
A Change-Type Based Empirical Study on the
Stability of Cloned Code

Md Saidur Rahman Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Canada

{saeed.cs, chanchal.roy}@usask.ca

Abstract—Clones are the duplicate or similar code blocks
in software systems. A large number of studies concerning the
impacts of clones on software systems mainly focus on the
frequency of changes to evaluate stability, consistency in evolution
and introduction of bugs. Although it is obvious that not each
type of changes has equal impact on software systems, none of the
existing studies take the types of changes and their significance
into account during comparative evaluation of stability of cloned
and non-cloned code. This paper presents an empirical study on
the comparative stability of cloned and non-cloned code from the
perspective of different change types. Changes from successive
revisions are extracted and classified using ChangeDistiller which
employs Abstract Syntax Tree (AST) differencing of the successive
revisions of source code and assigns the corresponding level
of significance to each of the classified changes. We detect
exact (Type-1) and near-miss (Type-2 and Type-3) clones using
the hybrid clone detection tool NiCad. Extracted and classified
changes and clone information are then analyzed to compare
the stability of cloned and non-cloned code from three different
perspectives: types of clones, types of changes with respect to
the significance of changes, and size and extent of evolution of
the systems. Our study on seven open-source Java systems with
diversity in their size, length of evolution and application domain
shows that changes are more frequent in cloned code than in non-
cloned code and Type-1 clones are comparatively more vulnerable
to the stability of the systems. Therefore, cloned code is less stable
than non-cloned code suggesting that cloned code is likely to pose
more maintenance challenges than non-cloned code.

Keywords—Code Clones, Clone Evolution, Change Significance,
Change Frequency, Stability

I. INTRODUCTION

Code reuse by copy-paste is a common practice in software
development, and as a result software systems often have
sections of code that are identical or similar, called software
clones or code clones. Clones constitute a significant fraction
of code (between 7% and 23% [1] or sometimes even 50% [2]).
Regardless of the intentional and unintentional reasons behind
code cloning, the impact of clones on software maintenance
has been a great concern [3].

Although it is believed that code cloning speeds up software
development and facilitates the reuse of mature and tested
code, clones are often accused of introducing maintenance
challenges by making consistent changes more difficult leading
to introduction of bugs [4], propagation of existing bugs and
thus resulting in increasing maintenance efforts [5]. Having
both positive and negative impacts on software maintenance,
code cloning has been under significant research focus towards
the evaluation of the impacts of clone on software maintenance
and evolution. Some of the existing studies concluded in favour
of clones suggesting that clones are not harmful [6], [7], [8],

[9], rather, cloning can be beneficial to software development
[10]. A good number of studies on the other hand concluded
that clones have negative impacts on software maintenance and
evolution [4], [5], [7], [11].

One of the well-studied perspectives of the evaluation of
the comparative impacts of cloned and non-cloned code on
software maintenance and evolution is the stability. Stability
measures the extent to which cloned and non-cloned code
regions remain unchanged. Code regions that change less
frequently are more stable and thus require less maintenance
effort. Krinke [8] measured the comparative stability of clone
and non-clone code by measuring the volume of code change,
i.e., by counting the number of lines added, deleted and changed
to clone and non-clone code. His study concludes that clone
code is more stable than non-clone code. Göde and Harder
[12] extended Krinke’s study [8] with token-based incremental
clone detection tool and experimented with different settings of
clone detection parameters, clone types and change operations.
Their study agrees with the findings of Krinke’s study. Krinke’s
other study [9] measures stability in terms of the comparative
age of the cloned and non-cloned code based on the average
last change date. This study agrees with his previous findings
that cloned code is more stable. Hotta et al. [7] measured
the modification frequency of cloned and non-cloned code to
evaluate their comparative stability. This study concludes that
cloned code is less frequently modified than non-cloned code,
i.e., cloned code is more stable. Lozano and Wermelinger [5],
[11] conducted studies on assessing the impacts of clones and
they concluded that clones are harmful for software maintenance
because they often increase the maintenance efforts and also
they are vulnerable to the stability of the software systems.
Their findings disagree with the findings of Hotta et al. [7],
Krinke [8] and Göde and Harder [12].

Because of these contradictory findings in earlier studies
Mondal et al. [13], [14] carried out a comprehensive stability
analysis within a uniform evaluation framework considering
the existing metrics (mostly taken from [7], [8], [9]) and their
proposed metrics to measure stability. Their study concluded
that a firm conclusion cannot be drawn on the stability of
cloned and non-cloned code, rather, the comparative stability
varies with programming languages, types of clones and overall
system development strategies. However, none of the metrics
used or proposed in their study consider actual syntactic change
types and the different levels of the significance of changes.

As it is obvious that different types of changes have different
impacts on change propagation, it is important to consider
the distinct change types in evaluating the impacts of clones

on maintenance. Considering the differences in the impacts
of different change types, this study carries out an empirical
evaluation of the impacts of clones on software maintenance.
In particular, we investigate the frequency of changes in cloned
and non-cloned code considering fine-grained change types
and their levels of significance. In our empirical study, we
consider a comprehensive taxonomy of source code change
proposed by Fluri and Gall [15]. This taxonomy assigns a
level of significance to each type of source code change where
significance is defined as how strong impact a change may
have on other source code entities. In this taxonomy there are
four different levels of change significance: low, medium, high,
crucial where low is the lowest level and crucial is the highest
level of significance respectively.

We extract fine-grained changes from all successive revi-
sions of software systems using ChangeDistiller [15] which
employs Abstract Syntax Tree (AST) differencing between
two consecutive revisions of source code files. One important
advantage of the AST-based code differencing over UNIX diff
is that AST-based differencing takes syntactic context of the
code change into account while diff considers code merely as
text. In addition, the results of diff might be sensitive to the
formatting of the source code. AST-based code differencing on
the other hand gives more fine grained changes of source
code artifacts [15]. Extracted and classified changes from
ChangeDistiller are mapped to the source code entities and
stored for further analysis. We detect both exact (Type-1) and
near-miss (Type-2 and Type-3) clones of all the revisions of
the systems using the hybrid clone detection tool NiCad [16],
[17]. The classified changes are then mapped to the cloned and
non-cloned code. We then measure the frequency metrics which
we define for assessing the comparative impacts of clones on
software maintenance with respect to the levels of significance
of changes to cloned and non-cloned code.

