
Interactive Visualization of Bug Reports using Topic
Evolution and Extractive Summaries

Shamima Yeasmin Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

shy942@mail.usask.ca, {chanchal.roy, kevin.schneider}@usask.ca

Abstract—Software bug reports are important project artifacts
that evolve throughout the life of a software project. Software
bugs are issues that are reported by users when these issues
hinder their work. Software projects evolve over time as bugs
are addressed and new features are added. Managing bugs can
be a significant challenge as a project manager generally needs
to be aware of all the bug reports for the current version, and
this can be even more challenging when the number of bug
reports becomes large. It is preferable that a developer new
to a project improves her knowledge with the project along
with the bug reports during working on it, which is likely to
help her avoid or handle the reported issues. In this paper, we
propose a prototype that assists developers review a project’s
bug reports by interactively visualizing insightful information
regarding the bug reports using topic analysis. In addition, in
order to reduce developers’ time and efforts when studying a
bug report, the proposed prototype also provides an extractive
summary visualization of each bug report. In this research, it is
shown that our proposed prototype performs better in terms of
precision, recall, and F-measure than a baseline approach that
uses time-sensitive keyword extraction.

Keywords—Bug report, Topic evolution, Summarization, Inter-
active visualization

I. INTRODUCTION

Software bug reports are an important source of infor-
mation for software development and maintenance. During
resource allocation, a project manager distributes time and
effort for each project task and assigns appropriate developers.
Estimating resource requirement is a time-consuming task that
also involves studying a large number of previously filed bug
reports. The idea is to determine which part of a given project
is more problematic and thus needs more attention. The task is
trivial when there are only a few bugs reported. However, the
number of bugs typically increases over time, and it becomes
almost impossible for a manager to analyze such a huge
collection of bug reports. When a developer starts working
on an existing project, it is preferable that she first strengthens
her knowledge with the project along with the bug reports,
which also costs development time and effort. Thus, analyzing
a number of bug reports manually is highly unproductive, and
an automated tool support is likely to benefit in this regard.
In this paper, we propose a prototype that provides insightful
information derived from a collection of bug reports as well
as visualizes the extractive summary of a bug report.

In our research, we perform two major visualization tasks
on software bug reports. The first shows topic evolution over
time derived from a collection of bug reports. However, We
applies topic modeling on a collection of bug reports and

produces a visual topic-based analysis. Topic modeling is a ma-
chine learning technique that provides information regarding
the hidden structure of a collection of documents [1]. Topics
are constructed statistically by identifying co-occurring words
and summarizing key concepts of a document collection. Topic
modeling on bug reports instantly provides an overview about
the different parts of a project containing significant number
of bugs, and the project managers can take effective steps in
resource allocation. By inspecting topic evolution over time
in a time-windowed manner, a developer can be aware of the
frequent bugs occurred in the past.

The second task visualizes the extractive summary of a
bug report when requested by a developer. We create the
extractive summary of a bug report using the hurried bug
summarization technique proposed by Czarnecki et al. [2].
However, Extractive summaries are often hard to understand
as the sentences are taken out of their context in the bug
reports, and thus the sentences may lose their consistency.
In this situation, if a summary sentence can be revealed
and visualized in the bug report itself with different colour
coding, the developer can further investigate the context (i.e.,
the sentences that precede or follow the summary sentence),
which influences the meaning of the sentence. We provide
an interactive visualization of a bug report summary, to aid
a developer view the original bug report context. Thus, a
project manager or a developer can study a bug report more
thoroughly but with less effort. In this paper, our contributions
include: (i) A topic evolution visualization for bug reports,
which is a convenient way to help developers rather than
using only textual information. (ii) A detailed drill-down from
a topic’s time-segments to its related software bug reports,
(iii) A searching facility to help developers explore related
issues regarding a given topic-keyword, and (iv) An interactive
visualization of a bug report summary that conveniently links
summary sentences to their context. We collect 3914 bug
reports from Eclipse Ant, and analyze them with our system.
We also evaluate the quality of time-segment keywords of top
five topics and it is shown that our system outperforms term
frequency based system in case of precision, recall, and F-
measure.

