned method. If a method contains both cloned and non-cloned lines, we call this method a
partially cloned method.

Method Clones. If two or more methods are clones (Type 1, Type 2, or Type 3) of one another,
we refer to these as method clones. Method clones are fully cloned methods.

Here, we should note that we conduct our experiment considering - (1) method clones and (2)
block clones that reside in methods as was done in a previous study [BKZ13].

Late Propagation in a Clone Pair. Let us consider a pair of clone fragments. We say that
this clone pair has experienced late propagation if it receives a diverging change followed by a
converging change.

• Diverging Change. Let us assume a particular commit Ci where one or both of these two
clone fragments were changed. Because of this change, the fragments were not considered
as clones of each other. In other words, the clone fragments diverged. Such a change is
called a diverging change for the pair.

• Converging Change. Let us assume a later commit Ci+n (n >= 1) where one or both
of these fragments were changed, and because of this change, the fragments were again
considered as clones of each other. In other words, the fragments converged. The change
for which the fragments converged is termed as a converging change.

A particular clone pair may experience late propagation more than once during evolution. Fig.

3 / 17 Volume 63 (2014)



Late Propagation in Near-Miss Clones: An Empirical Study

Figure 1: A possible example of late propagation

1 shows a possible example of late propagation experienced by a clone pair (CF1, CF2). The
commit Ci applied on revision Ri modified CF1 and as a result, CF1 and CF2 diverged. However,
in commit Ci+2, the fragment CF2 changed and CF1 and CF2 again became clones of each other
in Ri+3.

We conduct our late propagation study considering the granularity of clone pairs as was done
by each of the previous studies. While it would be good to conduct such a study considering clone
classes, consideration of clone classes might cause the loss of important information regarding
late propagation. Let us assume a clone class consisting of six clone fragments in revision Ri.
The subsequent commits might affect only two of these six clone fragments leaving the other
four fragments as they are. There is a possibility that these two clone fragments (that are getting
changed) will experience a late propagation (i.e., the changes occurred in one clone fragment
will propagate to the other one with some delay) in future evolution. However, the other four
clone fragments might not require to be changed during the whole period of evolution. In other
words, the changes occurred to the two clone fragments might not ever need to be propagated to
the other four clone fragments. In such a situation, consideration of all these six clone fragments
for late propagation is not reasonable. While pairs of clone fragments in a particular class might
experience late propagation, the whole class might not.

3 Detection of Late Propagation

At the very beginning, we assume a global list of clone pairs each of which has the potential of
experiencing late propagation. We call such a clone pair a CPLP (Clone Pair having the potential
of experiencing Late Propagation). We call this list the GLOBAL LIST.

Clone Pair having the potential of experiencing Late Propagation (CPLP). We consider a
pair of code fragments, (CF1 and CF2), which are clones of each other in revision Ri. A commit
operation Ci was applied on Ri and one or both of these fragments changed. However, because of
this change, CF1 and CF2 were not considered as clones of each other in revision Ri+1. In other
words, the change in Ci is a diverging change for the pair (CF1, CF2). This pair is considered as

Proc. IWSC 2014 4 / 17



ECEASST

a CPLP because, there is a possibility that in a future commit operation, the fragments CF1 and
CF2 will converge (i.e., CF1 and CF2 will again be considered as clones of each other).

The GLOBAL LIST remains empty initially. We examine the commit operations sequentially
from the very beginning one. We only consider those commits where there were changes to
one or more clone fragments of a particular clone type. As we examine the commit operations,
we update the GLOBAL LIST and mark some clones pairs (i.e., some CPLPs) in this list as the
late propagation clone pairs. Suppose, Ci is such a commit which was applied on revision Ri

and the immediate next revision Ri+1 was created as a result. We perform the following steps
sequentially considering Ci.