In particular, we evaluate the comparative stability of
cloned and non-cloned code with respect to different levels of
significance of changes by answering the following research
questions:

RQ1 To what extent different types of clones exhibit different
stability scenarios?

RQ2 Do the changes of different levels of significance show
different stability scenarios?

RQ3 Is the stability of cloned and non-cloned code system
dependent?

Changes of higher level of significance are likely to have higher
change impact. Therefore, the higher the frequency of changes
of a particular level of significance in the code, the higher
maintenance challenges it is likely to pose during evolution.

From this empirical study considering fine-grained change
types and their different levels of significance we have the
following findings:

(i) Cloned code is less stable than non-cloned code and
Type-1 clones are comparatively more vulnerable to the stability
of the system. (ii) Stability of cloned code is mostly affected
by the changes of lower (low, medium) levels of significance.
(iii) System size and length of evolution do not have significant
effects on stability. Moreover, our fine-grained analysis gives
important insights into the better management of clones.

The rest of the papers is organized as follows: Section II
outlines the important motivation of the study. Section III
briefly describes the taxonomy of changes used in this study.
Section IV represents the experimental settings and steps used in
the study including the subject systems used, change extraction
and classification procedure, clone detection and the metrics
we measure. Section V represents the experimental results and
analysis. Threats to the validity of the study is represented
in section Section VI. Section VII discusses related works
followed by the conclusion in Section VIII.

II. MOTIVATION

This study is inspired by two previous studies by Krinke
[8] and Hotta et al. [7] both of which measure the comparative
stability of cloned and non-cloned code. Krinke defines insta-
bility of cloned and non-cloned code in terms of the number of
added, deleted and changed lines with respect to total number
of lines in cloned and non-clone code respectively. Higher
value of instability indicates that the code region is less stable
i.e., changes more frequently. Although his method considers
the volume of change in terms of lines of code modification
to measure instability, it does not consider the actual syntactic
change types.

Hotta et al. [7], on the other hand, measure the stability of
cloned and non-cloned code in terms of modification frequency.
Their approach counts the number of regions (blocks of
consecutive lines of code) modified in cloned and non-cloned
code. The average modification count per revision in cloned
and non-cloned code are then used to measure the modification
frequency by scaling the modification count to the ratio of
cloned and non-cloned LOC (lines of code) to the total LOC.
The less the modification frequency, the more stable the code
region is. One of the major limitations of this approach is
that it ignores the volume of change (as opposed to Krinke
[8]), neither does it consider the types of actual syntactic
changes. This is likely to affect the accuracy and reliability of
the stability results. Thus, the measure of the stability of the
code should consider the volume of change. And it is reasonable
to assume that this stability measured in terms of frequency
of changes represents the impact of changes on maintenance
more precisely only when the actual syntactic types of changes
are taken into consideration. This is because different types of
syntactic changes have different impact (likelihood of affecting
other entities) from the perspective of change propagation [15].

To have a deeper understanding of the aforementioned problems
let us consider the two example change scenarios as shown
in Figure 1 and Figure 2 as observed in revision 43 of
DNSJava. In the first case, the method fromString() in
file DNS/Record.java has two changes from revision 42
to revision 43. The first change is a parameter type change
(StringTokenizer to MyStringTokenizer) which is
of crucial significance because all the callers of the method need
the corresponding parameter type change to be propagated. The
second change is of type statement update with low significance
as the effect of the change is local to the method.

By investigating the clone results and the source code,
we see that this method has three Type-1 (exact) clones in
files org/xbill/DNS/dnsRecord.java, org/xbill
/DNS/Record.java and DNS/dnsRecord.java. All of
the three clones have been updated consistently with the

Fig. 1: Changes in method fromString() in file DNS/Record.java in revision-43 of DNSJava

Fig. 2: Changes in method toStringNoData() in file DNS/Record.java in revision-43 of DNSJava

two above changes. Again, the method fromString()
is called by the method doAdd (dnsMessage query,
StringTokenizer st) in update.java and the
method doAdd() is again called by the method main()
in update.java. So, the first change introduces another
parameter type change in doAdd() which is of crucial
significance and also it requires one statement update in the
method doAdd(). Therefore, the first change introduces three
changes (crucial) to the three clones and one parameter change
(crucial) and one statement update to the caller doAdd(), and
one statement update change (low) to the main() method.
So, the total number of changes triggered by the first change
is six (3+2+1) while the second change introduces only three
(1+1+1) changes of low significance to the three clones. Based
on the depth of method call chain, the impact of changes can be
even more in some other cases. This example makes it evident
that not all changes pose equal challenges in the maintenance
process.

Again, in Figure 2 method toStringNoData() in
DNS/Record.java has three changes in revision 43. All
these changes are statement reordering in the method body
with low significance because the impact of this type of change
is local to the changed method. However, by investigating
clones and source code we see that these changes have
been consistently propagated to three cloned methods of the
method toStringNoData() in source files org/xbill/
DNS/Record.java, DNS/dnsRecord.java and org/
xbill/DNS/dnsRecord.java. Thus, each of the changes

in toStringNoData() introduces one corresponding
change in the three Type-1 clone fragments. Now, we see that
although the method toStringNoData() has more changes
(three) than the number of changes (two) in fromString()
in the first example, method fromString() poses higher
maintenance cost than toStringNoData() as it introduces
more changes due to having the change with higher levels of
significance. Thus, from the above examples we could draw
the following conclusions:

(i) As different change types have different levels of
significance, i.e., different degrees of likelihood of
affecting other entities, the significance levels of
different types of code changes should be taken into
account while comparing the impacts of changes in
cloned and non-cloned code on software maintenance.