II. RELATED WORK

To represent the evolution of bugs D’Ambros et al. [4]
propose a visualization technique called System Radiography
indicating which are the most problematic parts of the system.
They also provide useful information regarding the life cycle
of a bug by another visualization technique, Bug Watch. A
different visualization technique is proposed by Dal Sassc and



Fig. 1: Schematic Digram of Topic Evolution Visualizer

Lanza [3] to represent a fine-grained view of a bug report.
To analyze bug tracking system, they also propose a visual
analytic platform, called in*Bug. Hora et al. [6] present a tool,
BugMaps to map reported bugs to defects in the classes of
object oriented systems and provide many interactive visual-
izations for decision support. The main differences between
those work and our prototype are that (i) for visualization of
bugs, we are using topic evolution over time, but D’Ambros
et al. [4] use matrix-based representation, Dal Sassc and Lanza
[3] propose a web-based visual analytics platform, and Hora
et al. [6] utilize Distribution Map and (ii) that none of those
work visualizes bug report extractive summaries which we do.

Martie et al. [7] apply LDA topic modeling on a large
document consisting of Android developers’ discussion data to
analyze the development of the Android open source project.
A limitation of this work is that although they consider
discussion trends over time they use the same associated
keywords throughout. Topic evolution seems to be meaningless
to developers if a topic’s associated keywords do not change
over time. To mitigate this problem in our work, for each time-
window we extract frequently used keywords associated with
each topic, which we refer as time-sensitive keywords. Thus,
our approach is more time specific than theirs.

In the field of information visualization, Havre et al. [5] use
a symmetric river metaphor to represent thematic variations
over time in the context of a time-line and corresponding
external events. TIARA (Text Insight via Automated Respon-
sive Analytics) [8] conveys far more complex text analysis
results than Havre et al. [5] by showing detailed thematic
content in keywords. TIARA is a visual analytic system
that shows the content evolution of topics over time [8].
They extract topics from email data and patient records, and
generate time-sensitive keywords to represent topic evolution.
The differences between their tool and our prototype is that (i)
we are demonstrating topic evolution of software bug reports
rather than email data with some variations in techniques and
(ii) we are also visualizing extractive summaries which they
did not.

In this research, besides showing topic evolution of bug
reports, we also applied the hurried bug summarization ap-
proach proposed by Czarnecki et al. [2] to create summaries
of bug reports and then visualize them in a convenient way
to increase the understandability for the developer. To best of
our knowledge, no visualization has yet been done for bug
report extractive summaries. Thus, we are the first proposing
this kind of visualization.

Fig. 2: Schematic Diagram of Bug Report Summarizer

III. PROPOSED APPROACH

We propose a standalone prototype, which requires the
repository of bug-reports downloaded from official bug-
repositories such as Bugzilla1. We divide our proposed pro-
totype in two different parts: Part I is related to the features,
which are based on topic modeling and Part II creates extrac-
tive summaries of bug reports and visualizes them.

We further divide the topic evolution part (Part I) into two
individual phases: analytics and visualization. In the analytics
phase, we collect bug reports from a popular bug tracking
system, perform preprocessing such as stemming, stop word
removal and so on, then we apply LDA topic modeling on the
preprocessed data utilizing Gibbs Sampling to extract topics.
We utilize JGibbLDA2, which is a Java implementation of
LDA, to apply topic modeling on our dataset. Then we filter
keywords per topic and finally extract time-sensitive keywords
for each time interval. In the visualization phase, we visualize
topic evolution with the help of a popular Java chart library
JFreeChart3, where the X-axis represents time and the Y-
axis represents the number of bugs containing that topic. We
implement our prototype in Java and perform experiments
using Mac OS X 10.8. Our proposed system architecture for
part I is shown in Fig. 1.

In the summary visualization part (Part II) shown in Fig. 2,
we create bug report summaries utilizing methods described in
Czarnecki et al. [2]. Cosine similarity is a measure to determine
the lexical similarity of two sentences. In our system, we
calculate cosine similarity of each sentence with all other
sentences and with the title of the bug report. If a sentence is
evaluated by any other sentence, then a directed link is created
among them, which is referred to as the evaluation relationship.
We utilize twitter sentiment analysis API4 to determine the

1https://bugs.eclipse.org/bugs/
2http://jgibblda.sourceforge.net
3http://www.jfree.org/jfreechart/
4http://help.sentiment140.com/api



Fig. 3: Topic Evolution Example (Topic 3: Tool Launch and
Configuration)

sentiment of each sentence and then compute the evaluation
relationship score for each sentence and finally combined them
to rank the sentences of a given bug report [2]. Furthermore,
we visualize the bug report summary using different colour
combinations to indicate the summary sentences from the
context to aid the developer.

