
Updating the Partial Singular Value

Decomposition in Latent Semantic Indexing

Jane E. Tougas a,1,∗

aFaculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5,

Canada

Raymond J. Spiteri b,2

bDepartment of Computer Science, University of Saskatchewan, Saskatoon, SK,

S7N 5C9, Canada

Abstract

Latent semantic indexing (LSI) is a method of information retrieval that relies
heavily on the partial singular value decomposition (PSVD) of the term-document
matrix representation of a dataset. Calculating the PSVD of large term-document
matrices is computationally expensive; hence in the case where terms or documents
are merely added to an existing dataset, it is extremely beneficial to update the
previously calculated PSVD to reflect the changes. It is shown how updating can
be used in LSI to significantly reduce the computational cost of finding the PSVD
without significantly impacting performance. Moreover, it is shown how the compu-
tational cost can be reduced further, again without impacting performance, through
a combination of updating and folding-in.

Key words: latent semantic indexing, singular value decomposition, updating,
folding-in

∗ Corresponding author. Tel: +1-902-494-2093; Fax: +1-902-492-1517.
Email addresses: tougas@cs.dal.ca (Jane E. Tougas), spiteri@cs.usask.ca

(Raymond J. Spiteri).
1 The work of this author is supported by NSERC Canada and the Killam Foun-
dation.
2 The work of this author is supported by a grant from NSERC Canada.

Preprint submitted to Elsevier Science 11 December 2006



1 Introduction

The seemingly disparate fields of information retrieval (IR) and numerical lin-
ear algebra (NLA) are closely linked via latent semantic indexing (LSI) (Deer-
wester et al., 1990). LSI is an IR method based on the vector-space model
where a dataset is represented as a term-document matrix. LSI uses a ma-
trix factorization method known as the partial singular value decomposition
(PSVD) in an attempt to reduce the problems of precision and recall failure

caused by polysemy and synonymy. Many terms have more than one meaning
(they are polysemous). When a polysemous term is used in a search query,
irrelevant documents about the term’s other meaning(s) may be retrieved, de-
grading the precision level of the results. Moreover, many terms have similar
meanings (they are synonymous). When a term that has a synonym is used
in a query, relevant documents containing the synonym, but not the query
term, may be overlooked, degrading the recall level of the results. Research
indicates that LSI is better at dealing with the problems caused by synonymy
than those caused by polysemy (Deerwester et al., 1990), but this does not
detract from the importance of LSI in IR.

As a vector-space model, LSI examines the document collection as a whole
and determines which documents contain many of the same terms. The more
terms that documents have in common, the more closely related the docu-
ments are considered to be. This process involves creating a term-document
matrix A ∈ ℜt×d, where t is the number of semantically significant terms,
and d is the number of documents in the document collection. Each entry
of A represents the weighted frequency of a particular term in a particular
document. The term-document matrix represents a t-dimensional space with
t-dimensional document vectors. Each vector contains the coordinates of that
document’s location in the t-dimensional space. Queries are also represented as
t-dimensional vectors. The vectors of documents and queries with many terms
in common are close together, whereas those with relatively few terms in com-
mon are far apart. The query vectors are projected into the term-document
matrix using the PSVD.

Even using the most advanced NLA methods, computing the PSVD of a ma-
trix is an extremely expensive process. Because of the tremendous size of
modern databases, a term-document matrix can potentially be very large,
with hundreds of thousands or even millions of entries. In LSI, this means
that most of the processing time is spent in performing the PSVD calcula-
tion (Berry et al., 1995a,b). In a rapidly expanding environment, such as the
Internet, the term-document matrix is altered often as new documents and
terms are added. Recalculating the PSVD of the matrix each time these slight
alterations occur is prohibitively expensive. Traditionally, LSI uses a process
known as folding-in to modify the PSVD. Although this method is very effi-

2



cient, its accuracy may degrade, especially when word usage patterns change.
An efficient and much more reliable approach is to update the PSVD, e.g.,
Zha and Simon (1999). In this approach the existing PSVD is modified to
reflect the changes to the term-document matrix; i.e., the PSVD of the mod-
ified term-document matrix is obtained by modifying the existing PSVD of
the original term-document matrix.

