
Automatic Identification of Important Clones for
Refactoring and Tracking

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Code cloning is a controversial software engineering
practice due to contradictory claims regarding its impacts on
software evolution and maintenance. While a number of studies
identify some positive aspects of code clones, there is strong em-
pirical evidence of some negative impacts of clones too. Focusing
on the issues related to clones researchers suggest to manage code
clones through detection, refactoring, and tracking. However, all
clones in a software system are not suitable for refactoring or
tracking. Thus, it is important to identify which clones we should
consider for refactoring and which clones should be considered
for tracking. In this research work we apply the concept of
evolutionary coupling to identify clones that are important for
refactoring or tracking. By mining software evolution history,
we determine and analyze constrained association rules of clone
fragments that evolved following a particular change pattern
called Similarity Preserving Change Pattern and are important
from the perspective of refactoring and tracking. According to
our investigation with rigorous manual analysis on thousands of
revisions of six diverse subject systems covering two programming
languages, overall 13.20% of all clones in a software system are
important candidates for refactoring, and overall 10.27% of all
clones are important candidates for tracking. Our implemented
system can automatically identify these important candidates and
thus, can help us in better maintenance of code clones in terms
of refactoring and tracking.

I. INTRODUCTION
If two or more code fragments in a code-base are identical

or similar to one another, we call them code clones [28]. Two
or more identical or similar code fragments form a clone class.
Clones are mainly created because of frequent copy-paste
activities performed by programmers during both software
development and maintenance [31].

Clones are of great importance from the perspective of
software maintenance and evolution [31]. A great many studies
have been conducted on the detection and analysis of code
clones in software systems [2], [5], [10], [16], [17], [19],
[20], [23]. While a number of studies [10], [17], [18] identify
some positive aspects of code clones, there is strong empirical
evidence [5], [13], [19], [20], [23] of some negative impacts of
clones on software evolution and maintenance. These negative
impacts include late propagation [5], hidden bug propagation
[5], and unintentional inconsistencies [5], [13]. Moreover,
cloned code has higher change-proneness than non-cloned
code [23]. Focusing on the issues related to clones researchers
emphasize that it is important for efficient management of code
clones to support clone detection, refactoring, and tracking
[24], [29].

A number of techniques and tools [27], [29] for detecting
clones already exist. Clone refactoring refers to the task of
merging several clone fragments into a single one [24], [37].
However, refactoring of all clone fragments in a software

Fig. 1. Example of an SPCP clone fragment having relationships beyond its
class boundary

system is impractical [16]. There can be situations where
clone refactoring is impossible, however the clone fragments
need to be updated consistently. Clone tracking (remembering
all clone fragments in a particular clone class) is the most
appropriate management technique for such clone fragments.
Moreover, some clone fragments evolve independently, and
therefore, we do not need to consider them for refactoring or
tracking. Focusing on these issues we believe that for proper
management of code clones we should emphasize on the
following two important matters: (1) Identification of clones
that are important for refactoring, and (2) Identification of
clones that are important for tracking.

In our previous study [24] we defined a particular clone
change pattern called Similarity Preserving Change Pattern
(SPCP) and proposed a mechanism for detecting all those
clones in a software system that evolved following this pattern.
We call these clones the SPCP clones. The clone fragments
that do not follow this pattern either evolve independently or
rarely change during evolution. Thus, these non-SPCP clone
fragments cannot be important candidates for management. We
proposed that the SPCP clone fragments might be important
refactoring candidates.

However, an SPCP clone fragment from a particular clone
class might have change couplings (i.e., evolutionary coupling
relationships) with non-clone fragments and also, with clone
fragments from other clone classes rather than its own class as
shown in Fig 1. The figure shows that an SPCP clone fragment



in Clone Class 1 has couplings with four code fragments
beyond its class boundary. Two code fragments are clone frag-
ments from two other clone classes Clone Class 2, and Clone
Class 3. The remaining two code fragments are non-clone
fragments. Removal of this SPCP clone fragment might have
ripple change effects1 on these four code fragments remaining
outside of Clone Class 1 and also, might negatively affect
their future evolution. Thus, according to our consideration,
such an SPCP clone fragment having relationships across its
class boundary should not be considered for removal through
refactoring. Rather, these should be important candidates for
tracking, because they evolve by maintaining consistency not
only with other SPCP clones in their own clone classes but
also with non-clone fragments as well as with clone fragments
from other clone classes beyond their class boundaries. We
should track these clone fragments along with their cross-
boundary relationships so that we can update them (i.e., the
SPCP clone fragment as well as the code fragments beyond its
class boundary) consistently in future. However, if we want to
refactor such an SPCP clone fragment, then we must analyze
its relationships beyond its class boundary so that removal of
it does not leave the related code fragments (beyond class
boundary) in an inconsistent state and does not negatively
affect the future evolution of these related code fragments.

Thus, it is important to automatically identify SPCP clone
fragments that have couplings beyond their class boundaries
so that we can discard these from consideration while taking
refactoring decision and consider them as important candidates
for tracking and future change prediction. Focusing on this
important issue, in this paper we automatically extract and
analyze the evolutionary coupling (i.e., change coupling) of
SPCP clones and identify those SPCP clones each of which
has change coupling with non-clone fragments and/or with
clone fragments from other clone classes rather than its own
clone class. Finally, we separate the whole set of SPCP clones
into two disjoint subsets: (1) one contains the cross-boundary
SPCP clones (i.e., the SPCP clones having cross boundary re-
lationships), and (2) the other contains the non-cross-boundary
SPCP clones. We perform an in-depth empirical study on both
cross-boundary and non-cross-boundary SPCP clones.

According to our investigation considering both exact
(Type 1) and near-miss (Type 2, Type 3) clones in thousands
of revisions of six diverse subject systems covering two
programming languages (Java, and C) we answer four research
questions listed in Table I and come to the following decisions.

(1) The cross-boundary SPCP clones should be considered
as the most important candidates for tracking. Removal of
these clone fragments without taking proper care of their
cross-boundary relationships might negatively affect the future
evolution of the related code fragments. We should track
cross-boundary SPCP clones along with their coupled code
fragments so that we can update them consistently in future.
However, if such an SPCP clone fragment needs to be refac-
tored, then we should be careful of their relationships across
their class boundaries. Overall, 10.27% of all clones in a
software system are cross-boundary SPCP clones.

(2) The non-cross-boundary SPCP clones should be consid-
ered as the most important candidates for refactoring. Overall,

1http://www.avionyx.com/publications/e-newsletter/issue-3/
126-demystifying-software-coupling-in-embedded-systems.html

TABLE I. RESEARCH QUESTIONS

SL Research Question

1 What proportion of the SPCP clones have cross-boundary relationships?
2 Should we discard the cross-boundary SPCP clones from consideration while

taking refactoring decisions and also, consider them for tracking?
3 Do cross-boundary SPCP clones have higher change-proneness than the non-

cross-boundary SPCP clones?
4 Which types (i.e., Type 1, Type 2, or Type 3) of SPCP clone fragments have

higher possibility of having cross-boundary relationships?