(ii) Because of having different levels of significance,
changes of different types should be considered as
separate as possible while measuring the frequency
of changes in code (i.e., stability) in order to have
more precise results of comparative evaluation of the
stability of cloned and non-cloned code.

Although the existing studies give important insights
regarding the impacts of clones on software maintenance,
one important limitation is that none of the existing studies
addressed the two important points mentioned above. Thus,
the existing stability metrics [7], [8] have limitations from the
perspectives of reliability and precision.

Our proposed study incorporates the actual change types
and their levels of significance in measuring the frequency of
changes in cloned and non-cloned code. Our study considers
the type-wise relative volume of changes and their frequencies
in cloned and non-cloned code for the comparative stability
analysis. This enables us to comparatively evaluate the impacts
of clones on maintenance in terms of stability from a more
reliable and precise point of views.

III. TAXONOMY OF SOFTWARE CHANGE AT METHOD
LEVEL

Software systems evolve through different kinds of changes.
Each type of change refers to a particular syntactic context of
the change. Again, each type of changes affects the software
systems from different functional and structural contexts. For
our study, we consider the taxonomy of change proposed by
Fluri and Gall [15] which is a comprehensive taxonomy for
fine-grained source code change and it defines the significance
levels of changes. As our clone analysis is at method level
granularity, we consider only the method level changes in
the taxonomy proposed by Fluri and Gall. The taxonomy of
changes used in this empirical study is presented in Table I.

Changes to individual methods are referred to as method-
level changes. Changes to methods are further divided into
two groups, changes to method declaration and changes to
method body, based on where the changes occur in the methods.
Changes to method declaration part (method signature) in-
clude changes in accessibility, overridability, method renaming,
parameter change and changes to return type. Changes to
parameters include addition, deletion, renaming, reordering
and parameter type change. Changes to method body comprise
changes to statements and structure statements (e.g., loop,
branching). Statements might be added, deleted, modified and
reordered. Each of these fine-grained change types is assigned
a level of significance based on their likelihood of affecting
other code entities and the extent they modify the functionality
of the system as proposed by Fluri and Gall [15].

IV. EXPERIMENTAL SETUP

This section outlines the experimental settings for different
components and steps of our empirical study including prepro-
cessing of subject systems, clone detection, change extraction
and classification and the metrics measured.

A. Subject Systems
This study is based on seven open source systems imple-

mented in Java with diversified size, evolution history and
application domain. Table II briefly represents the features the
software systems including the application domain, length of
evolution history, size in lines of code (LOC) and the total
number of revisions. The size of the systems represents the
lines of code (LOC) in the last revision of the systems counted
after removal of comments and pretty-printing. In selecting
subject systems we include some systems used in previous
studies (Openymsg, Squirrel) by Hotta et al. [7] and Krinke
[8] (ArgoUML) to have a better comparative analysis of the
findings.
B. Metrics Measured

To compare the stability of cloned and non-cloned code,
we measure the frequency of changes to cloned and non-cloned
code with respect to different levels of significance of changes

and types of clones. The frequency metrics represent how
frequently the cloned and non-cloned code encounter changes.
To define the frequency metrics we assume that:

• R = {r1, r2, r3,, rn} is the set of revisions,

• S = {low,medium, high, crucial} is the set of
possible levels of change significance and

Now, we define the number of changes in cloned and non-
cloned code with significance level s in revision r as CCcs(r)
and CCns(r) respectively.

We then define the following two frequency metrics in terms
of the average number of changes to cloned and non-cloned
code with a particular level of change significance as follows:

(i) The frequency of changes to cloned code (CFc) is
measured as

CFc=
∑
rεR,sεS CCcs (r)

|R| ×
∑
rεR LOC(r)∑
rεR LOCc(r)

(1)

(ii) The frequency of changes to non-cloned code (CFn)
is measured as

CFn=
∑
rεR,sεS CCns (r)

|R| ×
∑
rεR LOC(r)∑
rεR LOCn(r)

(2)

In equations (1) and (2),

• LOCc(r), LOCn(r) and LOC(r) represent the cloned,
non-cloned and total lines of code in revision r
respectively.

• the terms
∑
rεR,sεS CCcs (r)

|R| and
∑
rεR,sεS CCns (r)

|R| rep-
resent the average number of changes per revision
with significance s to cloned and non-cloned code
respectively.

As the frequencies of changes to cloned and non-cloned code
are sensitive to LOCc(r) and LOCn(r), we normalize the
change frequencies by multiplying with the ratio of LOC(r)
to LOCc(r) and LOCn(r) for the cloned and non-cloned code
respectively in equations (1) and (2).

Our proposed metrics are similar to the metrics proposed
by Hotta et al. [7], but different from the following two points:

(i) Metrics proposed by Hotta et al. [7] count changes in
a range of consecutive lines of code as a single change
whereas we count each fine-grained change as a single
change, and

(ii) We consider the significance levels of changes and
measure metrics for four levels of significance of
changes separately.

C. Experimental Steps

We analyze the frequency of changes to cloned and non-
cloned code by the following six steps:

1) Preprocessing: For the proposed analysis of the frequen-
cies of changes in cloned and non-cloned code, we first extract
all the revisions of the subject systems from their corresponding
SVN repository. As our goal is to analyze the changes to source
code we remove comments from the source files. Pretty-printing
of the the source files are then carried out to eliminate the
formatting differences using the tool ArtisticStyle1.

