
Parallel Methods for ODEs



Levels of parallelism

There are a number of levels of parallelism that are
possible within a program to numerically solve ODEs.

An obvious place to start is with manual code
restructuring and/or a parallelizing compiler.

This can be augmented with replacing serial routines
with corresponding parallel ones, e.g., linear algebra.

However, these levels of parallelization might not be
expected to yield much in terms of improvement
because a lot of code may still have to run in serial.

A more fruitful approach would likely be to redesign
the fundamental sequential nature of the algorithms
used for solving ODEs to target parallelism, e.g., using
block predictor-corrector algorithms that permit many
values to be computed simultaneously within a step.

This fine-grained approach to parallelization is called
parallelism across the method.
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Levels of parallelism

An important coarse-grained approach can be classified
as parallelism across the system.

In this case, the ODEs themselves are partitioned in
such a way that sub-problems can be solved in parallel.

For example, so-called multi-rate methods partition
the ODEs into sub-problems that are integrated with
different step sizes.

ẏ1 = f1(t,y1,y2),

ẏ2 = f2(t,y1,y2).

The typical scenario is that one system varies rapidly
and hence requires a small step size, whereas the other
system varies slowly and hence can be integrated with
a larger step size.

The key to the success of such methods is the amount
of inter-processor communication that is required.
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Levels of parallelism

A third approach to the parallel solution of ODEs is
called parallelism across the steps.

In this approach, equations are solved in parallel over
a large number of steps.

It is highly likely that an effective strategy for
parallelizing the solution of ODEs will involve aspects
of all three of these levels of parallelism.

It is important to appreciate which types of parallelism
are small scale (and hence can really only take
advantage of a relatively small number of processors)
and those that are large scale (and can take advantage
of massive parallelism, i.e., thousands of processors).

In particular, parallelism across the system has the
potential for massive parallelism, especially for systems
arising from the method of lines.

Parallelism across the method is generally suitable for
small-scale parallelization only.
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When to parallelize

Not every problem needs to be parallelized in order to
find its solution.

There are only two scenarios in which parallelization
makes sense as a way to help solve a problem:

1. The problem is too big to fit into the memory of
one computer.

2. The problem takes too long to run.

The goal in both of these scenarios can be described
as reducing the amount of (real) time it takes to get
the solution1.

Note that this is not the same as reducing the overall
amount of computation.

1In the first scenario, the original time required can be viewed as infinite
(no such single computer exists) or indefinite (until you buy a new computer).
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When to parallelize

Problems that are amenable to parallel solution
typically have some or all of the following attributes:

• The right-hand side function of the ODE is
expensive to evaluate.

• The interval of integration is long.

• Multiple integrations must be performed.

• The size of the system is large.

Of these, the last one is probably the most important.
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Parallel Runge–Kutta methods

Runge–Kutta methods can be analysed for
parallelizability via the sparsity of the Butcher tableau.

As an example, consider a 5-stage explicit Runge–Kutta
method with the following sparsity pattern:

A =













0
× 0
× 0 0
× × × 0
× × × 0 0













Stages (2 and 3) and (4 and 5) can be computed
concurrently.

With this construction, the achievable order is usually
strictly less than what is theoretically possible.

This is particularly noticeable for explicit methods
because of more severe order restrictions; implicit
methods offer more potential in this case.
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Diagonal Runge–Kutta methods

The simplest parallel implicit Runge–Kutta methods
are those with a strictly diagonal A matrix.

Recall that an s-stage implicit Runge–Kutta method
applied to an ODE of size m generally requires
the simultaneous solution of sm nonlinear algebraic
equations at each step.

A strictly diagonal A decouples these equations into s
independent systems of size m that can be solved in
parallel.

It can be shown that the maximum order of Runge–
Kutta methods with strictly diagonal A is 2.

This may be sufficient for some applications, but
generally Runge–Kutta methods with a strictly
diagonal A are of limited use.
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Block-Diagonal RK methods

A natural way to overcome the order barrier
associated with strictly diagonal A and yet maintain
parallelizability is to allow A to be block diagonal.

The blocks can be used to build in other desirable
properties for the method (such as A-stability or high
order) and still be processed in parallel.

An efficient construction is to have the diagonal
elements on a given block be the same.

The following is a 4-stage, 2-parallel, 2-processor, A-
stable method of order 4 (Iserles and Nørsett, 1990):
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Block-Diagonal RK methods

If we further assume that the diagonal blocks may be
full, we can construct a 4-stage, 2-parallel, 2-processor,
L-stable method of order 4 (Iserles and Nørsett, 1990):
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If implemented with 2 processors, the cost of this
method is the same as the two-stage Gauss method,
which is also of order 4, but it is only A-stable, not L-
stable (if that is an advantage for a particular problem).