IV. PROPOSED VISUAL DESIGNS

One of the main objectives of our proposed prototype is to
provide insightful information to developers through software
bug reports as they evolve over time. That is why, we design
our prototype so as to provide the highest possible information
interactively. Currently, our visualization prototype: (i) gener-
ates as well as shows topic evolution of each topic automat-
ically, (ii) then for further inspection it retrieves all software
bug reports associated with a given topic along with their Bug
Report IDs and titles, (iii) provides a searching option so that
a developer can search bug reports by keywords associated
with a topic, and (iv) visualizes an extractive summary of each
bug report. We utilize an area-graph based visual layout to
represent topic evolution (i.e., content changes over time as in
Fig. 3). Our prototype generates the visual summarization of
each topic individually. This area layout is depicted by set of
keywords clouds in order to show the content evolution over
time. The height of the area graph at each time-segment (here,
a year) encodes the strength of the topic for that point (Fig. 3).
Strength is calculated by the number of software bug reports
containing that topic at the certain point. The functionality
of our visualization prototype is described in the following
subsections.

A. Topic Evolution of a Collection of Bug Reports: Once
a developer selects a dataset (i.e., a collection of bug reports)
the system automatically applies topic modeling to it. After
performing some analytics on the produced topic model, the
prototype depicts the topic evolution of several topics derived
from the dataset. From this visualized output as in Fig. 3 and
Fig. 7, developers can analyze which type of topics are evolved
most of the time and associated with most of the bugs.

B. Drilldown Inspection in Context: In LDA topic
modeling, keywords that are assigned to a topic are extracted
automatically. Therefore, two situations may occur: (i) there
might be one or more associated keywords are not important

Fig. 4: Topic Drill Down in the Context

Fig. 5: Search by Keywords

enough to understand the topic, and (ii) the developer may
not understand the topic-keywords relationships. Therefore,
in these circumstances to help the developer to understand a
topic, our prototype provides the opportunity to drilldown from
the topics to the document collection level. The only way to
gain more knowledge about the topic-keywords relationships
is by studying the context in the document collection, from
which they have come. So, if the developer requests for more
information regarding a topic, then all bug reports IDs and
titles associated with that topic will be shown, as is depicted
in Fig. 4. In this way the context of the bug reports will aid
the developer in gathering enough knowledge to identify that
topic precisely.

C. Searching by keywords The searching facility is pre-
sented in Fig. 5. A topic is associated with several keywords.
A developer may be interested in inspecting any of them.
Consider a scenario where a developer finds a topic described
by keywords such as ‘launch’, ‘tool’, ‘view’ and so on as in
Fig. 5. She may be curious to know which type of ‘tool’ related
bugs are mentioned by this topic. To help her we provide a
search option, where the developer is able to perform a search
on the entire bug report collection for a keyword. In Fig. 5, a
search result is shown containing bug report IDs and titles for
the keyword ‘tool’.

D. Summary Visualization The visualized bug report
summary is presented in Fig. 6. During designing the visual
summary of a bug report, we kept two things in mind: first,
the length of the summary should be significantly smaller than
the original bug report so that the developer will have fewer
sentences to study; and second, the visualization must be done
in a way that can fulfill a developer’s intention for reading it
properly. Therefore, to create a good summary we follow the
approach proposed by Czarnecki et al. [2] which is automatic



Fig. 6: Bug Report Summary Visualization

and extractive. We also restrict the number of sentences of
our summary to ten. In our proposed prototype, the visualized
summary is represented along with the visualized original
bug report to the developer. Each sentence in the summary
is coloured with a unique colour and the same sentence in
the original bug report is coloured by the same colour. This
kind of visualization can help the developer to understand
the summary from the context. As the summary we have
created is extractive, sometimes it may be difficult for the
developer to gather the desired idea from it. That’s why, when
the summary sentences are also highlighted in the original bug
report utilizing the same colours, the developer is able to study
the sentences that precede and follow the summary sentences
in original bug report, which can aid her in understanding
summary sentences in context.