The purpose of this paper is not only to show that updating the PSVD can be
more reliable than folding-in but also to show that a combination of folding-
in and updating the PSVD (which we call folding-up) can be an even more
attractive option than either folding-in or updating the PSVD on their own.
Folding-up can offer a significant improvement in computation time when
compared to either recomputing the PSVD or just updating the PSVD. At the
same time, folding-up can provide a level of precision that is not statistically
different from that given by recomputing the PSVD each time changes are
made to the term-document matrix.

The remainder of the paper proceeds as follows. Section 2 covers background
information on the PSVD and on the folding-in process, Section 3 gives a
description of the algorithms used for updating the PSVD (Zha and Simon,
1999), Section 4 gives a description of the folding-up process, and Section 5
gives experimental results using the document updating algorithm and the
Medline (Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart/med),
Cranfield (Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart/cran),
and a subset of TREC HARD track, http://trec.nist.gov/data/t12 hard.html
(2003) document collections. Finally, Section 6 presents our conclusions.

2 Background

2.1 SVD

The SVD (see, e.g., (Golub and Van Loan, 1996; Demmel, 1997)) is a matrix
factorization that can be used to capture the salient features of a matrix by
determining important vectors (directions) and quantifying their importance
via weighting factors. Given a matrix A ∈ ℜt×d, its SVD is written as A =
UΣVT , where U ∈ ℜt×t, V ∈ ℜd×d, and Σ ∈ ℜt×d. U and V are orthogonal
matrices that contain the left and right singular vectors of A, respectively.
When A is a term-document matrix, U represents the term vectors, and V

represents the document vectors. The matrix Σ can have non-zero entries only
on the diagonal. These diagonal entries, denoted σj for j = 1, 2, ..., min(t, d)
and arranged in non-increasing order, are known as the singular values of
matrix A. The number of non-zero singular values of a matrix is known as its

3



rank, r. For further details on the SVD, the interested reader is referred to,
e.g., (Golub and Van Loan, 1996; Demmel, 1997) and references therein.

The SVD can be interpreted as the weighted sum of r rank-one matrices,
A =

∑r
j=1 σjujv

T
j , where uj and vj are the jth columns of matrices U and

V, respectively. Replacing r in this sum by any k with 0 ≤ k < r gives the
partial SVD of A, Ak =

∑k
j=1 σjujv

T
j ≈ A. In matrix form, this is equivalent

to taking Uk and Vk to be the first k columns of U and V, and Σk to be the
leading k × k submatrix of Σ, yielding Ak = UkΣkV

T
k . In LSI, the effect of

this huge dimensional reduction on the data is a muting of the noise caused by
synonymy and an enhancing of the latent patterns that indicate semantically
similar terms. This means that Ak can actually be a better representation of
the data than the original term-document matrix. The number of dimensions
k to keep in the reduced term-document matrix when d is very large is still
open to study and debate, but experiments indicate that values of k between
100 and 300 typically give the best results (Berry et al., 1995b).

2.2 Folding-In

In LSI, when new documents and terms are added to a dataset, it is necessary
to modify the PSVD of the term-document matrix to reflect these changes.
Because recomputing the PSVD is very expensive, the method of folding-in
new documents and terms is often used.

Let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d, where

t is the number of terms, d is the number of documents, and k is the num-
ber of dimensions used in the PSVD, such that Uk ∈ ℜt×k,Σk ∈ ℜk×k, and
Vk ∈ ℜd×k. Let D ∈ ℜt×p be the term-document matrix that contain the doc-
ument vectors to be appended to A, where p is the number of new documents.
Because we are using the PSVD, D must be projected into the k-dimensional
space, giving Dk: Dk = DTUkΣ

−1
k . The projection Dk ∈ ℜp×k is folded-in

to the existing PSVD of A by appending it to the bottom of Vk, giving the
modified matrix V̂k ∈ ℜ(d+p)×k. Uk and Σk are not modified in any way with
this method. Folding-in documents requires 2ptk operations (O’Brien, 1994).