1http://astyle.sourceforge.net/

TABLE I: TAXONONY OF METHOD-LEVEL CHANGES WITH SIGNIFICANCE (adapted from [15])

Change
Level

Changed
Part

Change Group Change Type Significance

M
et

ho
d

D
ec

la
ra

tio
n

Accessibility Change (MAC)
Accessibility Increase (MAI) Medium
Accessibility Decrease (MAD) High

Overridability Change (MOC)
Add Method Overridability final (AMO) Crucial
Delete Method Overridability (DMO) Low

Parameter Change (MPC)

Parameter Insert (PI) Crucial
Parameter Delete (PD) Crucial
Parameter Ordering (PO) Crucial
Parameter Renaming (PR) Medium
Parameter Type Change (PTC) Crucial

Method Identifier Change (MIC) Method Renaming (MR) High

Return Type Change (RTC)
Return Type Insert (RTI) Crucial
Return Type Delete (RTD) Crucial
Return Data Type Change (RDC) Crucial

B
od

y

Statement Change (SC)

Statement Insert (SI) Medium
Statement Delete (SD) Medium
Statement Update (SU) Low
Statement Re-ordering (SO) Low

Structure Statement Change (SSC)

Condition Expression Change (CEC) Medium
Statement Parent Change (SPC) Medium
Alternative- part (else) Insert (API) Medium
Alternative- part (else) Delete (APD) Medium

TABLE II: SUBJECT SYSTEMS

Systems Type Size (LOC) Evolution Period #Revision

JabRef Bibliography Manager 153952 OCT 2003 - NOV 2011 3718
DNSJava DNS Protocol 20831 SEP 1998 - FEB 2013 1679
OpenYMSG Open Messenger 8821 MAR 2007 - MAR 2013 233
Ant-Contrib Web Server 79434 JUL 2006 - MAR 2009 177
Carol Driver Application 13213 JUN 2002 - SEP 2013 2237
ArgoUML UML Modeling Tool 157573 JAN 1998 - JUN 2014 19915
Squirrel SQL Client 332635 JUN 2001 - JAN 2013 6737

We extract the file modification history using SVN diff to
list added, modified and deleted files in successive revisions.
This information is used to exclude the unchanged files during
change analysis to speed up the process.

2) Method Extraction and Origin Analysis: To analyze the
changes to methods throughout all the revisions, we extract
method information from the successive revisions of the source
code. We store the method information in a database to use for
mapping changes to the corresponding methods. Again, SVN
keeps track of the files that are added, deleted or modified and
the history of changes to individual file content are preserved
as modification of lines. This line-level change information is
not sufficient to describe the evolution of source code entities at
higher granularity levels such as classes or methods. As a result,
to map changes to methods throughout the development cycle,
we need to map the methods across the revisions. Therefore,
we carry out origin analysis [5] of the methods on the revisions
of the systems to gather mapping information for methods
and preserve in a database. This information is used to map
the classified changes and cloning information back to the
corresponding methods to measure the frequency of changes.

3) Change Extraction and Classification: The change anal-
ysis system in this study is implemented in Java based on the
change extraction and classification core of ChangeDistiller
[15]. The system imports copies of changed files from succes-
sive versions and uses JDT API of Eclipse for the extraction
of methods and extracting the differences between the copies
of each of the files in any two successive revisions. The details

of change extraction and classification are as follows:

• Change Extraction: Code changes are extracted using
ChangeDistiller classifier. ChangeDistiller extracts
changes by taking differences between two versions of
ASTs of the same file and are stored as a sequence of
tree-edit operations. The generic operations contain
insert, delete, move and update operations on the
nodes in the AST. The tree-edit operations encoded as
edit scripts are then processed by ChangeDistiller to
classify extracted changes to fine-grained change types.
We have customized the ChangeDistiller classifier to
suit for analyzing local repository exported from SVN.
To extract source code changes, two successive versions
of the same file are selected from the source repository
and then are passed to the differencing engine of
the change classifier. The extracted changes are then
passed to the classifier for classification. The process
is repeated for all changed files (identified by SVN
diff) and for all the revisions of the subject systems.

• Change Classification: Changes extracted by AST-
differencing of two successive revisions of source code
files are classified into fined-grained changes to source
code entities. Changes are classified according to the
defined taxonomy and are assigned the corresponding
levels of significance. For the analysis, classified
changes are mapped to the corresponding source code
entities based on the information extracted during the
origin analysis.

TABLE III: NiCad SETTINGS FOR THE STUDY
Parameters Values

Minimum Size 5 lines
Maximum Size 500 lines
Granularity Method Level
Threshold 0% (Type-1, Type-2), 30% (Type-3)
Identifier Renaming blindrename (Type-2, Type-3)

4) Mapping Change Data: After classification, the classified
changes are mapped to their corresponding source code entities
(methods) with the help of extracted origin mapping information
for the associated entities. We preserve the extracted, classified
and mapped changes into a database to measure metrics for
frequency of changes at the method level granularity.

5) Clone Detection: For this study we use the hybrid clone
detection tool NiCad [16]. NiCad is reported to have higher
level of precision and recall [18] and supports the detection of
Type-1 (exact copies), Type-2 (syntactically exact with identifier
naming differences) and, Type-3 clones (in addition to Type-2
differences lines are added, deleted or modified) clones. We run
NiCad on all revisions of the subject systems to detect clones
at method level granularity. The clone detection results are
then processed to store the clone information in the database.
Table III lists the parameter settings for NiCad used for this
study.

6) Measurement of Metrics and Comparison: We calculate
the defined metrics from the extracted changes and clone data
stored in the database using equations (1) and (2). For all the
subject systems, we measure the frequency metrics for all types
of clones (Type-1, Type-2 and Type-3) and for all the four
levels of significance of changes. Higher values of frequency
metrics refer to lower stability of the corresponding subject
system. The metrics are then analyzed for the comparative
evaluation of the impacts of clones on maintenance in terms
of the frequency of changes to cloned and non-cloned code.

V. RESULTS AND ANALYSIS

This section represents the results of our empirical study
by answering three research questions we defined in Section I.
We evaluate the stability of clones by analyzing the values
of the metrics for the frequency of changes in cloned and
non-cloned code. We calculated the values of the metrics for
all seven subject systems, for each of the three clone types
(Type-1, Type-2 and Type-3) and for each of the four levels of
significance (low, medium, high and crucial) of changes.