In general, we will categorize parallel RK methods as
s-stage, k-parallel, and ℓ-processor methods, where k
is the number of blocks, ℓ is the maximum block size,
and s = kℓ is the (usual) number of stages.
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Block-Diagonal RK methods

So far we have only considered Runge–Kutta methods
with completely decoupled diagonal blocks.

If we allow A to be block lower triangular with diagonal
diagonal blocks, we can construct an L-stable method
of order 4 with an embedded method of order 3 for
local error control (Iserles and Nørsett, 1990):
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The first pair of stages can be computed concurrently;
then the second pair of stages can be computed
concurrently, in this case using the same LU

factorization as the first pair.
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Block-Diagonal RK methods

There is an order barrier on block-diagonal RK methods
that can be proved:

Theorem 1. Let λ1, λ2, . . . , λn be the distinct

diagonal coefficients of A with respective multiplicities

µ1, µ2, . . . , µn. Then the order p of any k-parallel,

ℓ-processor parallel DIRK satisfies

p ≤ 1 +
n

∑

i=1

min(µi, k).

Thus the maximum order of any k-parallel, ℓ-processor
SDIRK method (i.e., λ1 = λ2 = . . . = λn) is k + 1.

This is the same order bound for SDIRK methods when
implemented serially.

So improved order can only be attained if diagonal
elements are allowed to vary within a block.
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Multiply implicit RK methods

The structure of the Runge–Kutta matrix A greatly
affects the cost of implementing the method.

We have seen this to be true not only in differentiating
between explicit and implicit RK methods, but also
within the classes of explicit and implicit RK methods
themselves and within serial and parallel architectures.

In 1976, Butcher proposed an ingenious technique for
improving the computational efficiency of an implicit
Runge–Kutta based on transforming A to its Jordan
canonical form.

Suppose there exists a non-singular matrix T such that

TAT−1 = Λ.
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Consider the RK method defined in tensor notation.

Let

Y = (YT
1 ,YT

2 , . . . ,YT
s )T ∈ R

sm,

F(Y) = f(Y1)
T , f(Y2)

T , . . . , f(Ys)
T )T .

Then any RK method can be written as

Y = e⊗ yn + ∆t(A⊗ Im)F(Y), (1a)

yn+1 = yn + ∆t(bT ⊗ Im)F(Y), (1b)

where ⊗ denotes the tensor (or Kronecker) product
between two matrices; i.e., for matrices A ∈ R

mA×nA

and B ∈ R
mB×nB,

A⊗B =







a11B · · · a1,nA
B

... . . . ...

amA,1B · · · amA,nA
B






∈ R

mAmB×nAnB
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Equations (1) represent a system of nonlinear algebraic
equations of size sm.

Each Newton iteration involves solution of the linear
system for the correction δ

(Is ⊗ Im −∆tJ̃)δ = Ψ,

where J̃ is a block matrix of size sm with blocks

J̃(i, j) = aijJ(Yj), i, j = 1, 2, . . . , s,

and

δ = (δT
1 , . . . , δT

s )T , Ψ = (ΨT
1 , . . . ,ΨT

s )T ,

Ψi = −Yi + yn + ∆t

s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

so that Y ← Y + δ.

Freezing J at yn leads to the linear system

(Is ⊗ Im −∆tA⊗ Jn)δ = Ψ. (2)
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Now define

δ̄ = (T⊗ Im)δ, Ȳ = (T⊗ Im)Y,

e⊗ ȳn = (Te)⊗ yn, f̄ = (T⊗ Im)f((T−1 ⊗ Im)Ȳ).

Then (2) becomes

(Is ⊗ Im −∆tΛ⊗ Jn)δ̄ = Ψ̄, (3)

where

δ̄ = (δ̄1
T
, . . . , δ̄s

T
)T , Ψ̄ = (Ψ̄

T

1 , . . . , Ψ̄
T

s )T ,

Ψ̄i = −Ȳi + ȳn + ∆t
s

∑

j=1

aij f̄(Ȳj), i = 1, 2, . . . , s.
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Generally, the LU factorization involved in (2) requires

O(s3m3/3) and O(s2m2)

floating-point operations for the forward and backward
substitutions, respectively.

This is about s3 times the work for a BDF method
because the systems there are size m.

So if this complexity cannot be improved,
implicit Runge–Kutta methods will generally be less
competitive than BDF methods.

Perhaps the only situations in which implicit Runge–
Kutta would be favourable would be those where high-
order, L-stable methods are desired, i.e., for high-
accuracy solutions to large, stiff problems.

In those situations, the facts that (1) BDF methods
are (a) limited in order to 5, (b) not L-stable past first
order, (c) not A-stable past second order and (2) the
poor scaling of s matters less when m is large may tip
the balance in favour of implicit RK methods.
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Now if A has only real eigenvalues and is similar to a
diagonal matrix, the LU factorization in (3) requires

O(sm3/3) and O(sm2) operations.