Step 1. Determining the list of affected clone fragments. We identify the list of clone
fragments (in revision Ri) that received some changes during Ci. We call this list the LIST OF

AFFECTED CLONE FRAGMENTS.
Step 2. Determining the list of affected clone pairs. We make a list of clone pairs that

involve one or more clone fragments in the LIST OF AFFECTED CLONE FRAGMENTS. We
denote this list of clone pairs as the LIST OF AFFECTED CLONE PAIRS.

Step 3. Updating the GLOBAL LIST using the LIST OF AFFECTED CLONE FRAGMENTS.
We identify those clone pairs in the GLOBAL LIST each of which involves any of the clone
fragments in the LIST OF AFFECTED CLONE FRAGMENTS. There is a possibility that such a
clone pair in the GLOBAL LIST has converged. In order to check this we determine whether the
fragments in such a pair are considered as clones of each other in revision Ri+1 which was created
because of commit Ci. If this is true, then we understand that this clone pair in the GLOBAL LIST

has experienced late propagation. We mark this clone pair as a late propagation pair.
Step 4. Updating the GLOBAL LIST using the LIST OF AFFECTED CLONE PAIRS. If

any pair in the LIST OF AFFECTED CLONE PAIRS already appears in the GLOBAL LIST, we
do not need to consider this pair because, this has already been handled in the previous step.
Considering the remaining pairs (in the LIST OF AFFECTED CLONE PAIRS), we determine the
CPLPs (i.e., the clone pairs that have the potential of experiencing late propagation). If the two
fragments in a remaining pair are not considered as clones of each other in revision Ri+1, then
this pair is a CPLP. We include the CPLPs in the GLOBAL LIST.

For each of the commit operations we follow the above four steps, update the GLOBAL LIST

and mark some CPLPs in this list as the late propagation pairs if they converge. After examining
all the commit operations we get all the late propagation clone pairs of a particular clone type.

Now, let us assume that a particular pair in the GLOBAL LIST has been marked as a late
propagation pair during the examination of the commit operation Ci. This pair has the following
three possibilities during future evolution.

• The pair may again experience late propagation.

• The fragments in the pair may evolve independently.

• One or both fragments may form new pair(s) with other fragments of the same or other
clone types.

In case of the third possibility, our implementation considers the new pairs in calculation
because they can experience late propagation. For this first two cases we do not need to do

5 / 17 Volume 63 (2014)



Late Propagation in Near-Miss Clones: An Empirical Study

any further processing because, the clone pair has already been detected as a late propagation
pair and our aim is to identify whether any clone pair has ever experienced late propagation
during evolution. After experiencing late propagation the fragments in the pair might evolve
independently, however, this is not our concern in this research work.

Detection of late propagation considering an individual clone-type. Suppose we are detect-
ing late propagation considering the clones of Type j where j = 1, 2, or 3. The clone fragments
CF1 and CF2 are clones of this type in revision Ri. Because of the commit Ci on revision Ri, the
fragments CF1 and CF2 diverged. Let us assume that in commit Ci+n, the fragments converged
and they were again considered as clones of Type j. Then, we consider this late propagation as
a late propagation of Type j. It might be the case that after converging, CF1 and CF2 were not
considered as clones of Type j. They were considered as clones of Type k where k= 1, 2, or 3 and
j 6= k. In this case we do not consider a late propagation, because the fragments changed their
types. While detecting late propagation in the clones of Type k, the fragments CF1 and CF2 are
considered to determine whether they experienced a late propagation of Type k. However, we
plan to investigate the intensity of such mixed type late propagations (i.e., where the participating
fragments were considered of one clone type before divergence but of another clone type after
convergence) as a future work.