Table IV represents the comparative frequencies of changes
in cloned and non-cloned code for Type-1 clones in the seven
subject systems considered. Values for the metrics calculated
for the frequency of changes in cloned and non-cloned code
considering each of the levels of change significance are
represented in the corresponding columns in the table. Similarly,
Table V and Table VI represent the comparative frequencies of
changes in cloned and non-cloned code for Type-2 and Type-3
clones respectively for all seven subject systems.

Table VII represents the summary of the stability scenarios
of cloned and non-cloned code. This table is derived from
Table IV, Table V, and Table VI. The symbol ’�’ in Table VII

TABLE IV: COMPARATIVE FREQUENCIES OF CHANGES
OF DIFFERENT LEVELS OF SIGNIFICANCE FOR TYPE-1
CLONES.

Change
Significance→

Low Medium High Crucial

Systems ↓ CFc CFn CFc CFn CFc CFn CFc CFn

OpenYmsg 197.16 6.34 96.74 4.86 2.95 0.15 0.74 0.28
DNSJava 203.60 25.47 183.13 25.15 10.98 3.07 8.26 2.46
JabRef 36.78 12.59 18.78 10.09 0.06 0.14 0.12 0.74
Carol 10.73 14.47 14.44 11.13 0.80 0.64 1.20 0.81
Ant-Contrib 1.13 0.30 0.93 0.21 0.02 0.02 0.01 0.01
ArgoUML 130.74 25.91 81.13 16.78 0.96 0.61 1.80 1.13
Squirrel 14.30 6.94 10.78 4.24 0.30 0.26 0.54 0.49

CFc=Frequency of Changes in Cloned Code
CFn=Frequency of Changes in Non-cloned Code

TABLE V: COMPARATIVE FREQUENCIES OF CHANGES
OF DIFFERENT LEVELS OF SIGNIFICANCE FOR TYPE-2
CLONES.

Change
Significance→

Low Medium High Crucial

Systems ↓ CFc CFn CFc CFn CFc CFn CFc CFn

OpenYmsg 16.64 7.30 12.74 5.28 0.26 0.17 0.26 0.28
DNSJava 44.44 43.32 41.33 41.00 5.61 3.82 2.15 3.07
JabRef 19.05 15.92 11.04 11.31 0.06 0.13 1.66 0.63
Carol 45.39 13.13 36.59 10.16 0.66 0.64 0.42 0.84
Ant-Contrib 0.37 0.71 0.47 0.55 0.00 0.02 0.00 0.01
ArgoUML 68.23 26.42 47.00 16.87 0.49 0.63 2.84 1.06
Squirrel 10.28 7.47 7.25 4.70 0.16 0.27 0.90 0.47

CFc=Frequency of Changes in Cloned Code
CFn=Frequency of Changes in Non-cloned Code

indicates that the frequency of changes in cloned code is higher
than the frequency of changes in non-cloned code (CFc>CFn).
This implies that cloned code is less stable as compared to
non-cloned code for the corresponding subject system, type of
clones and the level of significance of changes. A ’�’ symbol
on the other hand refers to a case where the frequency of
changes in cloned code is less than the frequency of changes
in non-cloned code (CFc<CFn). This indicates that cloned
code is more stable as compared to non-cloned code for the
corresponding subject system, type of clones and the level of
significance of changes. This table represents the 84 (7x3x4)
decisions points regarding comparative stabilities of cloned
and non-cloned code for seven subject systems, three types of
clones and four different levels of the significance of changes.
Based on the analysis of these decision points we answer the
research questions in the following sections.

TABLE VI: COMPARATIVE FREQUENCIES OF CHANGES
OF DIFFERENT LEVELS OF SIGNIFICANCE FOR TYPE-3
CLONES.

Change
Significance→

Low Medium High Crucial

Systems ↓ CFc CFn CFc CFn CFc CFn CFc CFn

OpenYmsg 10.39 7.19 9.17 5.07 0.00 0.18 0.00 0.30
DNSJava 52.03 42.48 48.38 40.27 10.26 3.23 2.73 3.07
JabRef 36.16 14.31 21.96 10.42 0.17 0.13 1.40 0.59
Carol 33.24 11.70 29.31 8.60 0.47 0.67 0.97 0.80
Ant-Contrib 2.43 0.35 2.31 0.21 0.03 0.02 0.01 0.01
ArgoUML 79.70 20.56 53.34 12.95 0.42 0.65 1.77 1.05
Squirrel 12.08 6.44 8.07 4.00 0.21 0.28 0.62 0.47

CFc=Frequency of Changes in Cloned Code
CFn=Frequency of Changes in Non-cloned Code

TABLE VII: COMPARATIVE STABILITY OF CLONED AND NON-CLONED CODE

Change
Significance→

Low Medium High Crucial

Systems ↓ Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3

OpenYmsg � � � � � � � � � � � �
DNSJava � � � � � � � � � � � �
JabRef � � � � � � � � � � � �
Carol � � � � � � � � � � � �
Ant-Contrib � � � � � � � � � � � �
ArgoUML � � � � � � � � � � � �
Squirrel � � � � � � � � � � � �

�=cases where frequency of changes in cloned code is higher than that in non-cloned code (CFc>CFn)
�=cases where frequency of changes in cloned code is less than that in non-cloned code (CFc<CFn)

Fig. 3: Comparison of change frequency of cloned and non-
cloned code based on clone types

A. Answer to RQ1: Analysis from the perspective of clone types

In this analysis, we evaluate the comparative stability
scenarios of the subject systems with respect to three different
types of clones and we try to answer the first research question
(RQ1). From Table VII, we have 28 (7 systems x 4 levels
of change significance) decision points for each of the three
types of clones in columns labeled with corresponding clone
types (Type-1, Type-2 and Type-3). Based on the summary in
Table VII, we represent the comparative stabilities of cloned
and non-cloned code from the perspective of the types of clones
in Figure 3. Now, for Type 1 clones there are 82.14% (23/28)
of cases (marked with ’�’ in Table VII) where the frequency
of changes in cloned code is higher than the frequency changes
in non-cloned code (CFc>CFn). For the remaining 17.86%
(5/28) cases (marked with ’�’ in Table VII) the frequency of
changes in cloned code is less than that of non-cloned code
(CFc<CFn).