Furthermore, if A can be constructed to have a one-

point spectrum, i.e., it is similar to the matrix with
diagonal elements λ and subdiagonal elements −λ,
then the LU factorization in (3) requires

O(m3/3) and O(sm2) operations.

These methods are called singly implicit Runge–

Kutta (SIRK) methods.

The nonlinear equations are effectively decoupled and
can be solved sequentially with one LU decomposition.

For parallel implementations, the decoupling is more
important than having only one LU decomposition,
but there are also certain stability advantages of having
a single eigenvalue.
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As we have seen, they compare well against BDF
methods in terms of complexity for solving the linear
systems arising in the Newton iteration.

However, at each iteration of Butcher’s procedure, Y

and F(Y) must be transformed and untransformed by
the similarity matrix T.

If ℓ iterations are required per step, the cost of a SIRK
per step is

O(m3/3 + ℓsm2 + 2ℓs2m).

So again only if m ≫ s, ℓ will a SIRK method
be comparable in overall cost with a BDF method,
assuming of course that both methods perform
satisfactorily in terms of stability, order, etc.

As well as transforming the method to Jordan canonical
form, it is also possible to transform to upper
Hessenberg form.

This procedure is especially beneficial if J can be kept
constant over many steps.
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Waveform Relaxation Techniques

So far we have focused on techniques for parallelism
across the method.

We have seen that although some parallelism is
possible, the factors of improvement are generally small
and bounded even in the limit of infinite processors.

We now turn to a potentially powerful technique for
parallelism across the system.

Because there are many large ODE systems (whose
individual sizes far exceed the number of processors
available to work on them), there is the potential for
massive parallelism.
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Standard application of numerical methods for ODEs
become inefficient for large systems where different
variables vary on different time scales.

The main problem is that the same method and step
size are applied to every component.

The major challenge of allowing methods and step sizes
to change according to the solution component is how
to do this automatically.

In waveform relaxation (WR) methods, the full system
is partitioned into a number of subsystems (potentially
as small as one component each) that are integrated
independently over a number of iterative step sweeps2

with information exchanged between subsystems only
at the end of each sweep.

WR methods were originally introduced by Lelarasmee
in 1982 for solving problems in very large scale
integrated (VLSI) circuit simulation.

2Steps typically have to be re-done until some convergence in the solution
to the full system is achieved.
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Picard iteration

The basic idea of WR is to solve a sequence of ODEs for
a sequence of solutions {y(1)(t),y(2)(t), . . .} starting
from an initial starting solution y(0)(t) with the hope
that the waveforms y(ν)→ y(t) as ν →∞.

The simplest and most well-known approach to this is
the Picard iteration, in which the sequence of ODEs
solved is

ẏ(ν+1) = f(t,y(ν)(t)), y(ν+1) = y0, t ∈ [to, tf ]. (4)

Because the solution to (4) is

y(ν+1)(t) = y0 +

∫ t

t0

f(τ,y(ν)(τ)) dτ,

we have naturally decoupled the problem into m
(embarrassingly) parallel quadrature problems.
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Different quadrature methods can be used on different
components, and if extra idle processors are available,
each individual quadrature can itself be done in parallel.

The only communication is the updating of the
waveforms between processors.

Sadly, Picard iteration usually converges very slowly:

Theorem 2. The global error bound for Picard

iteration applied to the linear test problem ẏ = λy
on t ∈ [0, T ] satisfies

|y(t)− y(ν)(t)| ≤
(|λ|t)ν+1

(ν + 1)!
, t ∈ [0, T ], λ < 0.

Proof: It is easy to see that Picard iteration generates
the waveforms

y(ν)(t) = 1 + λt + . . . +
(λt)ν

ν!
.

The result follows from noting that y(t) = eλt.
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So we see that the order of convergence is increased
by 1 at each iteration.

But we also see that the approximation will not be very
good until

ν ≥ |λ|T.

So if the interval of integration is large or the problem is
stiff (|λ| is large) then many iterations will be required
for an accurate answer.

For nonlinear problems, we can derive a similar result
using the Lipschitz constant L in place of λ.

In practice, the rate of convergence will likely be
unacceptably slow.

A simple idea to improve convergence is to split the
interval of integration into a series of subintervals (or
windows) and perform Picard iteration on each window.

The idea is that convergence can be achieved more
quickly on small windows, and the more accurate
starting values obtained can improve convergence on
subsequent windows.
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Jacobi WR

It seems Picard iteration is too slow for stiff problems
to allow for an efficient parallel implementation.

We now look at more general WR methods.

As an example, consider the following system:

ẏ1 = f1(y1, y2), y1(t0) = y10,

ẏ2 = f2(y1, y2), y2(t0) = y20, t ∈ [t0, T ].