Folding-in terms follows a similar process. Let T ∈ ℜq×d be the term-document
matrix containing the term vectors to be appended to A, where q is the number
of new terms. T must be projected into the k-dimensional space, giving Tk:
Tk = TVkΣ

−1
k . The projection Tk ∈ ℜq×k is folded-in to the existing PSVD

of A by appending it to the bottom of Uk, giving the modified matrix Ûk ∈

ℜ(t+p)×k. Vk and Σk are not modified in any way with this method. Folding-in
terms requires 2qdk operations (O’Brien, 1994).

4



3 Updating Methods

Updating the PSVD when the term-document matrix changes is a more com-
plicated process than folding-in. However, the end result (in the absence of
roundoff errors) is the exact PSVD of the modified term-document matrix
without recomputing it from scratch. Typically, the PSVD is updated to re-
flect the new documents that have been added to the document collection.
As with folding-in, adding these new documents often means that new terms
must also be added, so the PSVD is updated to reflect these changes. Finally,
the PSVD typically needs to be updated as well to reflect the changes to
the term weights. The following subsections respectively describe document
updating, term updating, and term weight updating. Each method described
is based on the updating method introduced in Zha and Simon (1999). This
method requires one QR decomposition and one SVD per update; however,
these potentially expensive computations are performed on small intermedi-
ate matrices, where the computational complexity depends on the size of the
update and/or the reduced dimension k but not on the size of the original
matrix (see below).

In the following, we let In denote the identity matrix of size n, and we assume
that the PSVD of A is available prior to updating.

3.1 Updating documents

Let D ∈ ℜt×p be the term-document matrix containing the document vectors
to be appended to A, where p is the number of new documents, and let
Ã = [A,D] be the updated term-document matrix. The following method
updates the PSVD of A to give the PSVD of Ã.

Let D̂ =
(

It −UkU
T
k

)

D ∈ ℜt×p. Form the QR decomposition of D̂, QDRD =

D̂, where QD ∈ ℜt×p is orthonormal, and RD ∈ ℜp×p is upper triangular. Then

Ã = [A,D] ≈ [Ak,D] = [Uk,QD]







Σk UT
k D

0 RD













VT
k 0

0 Ip





 .

Now let Â ∈ ℜ(k+p)×(k+p) be the matrix defined by

5



Â =







Σk UT
k D

0 RD





 .

Form the SVD of Â such that

Â =
[

Ûk, Ûp

]







Σ̂k 0

0 Σ̂p







[

V̂k, V̂p

]T
,

where Ûk ∈ ℜ(k+p)×k, Σ̂k ∈ ℜk×k, and V̂k ∈ ℜ(k+p)×k. Then the PSVD of Ã

in k dimensions (the updated PSVD) is

Ãk =
(

[Uk,QD] Ûk

)

Σ̂k













Vk 0

0 Ip





 V̂k







T

.

This updating procedure has a complexity of O(k3 +(d+ t)k2+(d+ t)kp+p3).

3.2 Updating terms

Let T ∈ ℜq×d be the term-document matrix containing the term vectors to be
appended to A, where q is the number of new terms, and let Ã = [A;T] be
the updated term-document matrix. The following method updates the PSVD
of A to give the PSVD of Ã.

Let T̂ ∈ ℜd×q =
(

Id − VkV
T
k

)

TT . Form the QR decomposition of T̂, QTRT =

T̂, where QT ∈ ℜd×q is orthonormal, and RT ∈ ℜq×q is upper triangular. Then

Ã =







A

T





 ≈







Ak

T





 =







Uk 0

0 Iq













Σk 0

TVk RT
T





 [Vk,QT]T .

Now let Â ∈ ℜ(k+q)×(k+q) be the matrix defined by

6



Â =







Σk 0

TVk RT
T





 .