Again, for Type-2 clones there are 60.71% (17/28) cases
where the frequency of changes in cloned code is higher than
the frequency changes in non-cloned code. For Type-3 clones,
on the other hand, 75% (21/28) cases show that the frequency
of changes in cloned code is higher than that of non-cloned
code. Here, we observe that for all clone types (Type-1, Type-2
and Type-3) the frequency of changes in cloned code is higher
than the frequency of changes in non-cloned code suggesting
that cloned code is modified more frequently than non-cloned
code. This is an indication that cloned code is less stable as
compared to non-cloned code.

To evaluate how statistically significant the comparative
frequencies of cloned and non-cloned code are with respect to
different types of clones, we carry out Mann-Whitney Wilcoxon
(MWW) test [19]. We consider the corresponding frequencies of
changes for cloned and non-cloned code for a particular clone
type and for all the systems. We observe that for Type-1 clones
the p value for low and medium significance is 0.03102 (<0.05,
two-tailed test) which implies that "the difference between the
two samples is marginally significant". However, for the high
and crucial levels of significance of changes for Type-1 clones
and for all levels of significance for Type-2 and Type-3 clones p
values are >0.05 indicating that values for frequencies for cloned
and non-cloned code are not significantly different. However,
we observe that the frequency of changes to cloned code is
higher than that of non-cloned code in higher percentages of
cases (Figure 3).

Summary- According to our findings from the perspective
of the types of clones, the stability of non-cloned code is
higher than that of cloned code meaning that cloned code
poses higher maintenance challenges than non-cloned code
during maintenance and evolution. Also, Type-1 clones are the
most vulnerable to the stability of the software systems.

B. Answer to RQ2: Analysis from the perspective of change
significance

Here, we analyze the comparative frequencies of changes
to cloned and non-cloned from the perspective of the four
different levels (low, medium, high, crucial) of significance of
changes. For each of the four levels of significance, we have
21 decision points (7 systems x 3 clone types) in Table VII
in the column groups labeled with the corresponding levels of
significance of changes to answer the second research question
(RQ2). The comparative stability scenarios with respect to the
levels of change significance are presented in Figure 4.

As shown in Figure 4, 90.48% (19/21) of cases cloned
code has higher frequency of changes than the frequency of
changes in non-cloned code in both low and medium levels of
significance. For more significant (high, crucial) changes, the
percentages of cases where the frequencies of changes is higher
in cloned code than in non-cloned code is comparatively closer.
However, for both high and crucial levels of significance the
frequencies of changes in cloned code is higher than that of
non-cloned code. In Figure 4, we observe that cloned code is
less stable than non-cloned code and this is mostly dominated
by the changes of low to medium levels of significance.

Fig. 4: Comparison of change frequency of cloned and non-
cloned code based on different levels of significance of changes

To evaluate whether there are statistically significant dif-
ferences among the values for the metrics we obtained with
respect to different levels of significance of changes, we carry
out Mann-Whitney Wilcoxon (MWW) test [19]. We consider
the corresponding frequencies of changes for cloned and non-
cloned code for a particular level of significance of change and
for all the systems and all types of clones. We observe that
for changes with low and medium significance the p values
are 0.0207 and 0.0209 respectively and both of the values are
<0.05 (two-tailed test) which imply "the difference between the
two samples is marginally significant". However, for the high
and crucial significance levels p values are >0.05 indicating
that values for frequencies for cloned and non-cloned code are
not significantly different. So, we see that higher frequency
of changes in cloned code as compared to non-cloned code
is mostly influenced by changes of lower significance levels
(low, medium) whereas for changes of higher significance levels
(high, crucial) the differences among the frequencies are not
statistically significant. However, from the perspective of change
significance we observe the frequency of changes to cloned code
is higher than that of non-cloned code in higher percentages
of cases.

Summary- Our findings from the analysis regarding the
perspective of the different levels of significance of changes
suggest that cloned code is less stable than non-cloned code
and this stability is influenced mostly by the changes of low
to medium significance.

C. Answer to RQ3: Analysis from the perspective of systems

We carry out analysis from the perspective of individual
systems to answer the third research question (RQ3). We con-
sider the 12 (3 clone types x 4 levels of significance) decision
points for each of the subject systems from the corresponding
rows in Table VII. The system centric comparative stability
scenarios for cloned and non-cloned code is represented in
Figure 5.

As shown in Figure 5, our study shows that for six out of
seven subject systems the frequency of changes in cloned code

Fig. 5: Comparison of change frequency of cloned and non-
cloned code from the perspective of the systems

is higher than that of non-cloned code considering all types of
clones and all the four levels of the significance of changes.
Also, we observe that for larger systems with comparatively
large number of revisions and with longer period of evolution
(Jabref, Argouml and Sqiurrel in Table II) tend to have higher
percentages of decision points supporting the higher frequency
of changes in cloned code as compared to non-cloned code. This
suggests that clones in larger systems might be more change
prone and comparatively more vulnerable to the stability of
the system.

One important point is that for the system Openymsg, our
findings agree with the findings from Hotta et al. [7] but our
findings disagree with their findings for the system Squirrel.
This disagreement might be due the differences in how we
count changes. Hotta et al. count changes in consecutive lines
of code as a single change whereas we count individual fine-
grained changes to program entities. Considering changes at
finer granularity level is highly likely to increase the change
count and thus the increase in the values of the change frequency.
For comparatively smaller systems with smaller number of
revisions like Openymsg, this difference might not be significant.
However, for larger systems with higher number of revisions
like Squirrel, changes at finer and coarser granularity may
make significant differences in the metrics values calculated
which might have affected in having differences in the results.
In addition, the relative proportion of cloned and non-cloned
code in the software systems might also have influence on
the measurement of stability metrics. Moreover, we consider
individual levels of significance of changes and clone types
which might have effects on decisions regarding comparative
stability of cloned and non-cloned code.