Late propagation in Type 3 clones. We know that Type 3 clone fragments contain some non-
cloned lines. Our implementation can detect late propagation caused by the diverging changes
in the cloned lines of the Type 3 clones. However, there might be situations when significant
changes (i.e., increase) in the non-cloned portions can cause two Type 3 clones to diverge be-
cause the proportion of non-cloned portions might exceed the dissimilarity threshold limit. These
fragments might again converge and be considered as Type 3 clones of each other. Our imple-
mentation detects late propagation in these situations too. We do not disregard these situations,
because convergence might happen because of significant changes (i.e., increase) in cloned por-
tions so that the proportions of non-cloned portions again become within threshold limit. In this
research work, we do not investigate the intensity of such late propagations (i.e., caused by the
changes in non-cloned portions of Type 3 clones). We plan to investigate this as a future research
work.

4 Experimental Steps

We conducted our experiment on six subject systems listed in Table 1. We downloaded the
revisions of each of these systems from a open-source SVN repository SOURCEFORGE1. For
each of the subject systems we considered each of the revisions beginning from the first one.
Detection of late propagation by mining the revisions of a particular subject system requires the
following experimental steps to be done sequentially - (i) Extraction of methods from each of
the revisions, (ii) Detection of method genealogies, (iii) Extraction of clones from each of the
revisions, (iv) Locating these clones to the already detected methods, (v) Extraction of changes
between every two consecutive revisions, (vi) Reflecting these changes to the already detected
methods and clones residing in these methods, and (vii) Detection of clone pairs that experienced
late propagation.

1 Sourceforge: http://www.sourceforge.net

Proc. IWSC 2014 6 / 17

http://www.sourceforge.net


ECEASST

Table 1: Subject Systems

Systems Lang. Domains LOC Revisions
Ctags C Code Def. Generator 33,270 774
QMailAdmin C Mail Management 4,054 317
jEdit Java Text Editor 1,91,804 4000
Freecol Java Game 91,626 1950
OpenYMSG Java Yahoo Messenger 15,553 297
GreenShot C# Multimedia 37,628 999

Table 2: Intensity of Late Propagation in Different Types of Clones

Type 1 Type 2 Type 3
System TG PL TG PL TG PL CTHP

Ctags 89 0 % 97 2.06 % 258 5.42 % T 3
QMailAdmin 33 12.12 % 27 22.22 % 41 17.07 % T 2
jEdit 9007 0.24 % 1108 2.52 % 3991 1.70 % T 2
Freecol 253 7.5 % 387 4.39 % 935 7.5 % T 1, T 3
OpenYMSG 584 0 % 85 0 % 270 2.59 % T 3
GreenShot 1896 0.53 % 478 1.67 % 964 4.46 % T 3
T i = Type i TG = Number of total clone genealogies in the system
PL = Percentage of clone genealogies that exhibited late propagation
CTHP = Clone type exhibiting the highest intensity of late propagation

We extract methods using CTAGS2. For detecting method genealogies we follow the procedure
proposed by Lozano and Wermelinger [LW08]. The genealogy of a particular method helps us
to understand how a particular method evolved during software evolution. As we detect method
genealogies, by locating clones to methods we can determine how a particular clone fragment
changed over the evolution. We use NiCad clone detector for detecting and extracting clones
from each revision of a subject system. The main purpose of choosing NiCad is that it can
detect clones of different clone-types separately including Type 3 with high precision and recall
[RC09, RCK09]. For detecting Type 3 clones, we considered a dissimilarity threshold of 20%
with blind renaming of identifiers. For the details of the first six steps mentioned above and for
NiCad setup, we refer the interested readers to our earlier work [MRS12a]. The last step (i.e.,
step vii) has been described in Section 3.

2 Ctags: http://sourceforge.net/projects/ctags/?source=directory

7 / 17 Volume 63 (2014)

http://sourceforge.net/projects/ctags/?source=directory


Late Propagation in Near-Miss Clones: An Empirical Study

Figure 2: An example of late propagation in a Type 3 clone pair from subject system jEdit

Proc. IWSC 2014 8 / 17



ECEASST

5 Experimental Results and Discussion

We applied our implementation on each of the six subject systems in Table 1 and identified the
clone pairs that experienced late propagation considering each of the three clone types (Type 1,
Type 2, Type 3). As late propagation in Type 3 clones was not investigated before, we present
an example of late propagation occurred to a Type 3 clone pair of our subject system jEdit. We
automatically detect this late propagation by applying our late propagation detection tool. We
present Fig. 2 for describing the late propagation example.