V. AN EXAMPLE CASE STUDY

To examine the effectiveness of topic evolution, let us
assume a scenario where a novice developer has started work-
ing on Eclipse-Ant, so at the beginning she wants to give a
quick look at its bugs. At present, Eclipse-Ant contains 3914
bug reports and definitely studying all of them would take a
long time. Therefore, in this situation we are providing our
prototype that can aid her to more conveniently and quickly
dig deeper into a large collection of bug reports including the
bug reports from the prevision versions. From our prototype
we can see 20 topics as output, each of which have 10
keywords. To keep this discussion simple, an example of the
top most five topics together with their associated keywords
are provided in Table I. We see that the 1st, 2nd and 3rd
topics are about ‘Plug in’, ‘Editor’ and ‘Tool’ respectively.
Furthermore, from the visualization of a topic such as in
Figure 3, she can explore when a topic peaked. However,
If we search with these keywords both in Bugzilla and our
prototype; Bugzilla returns less bug reports compared to our
proposed prototype for the same queries as shown in Table II.
To investigate the reason behind this, we randomly as well as
manually check results both from our proposed prototype and
Bugzilla. Here, in Bugzilla almost all retrieved bug reports
contain searching keyword in their titles, because Bugzilla
produces search results based on bug report titles only, whereas
we consider the contents of the bug report in addition to the
title during searching.

TABLE I: An Example Topic with Keywords and Labels

No. Topic Label Keywords

1 Plugin Support require user issu possible feature
support realli gener plugin plan

2 Editor Outline editor xml view outlin content
action elem open docum associ

3 Tool Launch and Configuration launch tool dialog configur view
extern config select menu button

4 Version log reproduce memori version view instal
window attach open log time

5 Page Preference tab page prefer buttoon classpath
dialog home runti default pref

TABLE II: Search Results in terms # of bug reports retrieved

Keyword Bugzilla Proposed Tool
plugin 58 577
editor 371 702
tool 469 860
log 191 518
tab 130 533

TABLE III: # of Bug Reports in Eclipse-Ant from 2001 to
2014

Year # Bug Reports Year # Bug Reports
2001 17 2008 114
2002 484 2009 510
2003 776 2010 90
2004 728 2011 128
2005 479 2012 71
2006 256 2013 91
2007 155 2014 15

In our scenario, from Table I, the novice developer can
gather an idea regarding the most occurring problems (i.e.,
bugs) in Eclipse-Ant, which are related to ‘plug-in’, ‘editor’,
‘tool’, ‘log’ and so on. To dig deeper she can also search
by those keywords as in Fig. 5, and can have a clear idea
about how many bug reports are associated with each top topic.
Below are some questions we can use our prototype to address
for the above scenario: (i) Which month/year was the most
crucial period for Eclipse-Ant bugs?; (ii) What was the most
active topic in a given year such as 2003? and (iii) What was
discussed in the most active topic? and so on.

To answer the first question we need to investigate the top
most topics, where they are in their peak. Here, we can see
that the year 2009 is the most active year for Eclipse-Ant bug
reports for the top most five topics, two of them, topic-3 and
topic-4, are depicted in Fig. 3 and Fig. 7 respectively. Then
2003 is the second most active year for this bug dataset. We
also can relate it to the number of bug reports of Eclipse-Ant
in each year from 2001 to 2014 as presented in Table III. Here,
although years 2003 and 2004 have the highest number of bug
reports, the top-most five topics are not that active in these
two year, compared with year 2009. To address the second
question, we notice that in 2003 the top five topics (Table I)
have the following number of bug reports, respectively: 63,
11, 88, 26, and 25. That means topic-3, “Tool Launch and
Configuration”, is the most active topic during 2003. It is
also observed from Table I that the most crucial topic, i.e.,
topic-3 contains keywords such as ‘launch, ‘tool’, ‘dialog’,
‘configur’, ‘view’ and so on. We can verify it with searching
results presented in Table II, where we can see that the highest
number of bug reports are retrieved against keyword ‘tool’ both
from Bugzilla and our proposed tool. If requires she is able to



Fig. 7: Topic-4 (Version log)

TABLE IV: Precision, Recall and F-measure for top 5 Topics

Topic TF-Based System Proposed Tool
No. Precision Recall F-measure Precision Recall F-measure
1 0.1613 0.2 0.1786 0.44 0.66 0.5280
2 0.1711 0.26 0.2063 0.5231 0.68 0.5913
3 0.1228 0.14 0.1308 0.5263 0.60 0.5607
4 0.2154 0.28 0.2435 0.5555 0.60 0.5769
5 0.2308 0.3 0.2609 0.5926 0.64 0.6154

Mean 0.1803 0.2360 0.2040 0.5275 0.6360 0.5745

study summaries of bug reports as shown in Figure 6, which
will also reduce her time and effort as she no longer needs to
read the whole bug reports.

VI. EXPERIMENT & DISCUSSION

We divide our experiment into two sections: We measure
the quality of time-sensitive keywords in terms of precision,
recall, and F-measure, and we do a comparative analysis
between a visualized and non-visualized bug report summary.