Summary- Our system centric analysis suggests that cloned
code is less stable in general and software systems with
comparatively larger code base and higher number of revisions
tend to have higher probability of having higher frequency of
changes in cloned code as compared to non-cloned code.

D. Significance of the findings

This study re-investigates the comparative stability of cloned
and non-cloned code. Stability is a widely focused measure to
evaluate the impacts of clones on software maintenance. But our
study quantifies stability from a new perspective considering the
fine-grained types of changes and their levels of significance.
From the study we conclude that although the magnitude of
stability may vary with different types of clones and the changes
of different significance levels, cloned code generally tend
to have less stability. In addition, Type-1 clones are more
vulnerable to the stability of the system and thus, need more
attention during the evolution.

We also observe that the stability of cloned code is
influenced mostly by the changes of lower (low, medium)
levels of significance. However, for changes with higher (high,
crucial) levels of significance the comparative frequency of
changes in cloned code is still higher than that of non-cloned
code. Although our fine-grained analysis disagrees with the
stability decisions of some of the related existing studies [7],
[8], [12], our methodology gives us the confidence that our
stability decisions are more precise and reliable as those take
into account the actual impacts of changes. Again, the way
we analyze the stability gives us an insight into the detail
evolution of how individual clones change throughout their
period of evolution. The information regarding the frequency
of changes with distinct levels of significance might be valuable
in ranking and prioritizing clones by the developers during clone
management. The evolution information might also be used as
constraints for automatic scheduler for clone refactoring [20].

VI. THREATS TO VALIDITY

The change analyzer in this study is based on the change
extraction and classification engine of the ChangeDistiller.
Although ChangeDistiller is reported to have good performance,
the validity of the outcomes of the study is dependent upon
the accuracy of the core classifier used.

Another source of potential threats is the clone detection
tool used. We used NiCad, a recently introduced hybrid clone
detection tool which detects both exact (Type-1) and near-miss
(Type-2, and Type-3) clones with high precision and recall.
Again, different settings for clone detection tools might result
in different stability scenarios because of the variations in clone
detection results. This is termed as confounding configuration
choice problem [21]. However, the NiCad settings we used
are considered standard [1], [22] and are close enough to the
optimal configuration settings identified in recent study [21] for
NiCad to detect clones in Java systems. This is likely to mitigate
the potential adverse effects of the configuration settings on
our findings.

We selected subject systems with diversified size, number of
revisions, length of evolution and application domain to avoid
potential biasing. However, due to the limitation of existing
change classifier our study is limited to Java systems only.
Although Java is considered to be a widely used language
with a comprehensive set of language features for software
development, inclusion of subject systems of other languages
might help in more generalization of the findings.

VII. RELATED WORK

There are large body of research work investigating the
impacts of clones on software maintenance and evolution. The
primary focus of these studies are evaluating the impacts of
clones in terms of the degree of consistency in comparative
evolution, measuring stability to study how frequently a code
region is modified and the likelihood of introducing bugs during
evolution.

Krinke [8] proposed a measure for comparative stability
of cloned and non-cloned code. His approach counts the
modification of code in terms of the number of lines added,
deleted and modified in cloned and non-cloned code. The more
the number of changes to a code region, the less stable the
code is. His study concluded that clone code is more stable
than non-cloned code. Krinke’s other study [9] measures the
average age of the cloned and non-cloned code. This study
concludes that clone code is older meaning more stable than
non-cloned code. Göde and Harder [12] extended Krinke’s [8]
approach with token-based incremental clone detection tool
and experimented with different settings of clone detection
parameters, clone types and their changes. This study agrees
with the findings of Krinke [8] that cloned code is more stable
than non-cloned code but this does not hold in case of deletion.

Hotta et al. [7], on the other hand, measure the stability
of cloned and non-cloned code in terms of modification
frequency. Their study concludes that cloned code has lower
modification frequency and thus more stable than non-cloned
code. Their approach counts the number of blocks (consecutive
lines) modified in cloned and non-cloned code. The average
modification count per revision in cloned and non-cloned code
are then used to measure the modification frequency. The less
the modification frequency, the more stable the code region is.
One of the key limitations of this approach is that it ignores
the volume of change and also the types of actual syntactic
changes. This is likely to affect the accuracy and reliability
of the stability of the code measured. Although this study
considers fine-grained changes because of the change analysis
at token level, it does not differentiate between the types of
syntactic changes and their levels of significance.

Mondal et al. [13], [14] carried out a comprehensive stability
analysis within a uniform evaluation framework considering
existing (taken from [7], [8], [9]) and their proposed metrics
to measure stability. Their study concluded that there is no
firm conclusion on the stability of cloned and non-cloned code,
rather, the comparative stability varies with programming lan-
guages, clone types and overall system development strategies.
However, none of the metrics used or proposed in this study
consider actual syntactic change types.

Lozano et al. [23] investigated whether clones are harmful
or not. Their study concludes that cloned code tend to be more
frequently modified than non-cloned code. To assess the impacts
of clones on software maintenance Lozano and Wermelinger [5]
also investigated the impacts of clones on software maintenance.
Their study shows that although the likelihood (the ratio of the
number of change to an entity to the total number of changes
in the system) in cloned code is not very different than in
non-cloned code, in some cases the impact (percentage of the
system affected by a change) of cloned methods is greater than

that of non-cloned methods. Their study also suggests that the
presence of clones may decrease the changeability of the code
entity containing clones.