Form the SVD of Â such that

Â =
[

Ūk, Ūq

]







Σ̄k 0

0 Σ̄q







[

V̄k, V̄q

]T
,

where Ūk ∈ ℜ(k+q)×k, Σ̄k ∈ ℜk×k, and V̄k ∈ ℜ(k+q)×k. Then the PSVD of Ã

in k dimensions (the updated PSVD) is

Ãk =













Uk 0

0 Iq





 Ūk





 Σ̄k

(

[Vk,QT] V̄k

)T
.

This updating procedure has a complexity of O(k3 +(d+ t)k2 +(d+ t)kq+q3).

3.3 Updating term weights

Let S ∈ ℜt×s, where s is the number of terms whose term weights are to be
adjusted, be a selection matrix in which each column contains one 1, and all
other entries are zero. Let W ∈ ℜd×s be the matrix in which each column
Wi contains the difference between the old term weights and the new term
weights for term i. Let Ã = A+SWT be the adjusted term-document matrix.
The following method updates the PSVD of A to give the PSVD of Ã.

Let Ŝ ∈ ℜt×s =
(

It − UkU
T
k

)

S; let Ŵ ∈ ℜd×s =
(

Id − VkV
T
k

)

W.

Form the QR decomposition of Ŝ such that QMRM = Ŝ, where QM ∈ ℜt×s

is orthonormal, and RM ∈ ℜs×s is upper triangular.

Form the QR decomposition of Ŵ such that QNRN = Ŵ, where QN ∈ ℜd×s

is orthonormal, and RN ∈ ℜs×s is upper triangular. Then

Ã =A + SWT

7



≈Ak + SWT = [Uk,QM]













Σk 0

0 0






+







UT
k S

RM













VT
k W

RN







T 




[Vk,QN]T .

Now let Â ∈ ℜ(k+s)×(k+s) be the matrix defined by

Â =







Σk 0

0 0





 +







UT
k S

RM













VT
k W

RN







T

.

Form the SVD of Â such that

Â =
[

Ũk, Ũs

]







Σ̃k 0

0 Σ̃s







[

Ṽk, Ṽs

]T
,

where Ũk ∈ ℜ(k+s)×k, Σ̃k ∈ ℜk×k, and Ṽk ∈ ℜ(k+s)×k. Then the PSVD of Ã

in k dimensions (the updated PSVD) is

Ãk =
(

[Uk,QM] Ũk

)

Σ̃k

(

[Vk,QN] Ṽk

)T
.

This updating procedure has a complexity of O(k3 +(d+ t)k2 +(d+ t)ks+s3).

4 Folding-up

It is well known that folding-in is a very inexpensive way to incorporate new
information into an existing term-document matrix compared to recomputing
its PSVD (Berry et al., 1995b). However, because the matrices Vk and Σk are
never changed, the quality of the results produced by folding-in may deterio-
rate (perhaps even rapidly) after even only a small number of updates, espe-
cially if word usage patterns change significantly. On the other hand, updating
the PSVD gives the same result (to within rounding errors) as recomputing
the PSVD, but with significantly less computational expense. The use of par-
allelism could further reduce the computational cost of updating (Berry et al.,
2005; Berry and Martin, 2005). We now describe a hybrid updating method,
which we call folding-up, that uses a combination of folding-in and updating

8



at each increment in order to reduce the computational expense of updating
even further without significantly degrading the results.

The idea behind folding-up is to fold-in documents until the number of folded-
in documents reaches a pre-selected percentage of the current term-document
matrix. If no updates have previously been done, the current term-document
matrix is the initial matrix; otherwise it is the last updated term-document
matrix. Once the number of documents that have been folded-in reaches the
pre-selected percentage of the current matrix, the vectors that have been ap-
pended to Vk during folding-in are discarded. The PSVD is then updated to
reflect the addition of all the document vectors that have been folded-in since
the last update. These document vectors are then discarded. The process con-
tinues with folding-in until the next update. We note that the choice of the
percentage used is empirically based. Further study of measures to determine
when to update during the folding-up process is currently in progress.