13.20% of all clones in a software system are non-cross-
boundary SPCP clones.

(3) The cross-boundary SPCP clones have much higher
change-proneness than the non-cross-boundary SPCP clones.
The main reason behind this higher change-proneness is that
the cross-boundary SPCP clones are generally highly coupled
with other code fragments beyond their class boundaries. Thus,
such SPCP clones are the places in a software system where we
can think of possible restructuring to minimize their coupling.

(4) Considerable proportions of Type 2 and Type 3 SPCP
clones have cross-boundary relationships. However, cross-
boundary SPCP clones are rare in Type 1 case.

As the non-SPCP clone fragments either evolved indepen-
dently or rarely changed during evolution, we can exclude
them from management considerations. Overall 43% of the
SPCP clones of a subject system can have cross-boundary
relationships. Our implemented system can automatically iden-
tify these and thus, can help us identify the most important
candidates for tracking as well as for refactoring.

The rest of the paper is organized as follows. Section II
describes the terminology, Section III elaborates on the cross-
boundary relationships of SPCP clones, Section IV describes
the methodology, Section V answers the research questions
based on experimental results, Section VI mentions possible
threats to validity, Section VII discusses the related work, and
Section VIII concludes the paper mentioning future work.

II. TERMINOLOGY
Types of clones. We conduct our experiment considering

exact (Type 1) and near-miss clones (Type 2 and Type 3
clones). As is defined in the literature [28], if two or more
clone fragments in a particular clone class are exactly the
same disregarding comments and indentations, these clone
fragments are called exact clones of one another (i.e., Type 1
clones). Type 2 clones are syntactically similar code fragments.
In general, Type 2 clones are created from Type 1 clones
because of renaming variables or changing data types. Type
3 clones are mainly created because of additions, deletions, or
modifications of lines in Type 1 or Type 2 clones.

Corresponding change. Let us assume that two code
fragments have co-changed (changed together) in a particular
commit operation. If the changes are related such that changes
in one code fragment required changes to the other fragment to
ensure consistency between them, then we say that the changes
to these two code fragments are corresponding changes. Here,
a code fragment can be a clone fragment from a particular
clone class or a non-clone fragment (defined in Section IV).

Evolutionary coupling. During the evolution of a software
system if two or more program entities (such as files, classes,
methods) appear to change together (i.e., co-change) frequently
then we say that these entities exhibit evolutionary coupling.
It is likely that these entities are related and a future change
to any one of these entities will accompany corresponding
changes to the other entities. Evolutionary coupling, also



known as change coupling [6], helps us detect the underlying
relationships among program entities in a software system
[38]. In our research work we mine evolutionary coupling of
SPCP clone fragments to discover their relationships with code
fragments beyond their class boundaries.

Association Rule. Evolutionary coupling has been identi-
fied by using association rules [1]. An association rule [1] is an
expression of the form X => Y where X is the antecedent and
Y is the consequent. Each of X and Y is a set of one or more
program entities. The meaning of such a rule in our context
is that if X gets changed in a particular commit, Y also has
the tendency being changed in that commit. We determine the
support and confidence of a rule in the following way.

Support and Confidence. As defined by Zimmermann et al.
[38], support is the number of commits in which an entity or a
group of entities changed together. Consider an example of two
entities E1 and E2. If E1 and E2 have ever changed together,
we can assume two association rules, E1 => E2 and E2 =>
E1, from them. Suppose, E1 was changed in four commits: 2,
5, 6, and 10 and E2 was changed in six commits: 4, 6, 7, 8, 10,
and 13. So, support(E1) = 4 and support(E2) = 6. However,
support(E1, E2) = 2, because E1 and E2 co-changed in two
commits: 6 and 10. Support of a rule is determined as follows.

support(X => Y ) = support(X,Y ) (1)
Where (X,Y ) is the union of X and Y . Thus, sup-

port(X => Y) = support(Y => X). From the above example, sup-
port(E1 => E2) = support(E2 => E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines the
probability that Y will change in a commit operation provided
that X changed in that commit operation. We determine the
confidence of X => Y in the following way.

confidence(X => Y ) = support(X,Y )/support(X) (2)
From the above example of two entities, confidence

(E1 => E2) = support(E1, E2) / support(E1) = 2 / 4 = 0.5
and confidence(E2 => E1) = 2 / 6 = 0.33.

Higher values of support and confidence indicate stronger
change coupling (i.e., evolutionary coupling) among the enti-
ties in an association rule. A detailed description of how we
mine evolutionary coupling will be presented in Section III-C.

III. SPCP CLONES HAVING RELATIONSHIPS BEYOND
THEIR CLASS BOUNDARIES

In this section, we at first discuss SPCP clones and then
describe how we detect those SPCP clones each having change
coupling with other code fragments (clone and/or non-clone
fragments) beyond its class boundary.

A. SPCP Clones
The elaboration of SPCP is Similarity Preserving Change

Pattern. As we defined in our earlier work [24], if two or more
clone fragments from the same clone class evolve by receiving
only Similarity Preserving Changes and/or Re-synchronizing
changes, then we say that these clone fragments follow a
Similarity Preserving Change Pattern. We call these clone
fragments the SPCP Clone Fragments or SPCP Clones.

Similarity Preserving Change. Let us consider two code
fragments that are clones of each other in a particular revision
of a subject system. A commit operation was applied on this
revision, and any one or both of these code fragments (i.e.,
clone fragments) received some changes. However, in the next
revision (created because of the commit operation) if these two
code fragments are again considered as clones of each other

(i.e., the code fragments preserve their similarity), then we say
that the code fragments received Similarity Preserving Change
in the commit operation.

Re-synchronizing Change. Let us consider two code frag-
ments that are clones of each other in a particular revision. A
commit operation was applied on this revision, and any one of
both of the fragments received some changes in such a way
that the code fragments were not considered as clones of each
other in the next revision. However, in a later commit operation
any one or both of the code fragments received some changes,
and because of these changes the code fragments again became
clones of each other. Such a converging change followed by a
diverging change is termed as a re-synchronizing change.