Our proposed study to measure the comparative stability
of cloned and non-cloned code is kind of related to the study
proposed by Hotta et al. [7]. However, our study is different
from their study because we count each of the fine-grained
changes whereas Hotta et al. consider a range of consecutive
lines of modified code as a single change. Another difference
is that we consider the different significance levels of changes
and we measure the frequency of changes based on the levels
of significance of the changes. Our study differs from Krinke’s
study [8] because we consider every revision of the subject
systems whereas Krinke’s study considers revisions on weekly
intervals. Again, Krinke’s study [8] differentiates between the
change types as the addition deletion and update to lines of
code but does not consider the actual syntactic change types as
in our study. Although there are some similarities, our study is
different from all others in the sense that we study the stability
in the fine-grained levels considering the different change types
and their levels of significance. Our objective is to focus on
how cloned and non-cloned code are evolving through different
changes and the impact of clones on software maintenance
in terms of the frequency of changes of different levels of
significance, which none of the existing studies above consider.

VIII. CONCLUSION AND FUTURE WORK

This study measures the comparative frequency of fine-
grained code changes to cloned and non-cloned code consid-
ering the levels of significance of changes. To the best of our
knowledge, this is the first ever approach to the comparative
evaluation of the stability of cloned and non-cloned code that
considers actual syntactic change types and their corresponding
levels of significance.

We use the hybrid clone detection tool NiCad to detect exact
and near-miss clones. By analyzing the changes to the cloned
and non-cloned code of seven software systems, we observe
that the frequency of changes is higher in cloned code than that
in non-cloned code in most cases. Again, from the perspective
of clone types our study shows that in most of the cases the
frequency of changes in cloned code is higher than that in non-
cloned code and Type-1 clones are more change prone affecting
the stability of the software systems. Another, important point
is that the comparatively higher instability of clones is mostly
influenced by the changes of lower (low, medium) significance.
For changes of higher significance (high, crucial) the stability
of cloned and non-cloned code are closer unlike the stabilities
for changes of lower significance. However, for all levels of
significance of changes the stability of non-cloned code is
higher than the cloned code. Thus, cloned code is likely to
pose higher challenges during the evolution and maintenance
of the software systems.

Moreover, in this study, our analysis at the fine-grained
change types considering their levels of significance facilitates
to have a deeper insight into how the clones evolve with changes
of different levels of significance. The history regarding the
evolution of the clones representing how individual clones are
changed over time might be an important source of information
to rank the clones based on the types and volume of changes
they evolve through. This might help in better managing clones

by tracking and/or refactoring clones to minimize the negative
impacts of clones. We plan to extend our study to a larger
number of large-scale projects from diversified application
domain and development history to have a more generalized
conclusions on the stability of clones.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “Near-miss function clones in open
source software: An empirical study,” Journal of Soft. Maintenance
and Evolution: Research and Practice, vol. 22, no. 3, pp. 165–189,
2010.

[2] M. Rieger, S. Ducasse, and M. Lanza, “Insights into system-wide code
duplication,” in Proc. WCRE, 2004, pp. 100 – 109.

[3] C. Roy, M. Zibran, and R. Koschke, “The vision of software clone
management: Past, present, and future (keynote paper),” in Proc. CSMR-
WCRE, 2014, pp. 18–33.

[4] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proc. ICSE, 2009, pp. 485–495.

[5] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in Proc. ICSM, 2008, pp. 227–236.

[6] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in Proc. CSMR, 2007, pp. 81–90.

[7] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code more
frequently modified than non-duplicate code in software evolution?: An
empirical study on open source software,” in Proc. IWPSE, 2010, pp.
73–82.

[8] J. Krinke, “Is cloned code more stable than non-cloned code?” in Proc.
SCAM, 2008, pp. 57–66.

[9] ——, “Is cloned code older than non-cloned code?” in Proc. IWSC,
2011, pp. 28–33.

[10] C. Kapser and M. W. Godfrey, “"Cloning considered harmful" considered
harmful: Patterns of cloning in software,” Empirical Soft. Engg., vol. 13,
no. 6, pp. 645–692, 2008.

[11] A. Lozano and M. Wermelinger, “Tracking clones’ imprint,” in Proc.
IWSC, 2010, pp. 65–72.

[12] N. Go¨de and J. Harder, “Clone stability,” in Proc. CSMR, 2011, pp.
65–74.

[13] M. Mondal, C. K. Roy, and K. A. Schneider, “An empirical study on
clone stability,” SIGAPP App. Comp. Rev., vol. 12, no. 3, pp. 20–36,
2012.

[14] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider, “Comparative stability of cloned and non-cloned code: An
empirical study,” in Proc. ACM SAC, 2012, pp. 1227–1234.

[15] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” in Proc. ICPC, 2006, pp. 35–45.

[16] C. Roy and J. Cordy, “NiCad: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization,” in In Proc.
ICPC, 2008, pp. 172–181.

[17] J. R. Cordy and C. K. Roy, “The NiCad clone detector,” in Proc. ICPC,
2011, pp. 219–220.

[18] C. Roy and J. Cordy, “A mutation/injection-based automatic framework
for evaluating code clone detection tools,” in Proc. ICSTW, 2009, pp.
157–166.

[19] Mann-Whitney Wilcoxon (MWW) Test. Accessed: 2014-06-30. [Online].
Available: http://http://elegans.som.vcu.edu/~leon/stats/utest.html

[20] M. Zibran and C. Roy, “A constraint programming approach to conflict-
aware optimal scheduling of prioritized code clone refactoring,” in Proc.
SCAM, 2011, pp. 105–114.

[21] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: A rigorous approach to clone evaluation,” in Proc. FSE,
2013, pp. 455–465.

[22] R. Saha, C. Roy, and K. Schneider, “An automatic framework for
extracting and classifying near-miss clone genealogies,” in Proc. ICSM,
2011, pp. 293–302.

[23] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the harmful-
ness of cloning: A change based experiment,” in Proc. MSR, 2007, pp.
18–21.

http://http://elegans.som.vcu.edu/~leon/stats/utest.html