The process of folding-up has the overhead of saving the document vectors
that are being folded-in between updates; however, it repays this cost with
a saving in computation time compared to recomputing coupled with the
precision advantages of updating. The complexity of the process is of the same
order as updating, but reduced by a factor that is dependent on the number
of iterations in which updating is replaced by folding-up. We demonstrate
by means of examples below that folding-in produces results that are not
statistically different from those produced by recomputing the PSVD.

5 Experiments

Examples 1 and 2 in Section 5.1 use the Medline text collection (Cornell
SMART System, ftp://ftp.cs.cornell.edu/pub/smart/med), containing 1033
documents and 30 queries. Removing semantically insignificant terms and
stemming the remaining terms give a term-document matrix AMed ∈ ℜ5735×1033.
Examples 3 and 4 in Section 5.2 use the Cranfield text collection (Cornell
SMART System, ftp://ftp.cs.cornell.edu/pub/smart/cran), containing 1400
documents and 225 queries. For this collection, no stemming is done, but
semantically insignificant words are removed, giving a term-document ma-
trix ACran ∈ ℜ5321×1400. Examples 5 and 6 in Section 5.3 use a subset of
the TREC HARD track, http://trec.nist.gov/data/t12 hard.html (2003), with
30,000 documents and 50 queries. Removing semantically insignificant terms
and stemming the remaining terms give a term-document matrix AHARD ∈

ℜ60,547×30,000. For the Medline and Cranfield text collections, we use a term

frequency inverse document frequency (tfidf) weighting scheme (Baeza-Yates
et al., 1999), and for the HARD collection we use a normalized term frequency

(tf) weighting scheme. The measure of similarity is the cosine of the angle

9



between query and document vectors.

For each example, the original term-document matrix is incrementally updated
with document vectors until the number of columns has approximately dou-
bled. Because the results from recomputing the PSVD represent the “ideal”
result, we compare the final average precision obtained for folding-in, updat-
ing, and folding-up with recomputing the PSVD. Statistical comparisons are
made pairwise using a non-parametric Kruskal-Wallis test at significance level
0.05. In each case, the average precision for each of the queries at 11 standard
recall levels (0%, 10%, · · · , 100%) is averaged to produce the overall average
precision after each increment. For each method used, we plot the average pre-
cision at each increment, starting with the initial term-document matrix. All
PSVDs are computed using the Matlab function svds, with k = 125 for the
Medline collection and k = 300 for the Cranfield and HARD collections, where
k is the number of singular values and corresponding left and right singular
vectors computed. For brevity, the experiments described use only document
updating; similar results are produced using term updating.

5.1 Medline Examples

We partition AMed ∈ ℜ5735×1033 so that the first 533 columns form the initial
term-document matrix, and the rest are added incrementally in groups of 10
(Figure 1) and 25 (Figure 2). We compare the average precision for four meth-
ods: recomputing the PSVD at each increment, folding-in at each increment,
updating at each increment, and folding-up with updates when the number of
documents folded-in is approximately 8% of the current matrix size in Figure 1
and 14% in Figure 2, as described in Section 4. Figures 1 and 2 show that the
average precision for folding-in deteriorates rapidly relative to recomputing
the PSVD; the final average precision is significantly different from that of
recomputing the PSVD (p = 0.02 in each case).

In Figure 1, the average precision for updating does not begin to deteriorate
until the initial matrix is more than one and a half times its original size,
and the increments are less than 1.25% of the size of the matrix; the final
average precision is not significantly different from that of recomputing the
PSVD (p = 0.89). Although the deterioration is slight, it does indicate that
doing many updates that are very small relative to the size of the matrix may
eventually have a negative affect on the average precision. However, the savings
in computation time compared to recomputing, as shown in Table 1, may more
than compensate for this potential deficiency; in this case, updating is more
than 100 times faster than recomputing. Figure 1 shows that in this example,
folding-up actually outperforms the other methods for much of the time, and
the final average precision is not significantly different than recomputing the

10



SVD (p = 0.77); it is also faster than either recomputing or just updating. See
Table 1 for a comparison of CPU times.