B. SPCP Clones having Cross-Boundary Relationships
In our previous work [24] we mentioned that if two or more

clone fragments from a particular clone class are identified
as SPCP clones, then they might be important candidates
for refactoring, because they evolve by receiving similarity
preserving changes or re-synchronizing changes. However,
merging these clone fragments into one, that is, removal of
all these fragments by a single one is tricky. Here, we should
not only think of whether we can merge them but also think
about whether we should merge them. If we remove a code
fragment from a code-base without being conscious about
its relationships with other code fragments, then it is likely
that the related code fragments will be negatively affected.
These relationships might not be structural. Most of the recent
IDEs are capable of pin-pointing the violations or breaking
of structural relationships. However, code fragments might
have evolutionary coupling relationships, and the IDEs cannot
identify if we are going to break such a relationship between
two code fragments. By analyzing the evolution history of
the clone fragments of our subject systems we observe that
an SPCP clone fragment from a particular clone class can
also have evolutionary coupling relationships with other two
types of code fragments: (1) clone fragments from other clone
classes and, (2) non-clone fragments such that the SPCP clone
fragment and these other code fragments often need to be
changed together (co-changed) correspondingly. In presence of
such co-change relationships, also known as change couplings,
this SPCP clone fragment should not be removed by refactor-
ing. Removal of this fragment can negatively affect the other
related fragments. Thus, this is important to identify SPCP
clones with relationships beyond their class boundaries so that
we can filter-out them from consideration while taking refac-
toring decisions and can keep track of them along with their
cross-boundary relationships for updating them consistently in
future. We detect cross-boundary SPCP clones by analyzing
evolutionary coupling. The detection procedure is described
below in detail.

C. Detection of Cross-Boundary SPCP Clones by Mining
Evolutionary Coupling

We at first detect all the SPCP clones from a subject system
following the procedure we proposed in our earlier work [24].
We then automatically examine the evolution history of the
subject system in order to extract the evolutionary coupling
of each SPCP clone with non-clone fragments as well as with
clone fragments from other clone classes rather than its own
clone class. By examining the evolution history, we determine
pairs of co-changed code fragments that can be categorized
into the following two categories.



TABLE II. SUBJECT SYSTEMS
System Language Domain LOC Revisions

Ctags C Code Def. Generator 33,270 774
QMailAdmin C Mail Management 4,054 317
jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Manager 45,515 1545
Revisions = Number of revisions investigated

(1) Different Class Category: Each pair in this category
consists of two clone fragments: (1) one is an SPCP clone
fragment from a particular clone class, and (2) the other one
is a clone fragment (may be an SPCP clone fragment or not)
from a different clone class rather than the clone class of the
first one such that these two clone fragments co-changed (i.e.,
changed together) during the past evolution.

(2) Clone Non-clone Category: A pair in this category
consists of two code fragments: (1) one is an SPCP clone
fragment from a particular clone class, and (2) the other one
is a non-clone fragment such that these two code fragments
co-changed during the past evolution.

We examine each of the commit operations and determine
the pairs of co-changed code fragments. A particular pair may
appear more than once. We count the number of commits a pair
appears. From a particular pair (CF1, CF2) of co-changed code
fragments we determine two association rules CF1 => CF2
and CF2 => CF1 along with their support and confidence
values. We consider only those association rules each of which
satisfies the following two conditions.

Condition 1. The rule has a support (i.e., the number of
times the constituent code fragments co-changed) of at least
2. We discard the lowest support rules (i.e., the rules with
support = 1) from consideration because the constituent code
fragments in such a rule has a very low probability of having
change coupling between them. Such kind of discarding of
rules has been done by the previous studies [6], [15].

Condition 2. The rule has a confidence of 1 (i.e., the
highest confidence). An association rule CF1 => CF2 with
highest confidence indicates that each commit operation where
CF1 received some changes, CF2 also received some changes.
Thus, it is very much likely that CF1 and CF2 have change
coupling, and a future change in one fragment will trigger a
corresponding change to the other one. The term corresponding
change is defined in Section II.

We determine the set of SPCP clone fragments involved in
those rules that satisfy the above two conditions. We consider
these SPCP clones as the cross-boundary SPCP clones. By
excluding these cross-boundary SPCP clones from the whole
set of SPCP clones of a subject system, we get the non-cross-
boundary SPCP clones for that system.

IV. METHODOLOGY
Table II lists the six open source subject systems that we

investigate in our study. We consider all the revisions (as noted
in Table II) beginning with the first one for each of the systems.

We first download all the revisions as noted in Table II
for all the subject systems from their open-source SVN repos-
itory2. Then, for each system we perform nine experimental
steps as follows: (1) Method detection and extraction from each
of the revisions using CTAGS 3, (2) Detection and extraction of

2Open source SVN repository. http://sourceforge.net/
3CTAGS: http://ctags.sourceforge.net/

code clones from each revision using the NiCad clone detector
[7], (3) Detection of changes between every two consecutive
revisions using diff, (4) Locating these changes to the already
detected methods as well as clones of the corresponding revi-
sions, (5) Locating the code clones detected from each revision
to the methods of that revision, (6) Detection of method
genealogies considering all revisions using the technique pro-
posed by Lozano and Wermelinger [20], (7) Detection of
clone genealogies by identifying the propagation of each clone
fragment through a method genealogy, (8) Detection of SPCP
clone fragments following technique we proposed in our earlier
work [24], and (9) Mining the evolutionary coupling of SPCP
clone fragments to identify the cross-boundary SPCP clones.
For the details of the first seven steps we refer the interested
readers to our earlier work [22]. We have described the final
step in Section III-C.

Detecting the method-genealogy for a particular method
involves identifying each instance of that method in each of
the revisions where the method was alive. By detecting the
genealogy of a method, we can determine how it changed
during evolution. We detect clone genealogies by locating the
clones detected from each revision to the already detected
methods of that revision. The genealogy of a particular clone
fragment also helps us determine how it evolved through the
commits. We assign unique IDs to the method genealogies
and clone genealogies to recognize them across revisions. We
use NiCad [7] for detecting clones because it can detect all
major types (Type 1, Type 2, and Type 3) of clones with
high precision and recall [28], [30]. Using NiCad we detect
block clones including both exact (Type 1) and near-miss
(Type 2, Type 3) clones of a minimum size of 5 LOC with
20% dissimilarity threshold and blind renaming of identifiers.
These settings (explained in detail in our earlier work [22])
are considered standard [29].

In this experiment we consider clone and non-clone frag-
ments that reside within methods. We already mentioned that
after detecting clones we locate them in the methods. A clone
fragment is recognized by its starting and ending line numbers.
However, non-clone fragments require explanation. If a method
contains one or more clone fragments, then we consider the
remaining code in the method as a non-clone fragment. If a
method does not contain any clone fragment, then we consider
the full method as a non-clone fragment. A fully cloned
method does not contain a non-clone fragment.

V. EXPERIMENTAL RESULTS AND DISCUSSION
We apply our implemented system on each of the six

subject systems listed in Table II. Our implemented system
automatically determines the SPCP clones, and then identifies
those SPCP clones that have relationships across their class
boundaries. By analyzing these SPCP clones we answer the
research questions mentioned in Table I.