Evaluation of the Quality of Time-Sensitive Keywords:
To assess the quality of the time-sensitive keywords, we
compute mean precision, recall and F-measure of each topic in
all of their time-segments, which are shown in Table IV. We
need to check whether we can recover the original keywords
of a topic by combining the keywords associated with each
time segment. However, We consider a Term Frequency-Based
(TF-Based) system as the baseline system for comparing the
quality of time-sensitive keywords with our system. For each
of the top five topics, we retrieve the top 10 keywords in each
time segment both for our proposed prototype and for the TF-
Based system. Then, we create a keyword union by combining
all keywords retrieved from all of it’s time segments, and
separately compare each keyword union with the top 50
keywords derived by the LDA topic model for each topic.
Table IV represents that in average our proposed prototype
shows 53% precision, 64% recall and 57% F-measure and thus,
outperforms TF-Based systems in all measures. It implies that
our selected time-sensitive keywords for each topic segment
are aligned with original topic-keywords far more than a TF-
Based system.

Comparative Analysis of Visualized form of Bug Report
Summary: Creating an extractive summary automatically in
a consistent form is a difficult task. One approach is to
determine a convenient way of providing contextual help to

the developers, which we do. We conducted an ad-hoc mini
user study with four graduate students of Computer Science
Department at University of Saskatchewan, to see how well
users accept the visualized bug report summary. In order
to evaluate the effectiveness we designed a task of finding
duplicated bug reports. Here, the participants were asked to
identify duplicated bugs of a given new bug from a recommend
list of existing candidate bugs. They were provided with
either visualized or non-visualized bug report summary of
each candidate bug and asked to study them during identifying
duplicated bugs. The participants responded positively saying
that such visualized summary is better than the non-visualized
summary in gathering information from a bug report quickly.

Some comments are as follows: this seems like an innova-
tive design, which has introduced to bug report management;
it reduces my time and effort a lot. However, they also pointed
some useful suggestions such as: the most important keywords
could be highlighted both in summary and original bug report;
a hyperlink capability into bug report summary sentences to
the sentences in the original bug reports could be included.

VII. CONCLUSION AND FUTURE WORKS

We developed a number of visualizations to provide in-
sightful information by employing topic analysis on a collec-
tion of bug reports. We provided information regarding topic
evolution over time, searching by keywords, and visualizing
bug report summaries. We found that topic evolution can
aid either a developer or a project manager by showing
important information. We also measured the precision, recall
and F-measure of time-sensitive keywords and found that the
approach outperforms a term frequency-based system.

The nature of our proposed prototype makes it very difficult
to evaluate. Although the current evaluations and the user
study show promise of the approach, we plan to conduct a
fully-fledged user study with industry participants in order to
fully explore the capabilities and limitations of the proposed
approach. In this work, we used Eclipse bug reports for
evaluating the approach. Although this should be enough to
show the effectiveness of the prototype, we plan to evaluate it
with bug reports from different domains. Furthermore, we plan
to include more interesting and useful visualization features
such as bug report duplication and localization. The user study
with industry participants might suggest us more features to
be included in the prototype.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. J. Mach. Learn.
Res., 3:993–1022, 2003.

[2] K. Czarnecki, Z. Malik, and R. Lotufo. Modelling the Hurried Bug Report Reading
Process to Summarize Bug Reports. In Proc. ICSM, pages 430–439, Sept 2012.

[3] T. Dal Sassc and M. Lanza. A Closer Look at Bugs. In Proc. VISSOFT, pages 1–4,
Sept 2013.

[4] M. D’Ambros, M. Lanza, and M. Pinzger. ”A Bug’s Life” Visualizing a Bug
Database. In Proc. VISSOFT, pages 113–120, June 2007.

[5] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualizing Thematic
Changes in Large Document Collections. Visualization and Computer Graphics,
IEEE Transactions on, 8(1):9–20, 2002.

[6] A Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M.T. Valente, and J. Martins.
Bug Maps: A Tool for the Visual Exploration and Analysis of Bugs. In Proc. CSMR,
pages 523–526, March 2012.

[7] L. Martie, V.K. Palepu, H. Sajnani, and C. Lopes. Trendy Bugs: Topic Trends in
the Android Bug Reports. In Proc. MSR, pages 120–123, June 2012.

[8] F. Wei, S. Liu, Y. Song, S. Pan, X. M. Zhou, W. Qian, L. Shi, L. Tan, and Q. Zhang.
TIARA: A Visual Exploratory Text Analytic System. In Proc. KDD, pages 153–162,
July 2010.