In Figure 2, the average precision for updating does not deteriorate relative
to recomputing the PSVD, and indeed it is at times slightly better; the final
average precision is not significantly different from that of recomputing the
PSVD (p = 0.84). These results suggest that updating in larger increments,
relative to the size of the matrix, can give better average precision. Again,
Table 1 shows that updating the PSVD is much faster than recomputing each
time the term-matrix changes, but in these examples, folding-in is by far the
fastest method. Folding-up again outperforms the other methods in terms of
precision at various points of the experiment; the final average precision is not
significantly different from that of recomputing the PSVD (p = 0.88). It also
takes less computation time than recomputing or simply updating.

500 600 700 800 900 1000 1100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 1. Average precisions for the
Medline collection with 500 doc-
uments added in 50 groups of 10.

500 600 700 800 900 1000 1100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 2. Average precisions for the
Medline collection with 500 doc-
uments added in 20 groups of 25.

5.2 Cranfield Examples

We partition ACran ∈ ℜ5321×1400 such that the first 700 columns form the ini-
tial term-document matrix, and the rest are added incrementally in groups
of size 14 (Figure 3) and 28 (Figure 4). We compare the average precision
for the four previously described methods, with updates for folding-up when
the number of documents folded-in is approximately 8% of the current matrix
size for Figure 3 and 14% for Figure 4. These figures show that the average
precision for folding-in falls below that of the other methods. For both ex-
amples the final average precision for folding-in is significantly different from
that of recomputing the PSVD (p = 0.03 in each case). We note that the
overall average precision is low because no stemming of terms was done when
the text collection was processed. The average precisions for recomputing and
for updating the PSVD are very similar in Figures 3 and 4, with the final
precisions not being significantly different (p = 0.94 and p = 0.88, respec-
tively), even though Table 1 shows that in each case, updating is more than

11



150 times faster than recomputing the PSVD. Figures 3 and 4 also show that
folding-up performs similarly to both updating and recomputing the PSVD;
the final average precision is not significantly different from that of recomput-
ing the PSVD (p = 0.86 and p = 0.90 respectively). Table 1 shows that for
Figure 3, folding-up is more than three times faster than updating, and more
than 580 times faster than recomputing the PSVD at each increment. Table 1
also shows that for Figure 4, folding-up is almost twice as fast as updating, and
more than 580 times faster than recomputing the PSVD at each increment.

700 800 900 1000 1100 1200 1300 1400

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 3. Average precisions for
the Cranfield collection with
700 documents added in 50
groups of 14.

700 800 900 1000 1100 1200 1300 1400

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 4. Average precisions for
the Cranfield collection with
700 documents added in 20
groups of 28.

5.3 HARD Examples

We partition AHARD ∈ ℜ60547×30000 such that the first 15000 columns form the
initial term-document matrix, and the rest are added incrementally in groups
of size 50 (Figure 5) and 100 (Figure 6). We compare the average precision
for the four methods described above, with updates for folding-in when the
number of documents folded-in is approximately 4% of the current matrix size.

Figures 5 and 6 show that with this document collection, folding-in does not
deteriorate. There is no significant difference between folding-in and recom-
puting for either example (p = 0.97 in each case). This emphasizes the need
for a method to determine at what point the folding-up method should use
an update. We experimented extensively with using the loss of orthogonal-
ity of the singular vectors as a measure of when to update. Unfortunately
this method does not work equally well for all document collections; further
investigation is on-going.

The average precisions for recomputing and updating the PSVD are very
similar in Figures 5 and 6 with the final precisions not being significantly
different (p = 0.96 and p = 0.99, respectively), even though Table 1 shows
that in each case, updating is more than 50 times faster than recomputing
the PSVD. Figures 5 and 6 also show that folding-up performs similarly to

12



both updating and recomputing the PSVD; the final average precision is not
significantly different from that of recomputing the PSVD (p = 0.99 in both
cases). Table 1 shows that in Figure 5 folding-up is more than three times faster
than updating, and almost 200 times faster than recomputing the PSVD at
each increment. Table 1 also shows that in Figure 6 folding-up is more than
twice as fast as updating, and more than 130 times faster than recomputing
the PSVD at each increment.