In Fig. 2 we see a Type 3 clone pair in revision 3865 of our candidate system jEdit. As we
can see, the participating clone fragments (denoted as Clone Fragment 1 and Clone Fragment
2) are two if-blocks. NiCad detects these Type 3 clones by considering a dissimilarity threshold
of 20% and applying blind renaming of identifiers. These two clone fragments belong to two
different source code files3 4. The names of the container methods of these two clone fragments
are removePosition and getScreenLineForOffset in revision 3865 . The commit operation applied
on revision 3865 changed the clone fragment at the right hand side (i.e., Clone Fragment 2).
Because of this change they were not considered as a clone pair in revision 3866. Thus, this
change is a diverging change for the clone pair. However, the commit operation applied on
revision 3866 again changed the fragment at the right hand side and the fragments converged
(i.e., became a clone pair) in revision 3867. Thus, this clone pair experienced a late propagation.

In the following subsections, we answer the research questions mentioned in the introduction
by presenting and analyzing our experimental results.

5.1 RQ 1: Are the intensities of late propagation different in different types of
clones?

Rationale. Answering this research question is important. If it is observed that late propagation
in a particular clone-type is more intense compared to the other clone-types, then it is an impli-
cation that clones of that particular clone type have a higher probability of introducing bugs and
inconsistencies to the code-base compared to the other types. Thus, it would be beneficial if we
could refactor clones of that particular type with higher priority. By minimizing these clones we
can minimize the possibility of faults and inconsistencies to the code-base.

Methodology. For answering this research question we applied our prototype tool on each of
the candidate systems and determine the following measures considering each of the three types
of clones of each of the subject systems.

• The number of total clone genealogies

• The percentage of clone genealogies that experienced late propagation

We show these in Table 2. We also calculate the overall proportion of clone genealogies
involved with late propagation considering each clone type. These proportions are shown in Fig.

3 Source code file for Clone Fragment 1: trunk/org/gjt/sp/jedit/buffer/OffsetManager.java
4 Source code file for Clone Fragment 2: trunk/org/gjt/sp/jedit/textarea/ChunkCache.java

9 / 17 Volume 63 (2014)



Late Propagation in Near-Miss Clones: An Empirical Study

Figure 3: Overall proportion of clone genealogies that experienced late propagation (considering
each type of clones)

Table 3: Number of Clone Pairs that Experienced Late Propagation

Lang. System Type 1 Type 2 Type 3
C Ctags 0 1 9
C QMailAdmin 2 3 7
Java jEdit 13 21 62
Java Freecol 12 10 49
Java OpenYMSG 0 0 4
C# GreenShot 5 4 37

3. Overall proportion was calculated in the following way.

OPTi =
∑sεS LPTi(s)
∑sεS T GTi(s)

×100 (1)

Here, OPTi is the overall proportion of late propagation genealogies of clone-type Type i where
i = 1, 2, or 3. LPTi(s) is the number of late propagation genealogies of clone-type Type i in subject
system s. Finally, T GTi(s) represents the total number of clone genealogies of clone-type Type i
in s. S is the set of all subject systems.

Analysis. From Table 2 we see that for most of the subject systems (four out of six), Type 3
clones exhibit the highest intensity of late propagation in comparison with the other two clone
types (Type 1, and Type 2). Moreover, Fig. 3 clearly demonstrates that the overall proportion of
Type 3 clones that exhibit late propagation is higher compared to the other two types.