A. RQ 1: What proportion of the SPCP clones of a subject
system have cross-boundary relationships?

Answering this research question is important. If it is
observed that generally a significant proportion of the SPCP
clones of a subject system have cross boundary relationships,
then we can consider these clone fragments for tracking along
with their cross-boundary relationships in order to update
them consistently in future. However, if the number of cross-
boundary SPCP clones is too low compared to the total number



TABLE III. NUMBER OF SPCP CLONE FRAGMENTS

Ctags QMail. Freecol jEdit Carol Jabref

No. of SPCP Clones 229 31 860 902 238 418
% of SPCP Clones w.r.t all clones
in the system

43.04 59 55.69 12 29.45 43.63

No. of CBSPCP Clones 116 28 340 442 125 121
% of CBSPCP Clones w.r.t all
clones in the system

21.80 53.29 22.02 5.88 15.47 12.63

% of NCBSPCP Clones w.r.t all
clones in the system

21.24 5.70 33.67 6.12 13.98 31

SPCP Clones = The clone fragments that evolved following SPCP
No. of CBSPCP Clones = Number of Cross-Boundary SPCP clone fragments
CBSPCP Clones = Cross-boundary SPCP clone fragments
NCBSPCP Clones = Non-cross-boundary SPCP clone fragments

Ctags QMail. Freecol jEdit Carol Jabref
0

20

40

60

80

% of Cross-boundary SPCP clone fragments with respect to all SPCP
clones in the subject systems

Fig. 2. Percentage of cross-boundary SPCP clone fragments

of SPCP clones in a system, then the detection of such SPCP
clones might just be an overhead.

Methodology. We have already mentioned that in our
previous study [24] we detected SPCP clone pairs. We merged
these pairs to form groups of SPCP clone fragments. While de-
tecting SPCP clone pairs in our previous work, we considered
the following two constraints: (1) the two constituent SPCP
clone fragments in a pair must co-change at least once during
evolution, and (2) the two SPCP clone fragments in a pair must
remain in two different methods. However, in this research
work, we did not apply these constraints. Firstly, according to
the definition of similarity preserving change pattern (SPCP)
[24], two clone fragments from a particular clone class can
follow an SPCP without being co-changed at all. So, in this
experiment we detect all those SPCP clone pairs where the
constituent clone fragments in a particular pair might not co-
change at all. Secondly, two clone fragments remaining in the
same method can also follow a similarity preserving change
pattern and can be important candidates for refactoring. So,
in this experiment we consider the same method case too. We
show the amount of SPCP clones detected from each of the
subject systems in Table III. The proportion of SPCP clones
having cross-boundary relationships is shown in Fig. 2.

Fig. 2 shows that in case of each of the subject systems
a considerable amount of the SPCP clones have change
couplings with code fragments beyond their class boundaries.
According to our consideration, such SPCP clones should not
be considered for removal through refactoring. They should be
tracked along with their cross-boundary relationships. More-
over, we have already mentioned that we detect cross-boundary
SPCP clones considering the highest confidence rules. As
higher confidence indicates stronger change coupling between
the constituent code fragments in a rule, we can expect that
each of our detected cross-boundary SPCP clones has strong
change coupling with non-clone fragments and/or with clone
fragments (may be SPCP clone fragments or not) from clone
classes other than its own clone class.

For each of our candidate systems we develop two sep-
arate XML files containing respectively the cross-boundary
and non-cross-boundary SPCP clones from that system. For
each cross-boundary SPCP clone fragment, we list the other
code fragments (along with their file and starting and ending
line numbers) that are related to it. We determine groups of
non-cross-boundary SPCP clones following the procedure we
proposed in our previous study [24] and include the groups in
the XML files. These XML files are available non-line4.

Answer to RQ 1: In general, a considerable pro-
portion (overall 43% considering all six subject systems)
of the SPCP clones of a subject system have strong
change couplings with code fragments beyond their class
boundaries. These cross-boundary SPCP clones should be
considered as the most important candidates for tracking.
We should track them along with their cross-boundary
couplings so that we can update them consistently dur-
ing future evolution. Overall 10.27% of all clones in a
software system are cross-boundary SPCP clones. The
non-cross-boundary SPCP clones are conservative in the
sense that they do not have change couplings with code
fragments beyond their class boundaries. Thus, these
should be considered as the most important candidates
for refactoring. According to our statistics considering all
subject systems, overall 13.20% of all clones in a software
system are non-cross-boundary SPCP clones.

B. RQ 2: Should we discard the cross-boundary SPCP clones
from consideration while taking refactoring decisions and also,
consider them for tracking?

Answering this research question is the central objective
of our research work. However, it is difficult to answer this
question, because we do not have any empirically established
set of characteristics such that a clone fragment that does
not have any of the characteristics in the set should not be
considered for removal through refactoring. In our previous
study we considered that two or more clone fragments from
a particular clone class might be important for refactoring
only if they evolve following an SPCP (Similarity Preserving
Change Pattern). The clone fragments that do not follow SPCP
either evolve independently or rarely change during evolution.
However, another important characteristic for a clone fragment
to be considerable for refactoring is that it is not expected to
have change couplings with other code fragments beyond its
class boundary. We did not consider this issue in our previous
study. If an SPCP clone fragment has such couplings, then it
is better not to refactor it, rather it should be tracked along
with its cross-boundary couplings so that the maintenance
engineers can update them (i.e., the SPCP clone fragment and
the code fragments coupled with it beyond its class boundary)
consistently in future.

In Fig. 1 (explained in the introduction) we showed an
SPCP clone fragment having couplings beyond its class bound-
ary. We also explained that removal of such an SPCP clone
fragment might have ripple change effects1 on the related
code fragments remaining outside of its class boundary and
also, might negatively affect the future evolution of these
related code fragments. Thus, possibly we should not consider
refactoring such an SPCP clone fragment. Here we should note

4http://goo.gl/r6gDm2



Ctags QMail. Freecol jEdit Carol Jabref
0

5

10

15

The average number of different-class clone fragments to which a cross-
boundary SPCP clone is related through change coupling

The average number of non-clone fragments to which a cross-boundary
SPCP clone is related through change coupling

Fig. 3. The average number of code fragments to which a cross-boundary
SPCP clone fragment is related beyond its class boundary

that it is impossible to calculate how much negative effect
can be caused in future because of the removal of such an
SPCP clone fragment. However, we can have an idea from
the number of change coupling relationships an SPCP clone
fragment currently has. According to our consideration, if a
number of fragments are related to a particular code fragment,
then removal of that particular fragment might negatively affect
the future evolution of all the related code fragments. Thus,
by looking at the number of cross-boundary code fragments
(i.e., the code fragments beyond class boundary) a particular
SPCP clone fragment is related to we can have an idea of how
much negative effect might be caused for the removal of that
particular SPCP clone fragment.