1.5 2 2.5 3

x 10
4

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 5. Average precisions for a
subset of the HARD collection
with 15000 documents added in
300 groups of 50.

1.5 2 2.5 3

x 10
4

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 6. Average precisions for a
subset of the HARD collection
with 15000 documents added in
150 groups of 100.

Medline Cranfield HARD

Increment 10 25 14 28 50 100

Method CPU CPU CPU CPU CPU CPU

Recomputing 5001.60 2045.80 51548.30 26335.33 716392.37 436486.92

Updating 43.07 22.33 294.28 162.11 12486.20 7199.16

Folding-in 1.35 0.75 7.27 4.13 61.96 42.98

Folding-up 15.76 13.14 88.82 81.57 3622.44 3259.36

Table 1
CPU times (seconds) for the Medline collection with 500 documents added in groups
of 10 and 25, for the Cranfield collection with 700 documents added in groups of 14
and 28, and for a subset of the HARD collection with 15,000 documents added in
groups of 50 and 100.

6 Conclusions

LSI makes heavy use of the PSVD in its implementation. Often, the term-
document matrix changes frequently as new documents and terms are added to
the data collection. In such cases, it is beneficial to exploit the previously com-
puted PSVD via updating. We have demonstrated that updating the PSVD of
the term-document matrix each time these types of changes are made to the

13



matrix is not only much faster (typically by an order of magnitude) than re-
computing the PSVD, but it also gives better average precision than folding-in.
We have also demonstrated that folding-up, a new approach that is a hybrid
of folding-in and updating, can give better average precision than folding-in,
with less computation time (typically by a factor of 2 or 3) than updating
alone. Our examples also illustrate a viable method for determining when to
update in the folding-up procedure based on the number of documents that
are being added as a percentage of the size of the current term-document ma-
trix. The folding-up method offers an excellent speed-up in computation time
(typically by a factor of between 20 and 30) with no statistically significant
loss of overall average precision compared to recomputing the PSVD.

7 Acknowledgements

The authors wish to express their gratitude to Henry Stern for his help with
earlier parts of this work and to Chris Jordan of Dalhousie University for his
assistance in preparing the HARD document collection.

References

Baeza-Yates, R. A., Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Infor-
mation Retrieval. Addison-Wesley Longman Publishing Co., Inc.

Berry, M. W., Martin, D. I., 2005. Principal component analysis for informa-
tion retrieval. In: Kontoghiorghes, E. J. (Ed.), Handbook of Parallel Com-
puting and Statistics. Chapman and Hall/CRC.

Berry, M. W., Dumais, S. T., Letsche, T. A., 1995a. Computational methods
for intelligent information access. Presented at the Proceedings of Super-
computing.

Berry, M. W., Dumais, S. T., O’Brien, G. W., 1995b. Using linear algebra for
intelligent information retrieval. SIAM Rev. 37 (4), 573–595.

Berry, M. W., Mezher, D., Philippe, B., Sameh, A., 2005. Parallel algorithms
for the singular value decomposition. In: Kontoghiorghes, E. J. (Ed.), Hand-
book of Parallel Computing and Statistics. Chapman and Hall/CRC.

Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart/cran.
Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart/med.
Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., Harshman,

R. A., 1990. Indexing by latent semantic analysis. Journal of the American
Society of Information Science 41 (6), 391–407.

Demmel, J. W., 1997. Applied numerical linear algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA.

Golub, G. H., Van Loan, C. F., 1996. Matrix Computations, 3rd Edition. Johns

14



Hopkins Studies in the Mathematical Sciences. Johns Hopkins University
Press, Baltimore, MD.

O’Brien, G. W., 1994. Information tools for updating an SVD-encoded index-
ing scheme. Master’s Thesis, The University of Knoxville, Tennessee.

TREC HARD track, http://trec.nist.gov/data/t12 hard.html, 2003.
Zha, H., Simon, H. D., 1999. On updating problems in latent semantic index-

ing. SIAM J. Sci. Comput. 21 (2), 782–791.

15