Answer to RQ 1. According to our experimental results, the intensity of late propagation in
Type 3 clones is generally higher compared to the intensity of late propagation in other two
clone-types. Thus, possibly Type 3 clones have higher probability of introducing faults and
inconsistencies to a code-base than the clones of other two types.

Proc. IWSC 2014 10 / 17



ECEASST

Figure 4: Proportions of late propagation clone pairs having clone fragments from different files
or the same file (considering each clone type)

5.2 RQ 2: Do the participating clone fragments in a clone pair that experience
late propagation generally remain in different files?

Rationale. Answering this question is important. According to a number of studies [DLL09,
VPV10], the program entities that often need to be changed together (i.e., that often require
corresponding changes) should remain in close proximity to each other so that while changing
a particular entity the developer does not miss to look at other entities that may require corre-
sponding changes. Considering this fact we suspect that possibly the clone fragments in a clone
pair that exhibit late propagation generally remain in two different files and as a result, the de-
velopers often forget to make corresponding changes to these clone fragments. We investigate in
the following way to look into this matter.

Methodology. We have already said that considering each of the clone types of each of the
subject systems we identify the clone pairs that experienced late propagation. The counts of these
clone pairs are shown in Table 3. For each of these pairs we determined whether the participating
clone fragments remain in different files or in the same file. We determined two percentages - (i)
the percentage of the clone pairs having clone fragments from different source code files and (ii)
the percentage of clone pairs consisting of clone fragments from the same file. These percentages
are shown in Fig. 4. We also determined the overall percentages for each clone type considering
all subject systems using an equation similar to Eq. 1. Fig. 5 contains these percentages.

Analysis. Considering the percentages regarding each clone-type of each of the subject sys-
tems in Fig. 4 we can say that in general, the clone fragments in a clone pair that experience late
propagation belong to different source code files. From the figure we see that for most of the
cases, the percentage of late propagation clone pairs consisting of clone fragments from different
files is much higher than the percentage of late propagation clone pairs having clone fragments
from the same file. The overall percentages regarding each clone-type in Fig. 5 also demonstrate

11 / 17 Volume 63 (2014)



Late Propagation in Near-Miss Clones: An Empirical Study

Figure 5: Overall proportions of late propagation clone pairs having clone fragments from dif-
ferent files or the same file (considering each type)

that most of the clone pairs that exhibit late propagation are formed with clone fragments be-
longing to different source code files. Moreover, intensity of such a scenario in Type 3 case is
higher compared to the other two types (in Fig. 5).

Answer to RQ 2. In general, the participating clone fragments in a clone pair that experience
late propagation remain in different source code files. This can be a possible reason of late prop-
agation, because without proper tool support a programmer might often forget or even unable to
propagate the changes occurred to a clone fragment in one file to another clone fragment remain-
ing in another file. Thus, according to our findings, if it is necessary that the clone fragments in a
particular clone pair often be changed consistently, then if possible, it is better to place the clone
fragments in close proximity to each other (if they cannot be merged) so that while changing one
fragment a programmer does not miss to look at the other fragment to decide whether changes
also need to be propagated to this other fragment.

5.3 RQ 3: Do block clones or method clones exhibit higher intensity of late prop-
agation?

Rationale. Intuitively, copying a block of statements from one method and pasting that block to
several other methods is more difficult compared to copy-pasting a whole method. While pasting
a block of statements into a method, the variable names and data types in the block might need
to changed in accordance with the variables and data types in that method. If there is a problem
in making such correspondence and as a result, the variables are not changed correctly, then this
will create inconsistency in future evolution. If a number of block clones (forming a clone class)
are created with such inconsistencies, these inconsistencies in different clone fragments will be
discovered at different times during evolution and as a result, late propagation will happen.

Also, blocks might not have well defined boundaries as of methods. For this reason, keeping
track of block clones might seem to be more difficult compared to method clones to a program-
mer.