In this research question, we determine how many change
couplings an SPCP clone fragment can have beyond its class
boundary. We automatically identify these change couplings
by mining association rules as mentioned previously and then
manually investigate the association rules to determine whether
an SPCP clone fragment is really coupled with code fragments
beyond its class boundary. If an SPCP clone fragment has
change couplings with code fragments across its class bound-
ary, then we can possibly decide that removal of this clone
fragment can negatively affect these related code fragments
and thus, can be harmful for future software evolution.

Methodology. We determine all the association rules asso-
ciating an SPCP clone fragment with other code fragments
(non-clone fragments or clone fragments from other clone
classes rather than its own class) beyond its class boundary.
As we previously mentioned, we consider each of those rules
that have the highest confidence (confidence = 1) to ensure
the likeliness of change coupling between the code fragments
constituting a rule. Considering all the cross-boundary SPCP
clone fragments in a subject system, we determine the average
number of code fragments (clone fragments from other clone
classes, and non-clone fragments) a cross-boundary SPCP
clone fragment is associated to by association rules beyond its
class boundary. The average numbers for each of the subject
system are shown in Fig. 3.

From the figure we see that a cross-boundary SPCP clone
fragment can exhibit strong evolutionary coupling (i.e., change
coupling) with a considerable number of other code fragments
beyond its class boundary. Most of these code fragments are
clone fragments from different clone classes rather than its
own clone class. We sort the cross-boundary SPCP clone
fragments in decreasing order of the number of cross-boundary
code fragments they are associated to and then analyze the
association rules of the top ten SPCP clone fragments from
each subject system. In case of each of the association rules, we

Fig. 4. Changes occurred to an SPCP clone fragment in the commit operation
applied on revision 217 of our subject system Ctags.

determine the commit operations where the constituent code
fragments (a cross-boundary SPCP clone fragment and a code
fragment beyond its class boundary) co-changed and whether
they co-changed correspondingly. According to our manual
investigation, each of our investigated cross-boundary SPCP
clone fragments was actually related to the code fragments
beyond its class boundary. We provide an example of a
corresponding change in the following paragraphs.

Example: We provide an example of a corresponding
change between an SPCP clone fragment and a non-clone
fragment from our subject system Ctags. The SPCP clone
fragment is a method called ‘tagName’ with signature const
char * tagName (const tagType type). The non-clone fragment
is also a method with name ‘includeTag’ and signature boolean
includeTag(const tagType type, const boolean isFileScope).
These two code fragments belong to the same file c.c. They
co-changed in two commit operations applied on the revisions
217, and 242. Also, both of the association rules constructed
from these two code fragments have the highest confidence
(confidence = 1). Thus, these two code fragments always co-
changed (changed together), and also, there is no commit
operation where one fragment changed but the other did not.
In such a situation, we can expect strong change coupling
between these two code fragments (an SPCP clone fragment,
and a non-clone fragment). We manually analyze the changes
occurred to these code fragments in both of the commit
operations. According to our analysis, the changes occurred
to the two code fragments in each of the commit operations
were corresponding and thus, the code fragments have change
coupling. We show the changes occurred to the two code
fragments in the commit operation applied on revision 217
in two figures: Fig. 4, and Fig. 5.

Fig. 4 shows the changes occurred to the SPCP clone
fragment (tagName), and Fig. 5 shows the changes occurred
to the non-clone fragment (includeTag). Each figure shows the
two instances of the respective code fragment in two revisions
217, and 218. We also highlight the changes between these
two instances. From Fig. 4 we see that two lines (statements)
were added to the SPCP clone fragment because of the
commit on revision 217. If we take a look at Fig. 5, we
can see that the same statements were also added to the non-
clone fragment in the same commit operation. The changes
occurred to the two code fragments imply that those (i.e.,
the changes) were made focusing on the consistency of the
two code fragments. In other words, the SPCP clone fragment
and the non-clone fragment co-changed correspondingly in
the commit operation. The changes occurred to these two
code fragments in the commit 242 are also corresponding
according to our manual investigation. Thus, we can expect
that these two code fragments are related although there is
no caller-callee relationship. According to our analysis, these
code fragments have a tendency of co-changing consistently.
In such a situation, deletion of the SPCP clone fragment



Fig. 5. Changes occurred to a non-clone fragment in the commit operation applied on revision 217 of our subject system Ctags.

(‘tagName’) through refactoring might negatively affect the
future evolution of the non-clone fragment. However, if we
still want to remove this SPCP clone fragment, then we must
take the relationship between this fragment and the non-clone
fragment (‘includeTag’) into consideration so that removal
of the SPCP clone fragment does not leave the non-clone
fragment in an inconsistent state and also does not affect the
future evolution of the non-clone fragment.

Answer to RQ 2. From our discussion and analysis
we can say that the SPCP clone fragments having cross-
boundary relationships should not be considered for re-
moval through refactoring. They should be tracked along
with their relationships for their consistent updates in
future. However, in case we want to remove such a clone
fragment, we must consider and analyze its relationships
(change couplings in our experiment) with the other
code fragments beyond its class boundary so that these
other code fragments are not left in an inconsistent state
because of the removal of the SPCP clone fragment.

C. RQ 3: Do cross-boundary SPCP clones have higher
change-proneness than the non-cross-boundary SPCP clones?

Motivation. From our answer to the previous research
question we understand that a cross-boundary SPCP clone
fragment has a tendency of maintaining consistency (i.e.,
changing consistently) with non-clone fragments as well as
with clone fragments from other clone classes. Also, as it is an
SPCP clone fragment, it also maintains consistency with other
SPCP clone fragment(s) in its own clone class. From this we
suspect that possibly cross-boundary SPCP clones have higher
change-proneness compared to the non-cross-boundary SPCP
clones. Also, our detection mechanism of cross-boundary
SPCP clone fragments described in Section III-C ensures that
each cross-boundary SPCP clone fragment must co-change at
least twice with a non-clone fragment or with a clone fragment
from other clone class. In these circumstances it is highly likely
that cross-boundary SPCP clones will exhibit higher change-
proneness than the non-cross-boundary SPCP clones. However,
we investigate this matter in detail in this research question.
Such an investigation is important from the perspective of
software maintenance.