One possible iteration takes the form

ẏ
(ν+1)
1 = f1(y

(ν+1)
1 , y

(ν)
2 ), y

(ν+1)
1 (t0) = y10,

ẏ
(ν+1)
2 = f2(y

(ν)
1 , y

(ν+1)
2 ), y

(ν+1)
2 (t0) = y20;

i.e., for each ν, two decoupled ODEs can be solved in
parallel on [t0, T ].
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Communication between processors occurs only at the
end of the iterate for (possibly interpolated) values of

y
(ν+1)
1 (t) and y

(ν+1)
2 (t).

y
(0)
1,2(t) are arbitrary but satisfy y

(0)
1,2(t0) = y10,20.

Because of its obvious similarity with the Jacobi
method for solving linear systems of equations, this
method is called the Jacobi WR method.

The generalization of Picard iteration takes the form

ẏ(ν+1) = F(t,y(ν+1),y(ν)), y(ν+1)(t0) = y0,

where F : [t0, T ]×R
m×R

m → R
m is called a splitting

function and satisfies

F(t,y,y) = f(t,y).
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The Jacobi iteration satisfies

ẏ
(ν+1)
i = fi(t, y

(ν)
1 , . . . , y

(ν)
i−1, y

(ν+1)
i , y

(ν)
i+1, . . . , y

(ν)
m ),

i = 1, 2, . . . , m.

The formal definition of a Jacobi WR method is as
follows:

Definition 1. A WR scheme is said to be of Jacobi
type if the splitting function F(t,v,w) satisfies

∂F

∂v

∣

∣

∣

∣

v=u,w=u

= diag

(

∂f

∂u

)

.

Of course, the definition assumes ∂f/∂u exists.

The generalization to block Jacobi WR methods is now
simply to allow for block diagonal elements.

The block-structured approach can improve
convergence if e.g., it maintains strong coupling
between parts that are strongly coupled physically.
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Again, the principal advantage of Jacobi WR is that
each component of the system can be solved in parallel.

Disadvantages include that convergence can be slow
and a substantial amount of information may need to
be passed between processors after each iteration if m
and/or T are large.

Being able to identify and maintain the strong coupling
of strongly coupled physical parts can make WR quite
effective in practice.

The main difficulty is in identifying strong coupling
automatically and/or adapting to changes in coupling.

One way to deal with this is to allow for components
to belong to more than one subsystem; i.e., we
allow overlapping of components between different
subsystems.

This is also known as multi-splitting.

27



Multi-splitting WR methods

Multi-splitting is the idea of splitting a given problem
in more than one way, thus allowing for components to
overlap, i.e., to belong to more than one subsystem.

This introduces additional computational overhead
because subsystems are now larger than they strictly
have to be.

The hope is that overlapping will capture and preserve
more of the important physical coupling and hence
result in better convergence.

There remains the difficulty of determining in general
what the overlap should be for a given problem, but
numerical evidence suggests that some overlap is often
better than none.
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Here the concept of overlap represents a symmetric
or two-way overlap; i.e., a given component cannot
belong to only one subsystem.

In order to illustrate this concept, consider a system
of 9 ODEs that has been split into 3 subsystems of
dimension 3 with an overlap of 0, 1, 2, and 3.

We note that an overlap of 3 in this example means
that the second subsystem coincides with the original
system; so it would not make sense in practice have
such a large overlap for such a small system.

More sophisticated multi-splitting methods allow for
non-symmetric overlaps as well as variable overlaps.
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A final issue that must be addressed in multi-
splitting WR methods is the weighting to assign
to the overlapping components when updating the

next waveform; i.e., when a component y
(ν+1)
i (t) is

computed in more than one subsystem, how should
the different values produced be combined to produce

the final y
(ν+1)
i (t) for the next iteration?

Suppose y
(ν+1)
i (t) is computed by

y(ν+1)(t) =
N

∑

ℓ=1

Eℓỹ
(ν+1)
ℓ (t),

where ỹ
(ν+1)
ℓ (t) is from subsystem ℓ and N is the

number of subsystems in which ỹ
(ν+1)
ℓ (t) appears.
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The matrices Eℓ are non-negative diagonal matrices
that satisfy

N
∑

ℓ=1

Eℓ = I;

i.e., we are taking convex combinations of the ỹ
(ν+1)
ℓ (t)

to form y
(ν+1)
ℓ (t).

There is some evidence that suggests an all-or-nothing

weighting is reasonable; e.g., simply assign y
(ν+1)
i (t)

to the first subsystem found containing y
(ν)
i (t).

So in our example, we would set

E1 = diag (1, 1, 1, 0, 0, 0, 0, 0, 0)

E2 = diag (0, 0, 0, 1, 1, 1, 0, 0, 0)

E3 = diag (0, 0, 0, 0, 0, 0, 1, 1, 1)

regardless of the overlap.
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