Methodology. Considering each of the clone types of each of the subject systems, we at
first determine those clone pairs that exhibited late propagation and then we determine whether
the clone fragments in such a pair are block clones or method clones. We calculate - (i) the

Proc. IWSC 2014 12 / 17



ECEASST

Figure 6: Proportions of late propagation clone pairs involving block clones or method clones
(considering each type of clones)

Figure 7: Overall proportions of late propagation clone pairs involving block clones or method
clones (considering each type of clones)

13 / 17 Volume 63 (2014)



Late Propagation in Near-Miss Clones: An Empirical Study

percentage of clone pairs each consisting of at least one block clone and (ii) the percentage of
clone pairs consisting of method clones only. These percentages regarding three clone types of
each of the subject systems are shown in Fig. 6. We determined the overall percentages for each
of the clone types considering all candidate systems using an equation similar to Eq. 1. These
overall percentages are shown in Fig. 7.

Analysis. From Fig. 6 we see that for almost all of the cases, the percentage of late propa-
gation clone pairs involving block clones is much higher (100 % in many cases such as Type 2
case of Freecol) than the percentage of late propagation pairs consisting of only method clones.
Although we determine the percentage of late propagation clone pairs having at least one block
clone, for most of the cases we observed that both of the clones in such a pair are block clones.
However, for a very few cases (Type 1 case of Ctags and Type 1 and Type 2 cases of OpenYMSG)
we did not get any clone pair experiencing late propagation.

The overall proportions regarding three types of clones in Fig. 7 demonstrates that in case of
each clone type, the overall proportion of late propagation pairs involving block clones is much
higher compared to that of the late propagation pairs consisting of method clones.

Answer to RQ 3: The clone pairs that experience late propagation generally consist of block
clones instead of method clones. Block clones exhibit much higher intensity of late propagation
than method clones. Such an observation implies that block clones possibly have higher prob-
ability of introducing inconsistencies to a code-base compared to the method clones. Thus, we
should possibly consider refactoring (if possible) block clones with higher priority.

5.4 Discussion

From our answers and observations regarding the previous three research questions we under-
stand that the best way of minimizing late propagation is to minimize block clones by refactoring.
A recent study [ZR13] shows that extract method refactoring can possibly be used for removing
block clones. However, there could be situations where removal of block clones might not be
possible. In these situations, if it is necessary that the clones often be changed together con-
sistently, then it is better to place the clone fragments (i.e., the methods containing the clone
fragments) in close proximity to each other so that a programmer can look at all these fragments
while making changes to any one. Alternatively, we can build a database of such clones with
automatic tool support so that if a programmer attempts to change a particular clone fragment,
he/she will be able to look at the other clone fragments (stored in the database) that also have the
possibility of getting changed together. Such an automatic system with clone database can help
us considerably in minimizing late propagation.

6 Related Work

A number of studies have already been done on clone evolution and late propagation in clones
during evolution. Kim et al. [KSNM05] studied clone evolution by defining and extracting
clone genealogies from two Java systems using CCFinder5 as the clone detector. Krinke [Kri07]
studied the consistent and inconsistent changes to the Type 1 clones considering the evolutions

5 CCFinder. http://www.ccfinder.net/ccfinderxos.html

Proc. IWSC 2014 14 / 17

http://www.ccfinder.net/ccfinderxos.html


ECEASST

of five open source subject systems using Simian6 clone detector. He also studied the stability of
clones [Kri08] in comparison with non-cloned code. Göde et al [GH11, GK11] analyzed clone
evolution and its effect on software maintenance by enhancing Krinke’s study [Kri08].

In a recent study, Barbour et al. [BKZ13] investigated eight different patterns of late propa-
gation by studying three open-source subject systems written in Java and identified two patterns
that have higher likelihood of introducing inconsistencies to a code-base. They used three clone
detection tools NiCad, CCFinder, and Simian in their study. However, Type 3 clones were not
considered in this study. Aversano et al. [ACD07] investigated clone evolution on two sub-
ject systems to determine how clones are maintained. According to their observation 18% of
the clones experienced late propagation. They show that late propagation in clones can directly
be related to bugs and thus late propagation is risky. In another study Thummalapenta et al.
[TCAP09] investigate late propagation in clones considering four subject systems and reported
that late propagation is often related to faults and inconsistencies.