Literature [19], [20], [23] shows that code clones have
higher change-proneness compared to non-cloned code. How-
ever, studies [16], [24] also show that not all clone fragments
in a software system are highly change-prone, and even some
clone fragments never change during software evolution. Thus,
this is important to identify which clones are highly change-
prone and to investigate the reasons behind their high change-
proneness. If our investigation shows that cross-boundary
SPCP clones have significantly higher change-proneness than

Ctags QMail. Freecol jEdit Carol Jabref
0

2

4

6

8

10

Average change-proneness of a cross-boundary SPCP clone fragment

Average change-proneness of a non-cross-boundary SPCP clone fragment

Fig. 6. Comparison of change-proneness between cross-boundary and non-
cross-boundary SPCP clone fragments

the non-cross-boundary SPCP clones, then the cross-boundary
SPCP clones should be regarded as the hot spots in a software
system. In general, highly change-prone code fragments have
higher possibilities of introducing bugs and inconsistencies
to the software system if the changes occurred to them are
not properly propagated to the other related code fragments
because of unconsciousness. We know that the cross-boundary
SPCP clones are related with many other code fragments
beyond their class boundaries. If such an SPCP clone frag-
ment appears to be highly change-prone, then we should
be more conscious about the changes occurred to it. If a
change occurred to it is not properly propagated to the other
related code fragments both inside and outside of its class,
then the software system might become inconsistent. Thus,
if cross-boundary SPCP clones have high change-proneness,
then it is very much important that they should be tracked
along with their relationships so that we can change them
consistently during future evolution. In this research question
we investigate whether cross-boundary SPCP clone fragments
have significantly higher change-proneness compared to the
non-cross-boundary SPCP clones.

Methodology. To quantify the change-proneness of a par-
ticular SPCP clone fragment, we measure the number of times
it changed (i.e., the number of commits where it changed)
during the whole evolution period of the software system as
we did in a previous study [25]. We at first determine all
the SPCP clone fragments of a particular subject system, and
then separate them into two groups. One group contains the
cross-boundary SPCP clone fragments. We call this group the
cross-boundary-group. The other group contains the non-cross-
boundary SPCP clone fragments. We call this group the non-
cross-boundary-group. We measure the change-proneness of
each of the SPCP clone fragments included in each of the two
groups. We then determine the average change-proneness per
group. These average values are shown in Fig. 6.

Fig. 6 shows that in case of each of the subject systems the
change-proneness of the cross-boundary SPCP clones is much
higher than the change-proneness of the non-cross-boundary
SPCP clones. This is expected according to our previous



TABLE IV. MANN-WHITNEY-WILCOXON TESTS REGARDING THE
SIGNIFICANCE OF DIFFERENCE BETWEEN CHANGE-PRONENESS VALUES OF

CROSS-BOUNDARY-GROUP AND NON-CROSS-BOUNDARY-GROUP

Ctags QMail. Freecol jEdit Carol Jabref

SCBG 116 28 340 442 125 121
SNCBG 113 3 520 460 113 297
p-Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
SCBG = No. of Samples (SPCP clone fragments) in Cross-Boundary-Group
SNCBG = No. of Samples in Non-Cross-Boundary-Group
p-Value = Probability Value. If it is less than 0.05 then the difference

between the two samples are considered significant.

discussion. However, we also wanted to investigate whether
the cross-boundary SPCP clones exhibit significantly higher
change-proneness than the non-cross-boundary SPCP clones.
We perform our investigation in the following way.

In case of this investigation we did not rely on the average
change-proneness values, rather we used the actual change-
proneness value of each of the SPCP clone fragments in
each of the groups. For each of the subject systems, we
performed the Mann-Whitney-Wilcoxon Tests5 on the change-
proneness values of the SPCP clone fragments of the two
groups: cross-boundary-group, and non-cross-boundary-group.
We determine whether the change-proneness values in the
cross-boundary-group are significantly higher than the change-
proneness values in the non-cross-boundary-group. For our six
subject systems we performed six tests and observed that in
case of each test, the difference between the change-proneness
values in the two groups was highly significant with p-value <
0.001 (for both one-tailed and two-tailed tests). Thus, we can
say that the change-proneness values in the cross-boundary-
group are significantly higher than those in the non-cross-
boundary-group. The test details are shown in Table IV.

Answer to RQ 3. According to our analysis cross-
boundary SPCP clones have significantly higher change-
proneness than the non-cross-boundary SPCP clones.
Thus, cross-boundary SPCP clones should be tracked
along with their cross-boundary couplings with high pri-
ority so that we can change them consistently during
future evolution.

The main reason behind this high change-proneness of the
cross-boundary SPCP clones is that each of these has change
couplings beyond its class boundary. From Fig. 3 we see that a
cross-boundary SPCP clone fragment is generally coupled with
a high number of code fragments beyond its class. In other
words, these clone fragments are highly coupled. Generally
highly coupled code fragments are not desirable in a software
system1, because changes to such a code fragment might cause
ripple change effects to the related code fragments. Thus,
the cross-boundary SPCP clones are the possible places in a
software system where we can think of possible restructuring
to minimize their couplings. Also, as the cross-boundary SPCP
clones are not suitable for removal through refactoring, we
propose efficient tracking of these clone fragments along with
their cross-boundary relationships.

D. RQ 4: Which types of SPCP clones have higher possibility
of having cross-boundary relationships?

In this research question we wanted to see a comparative
scenario of the proportions of SPCP clone fragments as well

5Mann-Whitney-Wilcoxon Test: http://elegans.som.vcu.edu/∼leon/stats/
utest.html

TABLE V. CROSS-BOUNDARY SPCP CLONES IN THREE CLONE-TYPES

Type 1 Type 2 Type 3
SPCP CB-SPCP SPCP CB-SPCP SPCP CB-SPCP

Ctags 6 0 42 12 133 65
QMailAdmin 0 0 11 9 10 9
Freecol 75 2 143 42 534 164
jEdit 146 66 69 10 458 179
Carol 2 0 48 21 142 58
Jabref 13 0 84 12 236 70
SPCP = Count of SPCP clone fragments
CB-SPCP = Count of cross-boundary SPCP clone fragments

Ctags QMail. Freecol jEdit Carol Jabref
0

20

40

60

80

Percentage of cross-boundary SPCP clone fragments in Type 1 case

Percentage of cross-boundary SPCP clone fragments in Type 2 case

Percentage of cross-boundary SPCP clone fragments in Type 3 case

Fig. 7. Comparison of change-proneness between cross-boundary and non-
cross-boundary SPCP clone fragments

as of the proportions of cross-boundary SPCP clone fragments
in different types of clones of our candidate systems. The
findings from this research question can help us understand two
important things: (1) which type(s) of SPCP clone fragments
have lower possibilities of having cross-boundary relationships
and thus, are more suitable for refactoring, and (2) which
type(s) of SPCP clones have higher possibility of having cross-
boundary relationships and thus, are more suitable for tracking.
We perform our analysis in the following way.

Methodology. We detect each of the three major types
(Type 1, Type 2, and Type 3) of clone fragments separately
using the NiCad [7] clone detector and then automatically
determine the SPCP clone fragments having cross-boundary
change couplings in each clone type. We determine the per-
centage of such SPCP clone fragments with respect to the
total number of SPCP clone fragments considering each clone
type. Table V shows the numbers of SPCP clone fragments
and cross-boundary SPCP clone fragments in three clone types.
The percentages of the cross-boundary SPCP clones are shown
in the graph of Fig. 7.