We see that while there are number of great studies, none of these focus on the intensity of
late propagation separately in different types of clones. Also, no study investigated late propa-
gation in Type 3 clones. Moreover, the existing studies did not emphasize on the causes of late
propagation and on the possibilities of minimizing late propagation considering the causes. In
this study, we investigate these issues by answering three research questions. We believe that our
findings are important and have the potential to help us in better clone maintenance.

7 Threats to Validity

The number as well as the percentage of clone genealogies that experienced late propagation
may vary because of the variation of the detection parameters of the clone detection tool (NiCad
in our study). However, the settings that we have used for NiCad are considered standard and
with these settings NiCad can detect clones with higher precision and recall [RC09, RCK09].
Moreover, NiCad can report three types of clones (Type 1, Type 2, Type 3) separately and thus,
it helped us to investigate the intensity of late propagation on these clone-types separately.

The number of subject systems that we have used in our experiment is not sufficient to take
a concrete decision regarding the possible causes of late propagation. However, we selected
our subject systems focusing on the diversity of sizes (from very small to large) and application
domains (six different application domains) to generalize our findings. Thus, we believe that our
findings are important and have the potential to minimize late propagation in clones.

8 Conclusion

In this paper, we investigate late propagation in three types of clones (Type 1, Type 2, and Type
3) separately. Through our experiment we tried to answer three important research questions
(mentioned in the Introduction) regarding the intensity, possible causes, and minimization of late
propagation. According to our study on six subject systems written in three different program-
ming languages, Type 3 clones experienced the highest intensity of late propagation among the

6 Simian. http://www.harukizaemon.com/simian/index.html.

15 / 17 Volume 63 (2014)

http://www.harukizaemon.com/simian/index.html


Late Propagation in Near-Miss Clones: An Empirical Study

three types of clones. The clone fragments that experienced late propagation are block clones
(not method clones) for most of the cases. Thus, refactoring of block clones can considerably
minimize late propagation. Our findings also suggest that - if not refactorable, then we can build
a database with proper tool support for those clone fragments that often require to be changed
together consistently so that while changing a particular clone fragment a programmer can look
at the other clone fragments that might need to be changed correspondingly. As a future work,
we plan to investigate whether programming languages as well as application domains of the
subject systems can bias the intensity of late propagation. Also, considering Type 3 clones, we
plan to investigate different late propagation patterns, their frequencies and effects on software
maintenance.

Bibliography

[ACD07] L. Aversano, L. Cerulo, M. Di Penta. How Clones Are Maintained: An Empirical
Study. In CSMR. Pp. 81–90. IEEE Computer Society, 2007.

[BKZ13] L. Barbour, F. Khomh, Y. Zou. An empirical study of faults in late propagation clone
genealogies. Software: Evolution and Process 25:1139 – 1165, 2013.

[CR11] J. R. Cordy, C. K. Roy. The NiCad Clone Detector. In Tool Demo Track, ICPC.
Pp. 219 – 220. 2011.

[DLL09] M. D’Ambros, M. Lanza, M. Lungu. Visualizing co-change information with the
evolution radar. IEEE Transactions on Software Engineering 35:720 – 735, 2009.

[GH11] N. Göde, J. Harder. Clone Stability. In CSMR. Pp. 65–74. 2011.

[GK11] N. Göde, R. Koschke. Frequency and risks of changes to clones. In ICSE. Pp. 311 –
320. 2011.

[KG08] C. Kapser, M. W. Godfrey. “Cloning considered harmful” considered harmful: pat-
terns of cloning in software. Empirical Software Engineering 13:645 – 692, 2008.

[Kri07] J. Krinke. A study of consistent and inconsistent changes to code clones. In WCRE.
Pp. 170 – 178. 2007.

[Kri08] J. Krinke. Is cloned code more stable than non-cloned code? In SCAM. Pp. 57 – 66.
2008.

[KSNM05] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy. An empirical study of code clone
genealogies. In ESEC-FSE. Pp. 187 – 196. 2005.

[LW08] A. Lozano, M. Wermelinger. Assessing the effect of clones on changeability. In
ICSM. Pp. 227 – 236. 2008.

[LW10] A. Lozano, M. Wermelinger. Tracking clones’ imprint. In IWSC. Pp. 65 – 72. 2010.

Proc. IWSC 2014 16 / 17



ECEASST

[MRR+12] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A. Schneider.
Comparative Stability of Cloned and Non-cloned Code: An Empirical Study. In
ACM SAC. Pp. 1227–1234. ACM, 2012.

[MRS12a] M. Mondal, C. K. Roy, K. A. Schneider. Connectivity of co-changed method groups:
a case study on open source systems. In CASCON. Pp. 205 – 219. 2012.

[MRS12b] M. Mondal, C. K. Roy, K. A. Schneider. Dispersion of changes in cloned and non-
cloned code. In IWSC. Pp. 29 – 35. 2012.

[MRS12c] M. Mondal, C. K. Roy, K. A. Schneider. An Empirical Study on Clone Stability.
ACM SIGAPP Applied Computing Review 12(3):20–36, 2012.

[MRS13] M. Mondal, C. K. Roy, K. A. Schneider. An insight into the dispersion of changes in
cloned and non-cloned code: A genealogy based empirical study. Science of Com-
puter Programming, 2013.
doi:10.1016/j.scico.2013.11.027

[RC08] C. K. Roy, J. R. Cordy. NICAD: Accurate Detection of Near-Miss Intentional Clones
Using Flexible Pretty-Printing and Code Normalization. In ICPC. Pp. 172–181.
IEEE Computer Society, 2008.

[RC09] C. K. Roy, J. R. Cordy. A mutation / injection-based automatic framework for eval-
uating code clone detection tools. In Mutation. Pp. 157–166. 2009.

[RCK09] C. K. Roy, J. R. Cordy, R. Koschke. Comparison and Evaluation of Code Clone De-
tection Techniques and Tools: A Qualitative Approach. Science of Computer Pro-
gramming 74:470 – 495, 2009.

[Roy09] C. K. Roy. Detection and analysis of near-miss software clones. In ICSM. Pp. 447–
450. 2009.

[SRSP13] R. K. Saha, C. K. Roy, K. A. Schneider, D. E. Perry. Understanding the Evolution
of Type-3 Clones: An Exploratory Study. In MSR. Pp. 139 – 148. 2013.

[TCAP09] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta. An empirical study on
the maintenance of source code clones. Empirical Software Engineering 15:1 – 34,
2009.

[VPV10] A. Vanya, R. Premraj, H. V. Vliet. Interactive Exploration of Co-evolving Software
Entities. In CSMR. Pp. 260 – 263. 2010.

[ZR13] M. F. Zibran, C. K. Roy. Conflict-aware Optimal Scheduling of Code Clone Refac-
toring. IET Software 7:167 – 186, 2013.

17 / 17 Volume 63 (2014)

http://dx.doi.org/10.1016/j.scico.2013.11.027

	Introduction
	Terminology
	Detection of Late Propagation
	Experimental Steps
	Experimental Results and Discussion
	RQ 1: Are the intensities of late propagation different in different types of clones?
	RQ 2: Do the participating clone fragments in a clone pair that experience late propagation generally remain in different files?
	RQ 3: Do block clones or method clones exhibit higher intensity of late propagation?
	Discussion

	Related Work
	Threats to Validity
	Conclusion