From Table V we see that the number of SPCP clone
fragments is generally the highest in Type 3 case among
all three types except QMailAdmin. Also, for three subject
systems Ctags, Carol, and Jabref we did not get any cross-
boundary SPCP clone fragments in Type 1 case. Fig. 7 shows
that for most of the subject systems except jEdit and Carol,
the percentage of cross-boundary SPCP clones is the highest
in Type 3 clones. However, the percentages of cross-boundary
SPCP clones are also considerable for the Type 2 cases. In case
of jEdit and Carol, the percentages regarding Type 1 and Type
2 cases are the highest ones respectively. Considering all the
subject systems it seems that the percentage of cross-boundary
SPCP clones is generally the lowest in Type 1 case and the
highest in Type 3 case.

Answering RQ 4. According to our investigated sub-
ject systems, the SPCP clones in both Type 2 and Type



3 cases have high possibilities of having cross-boundary
relationships. However, the proportions of cross-boundary
SPCP clones are generally very low in Type 1 case.

As Type 1 SPCP clones have lower probabilities of having
cross-boundary relationships compared to the SPCP clones in
the other two types (Type 2, and Type 3), Type 1 SPCP clones
should be considered for refactoring with higher priority.
According to our observation, we can even exclude Type
1 clones from consideration while detecting cross-boundary
SPCP clones. However, the amounts of cross-boundary SPCP
clones in the other two types are considerable. According to
our analysis, we should detect cross-boundary SPCP clones
considering these two clone types (Type 2, and Type 3) so that
we can exclude such SPCP clones from refactoring decision
and also, can keep track of them along with their relationships
for consistent updates in future.

E. Ranking of SPCP clones for tracking and refactoring
From our previous analysis it is clear that we recommend

the cross-boundary SPCP clones as the most important candi-
dates for tracking and the non-cross-boundary SPCP clones as
the most important candidates for refactoring. In our previous
study we ranked the SPCP clones for refactoring on the basis
of their similarity preserving co-changes [24]. According to
our findings in this research work, we can apply such a
ranking for refactoring the non-cross-boundary SPCP clones.
However, the cross-boundary SPCP clones should be treated
in a different way. We suggest to rank them on the basis of
the number of cross-boundary code fragments they are related
to. An SPCP clone fragment having a higher number of cross-
boundary relationships can be given a higher rank compared
to the other SPCP clone fragments having comparatively a
lower number of cross-boundary relationships. In general, the
more a code fragment is coupled, the more it is challenging
to be changed. Tracking of such a code fragment with all
of its couplings can help us change it consistently in future.
Thus, we believe that our consideration regarding the ranking
of cross-boundary SPCP clones for tracking is reasonable.
We rank the cross-boundary SPCP clones detected from each
of our candidate systems considering our proposed ranking
mechanism. The XML files containing these ranked cross-
boundary SPCP clones are available on-line4.

VI. THREATS TO THE VALIDITY

We used the NiCad clone detector [7] for detecting clones.
For different settings of NiCad, the statistics that we present
in this paper might be different. Wang et al. [36] defined this
problem as the confounding configuration choice problem and
conducted an empirical study to ameliorate the effects of the
problem. However, the settings that we have used for NiCad
are considered standard [29] and with these settings NiCad can
detect clones with high precision and recall [28], [30].

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the cross-
boundary relationships of SPCP clones. However, our candi-
date systems were of diverse variety in terms of application
domains, sizes and revisions. Thus, we believe that our findings
are important and can help us to better manage code clones by
minimizing clone refactoring effort and suggesting important
candidates for tracking.

VII. RELATED WORK
Numerous studies have been conducted regarding the de-

tection, impact analysis [9], [10], [13], [16]–[20], management
[35], refactoring [3], [14], [33], [37] and tracking [8], [12],
[21], [34] of code clones.

A number of refactoring approaches [3], [14] select clones
for refactoring on the basis of the abstract syntax tree repre-
sentation of the code base. Higo et al. [11] selected clones
for refactoring (implementing a tool called CCShaper) based
on the lexical analysis of the source code. Bouktif et al. [4]
proposed an optimal schedule for refactoring clones using
genetic algorithm. Zibran and Roy [37] proposed a conflict
aware optimal scheduling algorithm for clone refactoring using
constraint programming. Tairas and Gray [33] developed an
Eclipse plug-in, CeDAR, for the purpose of clone refactoring.

A number of techniques for clone tracking also exist.
Duala-Ekoko and Robillard [8] implemented an Eclipse plug-
in ‘CloneTracker’ for tracking clones. Jablonski and Hou [12]
developed a tool called CReN to track copy-paste activities.
Miller and Myer [21] proposed a technique for simultaneous
editing of multiple clone fragments. Toomin et al. [34] devel-
oped a clone tracking tool called Codelink.

We see that a number of studies and techniques for clone
refactoring and tracking already exist. These techniques and
tools consider all clones in a software system for refactoring
and tracking. However, our study in this paper is different and
unique in the sense that we detect only those clones that are
important for refactoring or tracking.

Previously we conducted a study [24] to identify important
clones for refactoring. We defined a particular clone change
pattern called SPCP (Similarity Preserving Change Pattern )
and proposed a mechanism for detecting clones that follow
SPCP. The non-SPCP clones are not important for refactoring
or tracking, because they either evolve independently or rarely
change during evolution. We proposed that the SPCP clones
could be important candidates for refactoring. However, an
SPCP clone fragment can have couplings with other code
fragments beyond its class boundary. Such cross-boundary
SPCP clones should not be considered for removal through
refactoring. They should be considered as important candidates
for tracking. In this research work we propose a mechanism
for automatically identifying cross-boundary SPCP clones. We
also propose a particular ranking mechanism for prioritizing
the cross-boundary SPCP clones for tracking. We perform an
in-depth empirical study on both the cross-boundary and non-
cross-boundary SPCP clones. From our empirical evaluation
we suggest that cross-boundary SPCP clones are the most
important candidates for tracking and the non-cross-boundary
SPCP clones are the most important candidates for refactoring.

In a previous study [26] we analyzed the evolutionary
couplings of clone fragments in order to predict their future co-
change candidates. However, our study in this paper is different
in the sense that here we focus on identifying clones that are
important for tracking or refactoring. Our implemented system
in this research work can automatically extract the important
clones for refactoring (non-cross-boundary SPCP clones) as
well as for tracking (cross-boundary SPCP clones). Thus, our
study is important for better management of code clones.

VIII. CONCLUSION
In this paper we perform an in-depth empirical study on

the identification of clone fragments that are important for



refactoring or tracking. We at first detect all the SPCP clones
(i.e., the clone fragments that evolved following a similarity
preserving change pattern) in a software system. We analyze
the evolutionary coupling of the SPCP clones and identify
those SPCP clones that have change couplings (i.e., evolu-
tionary couplings) with other code fragments beyond their
class boundaries. According to our consideration, these cross-
boundary SPCP clones should not be considered for removal
through refactoring, because removal of such clone fragments
might negatively affect the future evolution of the related code
fragments beyond the class boundaries. We consider these as
the most important candidates for tracking. We suggest the
non-cross-boundary SPCP clones to be the most important
candidates for refactoring. Our implemented prototype tool
can automatically identify both cross-boundary and non-cross-
boundary SPCP clones by analyzing software evolution history.

We apply our prototype tool on six diverse subject systems
written in two programming languages and detect the cross-
boundary and non-cross-boundary SPCP clones. According to
our empirical study involving rigorous manual analysis, overall
43% of the SPCP clone fragments have cross-boundary rela-
tionships. Cross-boundary SPCP clones exhibit significantly
higher change-proneness than the non-cross-boundary SPCP
clones. The reason behind this higher change-proneness is that
cross-boundary SPCP clones are generally highly coupled. As
lower coupling is always desirable in software systems, cross-
boundary SPCP clones are possible places in a software system
where we can think of possible restructuring to minimize
their coupling. We also observe that the percentage of cross-
boundary SPCP clones is generally the lowest in Type 1 case,
and the highest in Type 3 case. We believe that automatic
detection of cross-boundary as well as non-cross-boundary
SPCP clones will help us in better management of code clones
in terms of both tracking and refactoring.

REFERENCES
[1] R. Agrawal, T. Imieliski, A. Swami, “Mining association rules between

sets of items in large databases”, ACM SIGMOD, 1993, 22(2):207–216.
[2] L. Aversano, L. Cerulo, M. D. Penta, “How clones are maintained: An

empirical study”, Proc. CSMR, 2007, pp. 81-90.
[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis,

“Advanced clone-analysis to support object-oriented system refactoring”,
Proc. WCRE, 2000, pp. 98 – 107.

[4] S. Bouktif, G. Antoniol, E. Merlo, M. Neteler, “A Novel Approach to
Optimize Clone Refactoring Activity”, Proc. GECCO, 2006, pp.1885 –
1892.

[5] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 – 282.

[6] G. Canfora, M. Ceccarelli, L. Cerulo, M. Di Penta, “Using multivariate
time series and association rules to detect logical change coupling: An
empirical study”, Proc. ICSM, 2010, pp. 1 – 10.

[7] J .R. Cordy, C.K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool
Demo, 2011, pp. 219 – 220.

[8] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code
Clone Management”, Proc. ICSE, 2008, pp. 843 – 846.

[9] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”,
Proc. ICSE, 2011, pp. 311 – 320.

[10] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 – 74.
[11] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, “Refactoring support based

on code clone analysis”, LNCS, 2004, 3009: 220 – 233.
[12] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code

clones and renaming identifiers consistently in the IDE”, Proc. Eclipse
Technology Exchange at OOPSLA, 2007.

[13] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485 – 495.

[14] N. Juillerat, B. Hirsbrunner, “An algorithm for detecting and removing
clones in Java code”, SeTra, 2006.

[15] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard, “Blending Con-
ceptual and Evolutionary Couplings to Support Change Impact Analysis
in Source Code”, Proc. WCRE, 2010, pp. 119 – 128.

[16] M. Kim, V. Sazawal, D. Notkin, G. Murphy, “An empirical study on
code clone genealogies”, Proc. FSE, 2005, pp. 187 – 196.

[17] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57 – 66.

[18] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC,
2011, pp. 28 – 33 .

[19] A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC,
2010, pp. 65 – 72.

[20] A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227 – 236.

[21] R. C. Miller, B. A.Myers. “Interactive simultaneous editing of multiple
text regions”, Proc. USENIX 2001 Annual Technical Conference, 2001,
pp. 161 – 174.

[22] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed
Method Groups: A Case Study on Open Source Systems”, Proc. CAS-
CON, 2012, pp. 205 – 219.

[23] M. Mondal, C. K. Roy, K. A. Schneider, “Comparative Stability of
Cloned and Non-cloned Code: An Empirical Study”, Proc. SAC, 2012,
pp. 1227 – 1234.

[24] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones
for Refactoring through Mining Association Rules”, Proc. CSMR-WCRE,
2014, pp. 114 – 123.

[25] M. Mondal, C. K. Roy, K. A. Schneider, “Insight into a method co-
change pattern to identify highly coupled methods: An empirical study”,
Proc. ICPC, 2013, pp. 103 – 112.

[26] M. Mondal, C. K. Roy, K. Schneider, “A Fine-Grained Analysis on the
Evolutionary Coupling of Cloned Code”, Proc. ICSME, 2014, 10 pp. (to
appear).

[27] D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A System-
atic Review”, Information and Software Technology, 2013, 55(7): 1165
– 1199.

[28] C. K. Roy, J. R. Cordy, “A mutation / injection-based automatic
framework for evaluating code clone detection tools”, Proc. Mutation,
2009, pp. 157 – 166.

[29] C. K. Roy, J. R. Cordy, ”NICAD: Accurate Detection of Near-Miss In-
tentional Clones Using Flexible Pretty-Printing and Code Normalization”
Proc. ICPC, 2008, pp. 172 – 181.

[30] C. K. Roy, J.R. Cordy, R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
SCP, 2009, 74 (2009): 470 – 495.

[31] C. K. Roy, M. F. Zibran, R. Koschke,“The vision of software clone
management: Past, present, and future (Keynote paper)”, Proc. CSMR-
WCRE, 2014, pp. 18 – 33.

[32] R. K. Saha, C. K. Roy, K. A. Schneider, “An Automatic Framework for
Extracting and Classifying Near-Miss Clone Genealogies”, Proc. ICSM,
2011, pp. 293 – 302.

[33] R. Tairas, J. Gray, “Increasing clone maintenance support by unifying
clone detection and refactoring activities”, Information and Software
Technology, 2012, 54(12):1297 – 1307.

[34] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with
linked editing”, Proc. IEEE Symposium on Visual Languages and Human
Centric Computing, 2004, pp. 173 – 180.

[35] R. Venkatasubramanyam, S. Gupta, H. K. Singh, “Prioritizing Code
Clone Detection Results for Clone Management”, Proc. IWSC, 2013,
pp. 30 – 36.

[36] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for better configura-
tions: A rigorous approach to clone evaluation”, Proc. ESEC/FSE, 2013,
pp. 455 – 465.

[37] M. F. Zibran, C. K. Roy, “Conflict Aware Optimal Scheduling of
Prioritised code clone refactoring”, IET Software, 2013, pp. 167 – 186.

[38] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining version
histories to guide software changes”, Proc. ICSE, 2004, pp. 563 – 572.


