
Micro-clones in Evolving Software
Manishankar Mondal Chanchal K. Roy Kevin A. Schneider

Department of Computer Science and Engineering, University of Saskatchewan, Canada
{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Detection, tracking, and refactoring of code clones
(i.e., identical or nearly similar code fragments in the code-base of
a software system) have been extensively investigated by a great
many studies. Code clones have often been considered bad smells.
While clone refactoring is important for removing code clones
from the code-base, clone tracking is important for consistently
updating code clones that are not suitable for refactoring. In this
research we investigate the importance of micro-clones (i.e., code
clones of less than five lines of code) in consistent updating of
the code-base. While the existing clone detectors and trackers
have ignored micro clones, our investigation on thousands of
commits from six subject systems imply that around 80% of
all consistent updates during system evolution occur in micro
clones. The percentage of consistent updates occurring in micro
clones is significantly higher than that in regular clones according
to our statistical significance tests. Also, the consistent updates
occurring in micro-clones can be up to 23% of all updates
during the whole period of evolution. According to our manual
analysis, around 83% of the consistent updates in micro-clones
are non-trivial. As micro-clones also require consistent updates
like the regular clones, tracking or refactoring micro-clones can
help us considerably minimize effort for consistently updating
such clones. Thus, micro-clones should also be taken into proper
consideration when making clone management decisions.

Index Terms—Code Clones; Micro-Clones; Consistent Up-
dates; Software Evolution;

I. INTRODUCTION

Code cloning is a common yet controversial practice which
is often employed by the programmers for repeating similar
functionalities during software development and maintenance
[41], [44], [43]. Code cloning refers to the task of copying
one code fragment from one place of a code-base and pasting
it to several other places with or without modifications. Such
copy/paste activities result the existence of identical or nearly
similar code fragments, known as code clones, at different
places of the code-base. A group of similar code fragments
is known as a clone class. Beside copy/paste activities there
can be several other reasons behind creating code clones [45].
Whatever may be the reasons behind code clones, these are
of significant importance from the perspectives of software
maintenance and evolution.

A great many studies [2], [3], [4], [11], [12], [13], [16],
[20], [23], [24], [25], [28], [29], [40], [33], [34], [55], [26],
[27], [51], [49], [15], [47], [58], [39] have been done on de-
tecting and analyzing code clones. While a number of studies
[2], [12], [13], [20], [23], [24], [25] discover some positive
impacts (such as faster software development, reduction of
development costs and efforts) of code clones on software
development and maintenance, other studies [3], [16], [28],
[11], [29], [33], [34], [26], [51], [15] have identified negative
impacts (such as hidden bug-propagation, unintentional incon-

sistencies, late propagation, and high instability) with strong
empirical evidence. Emphasizing the issues related to code
clones researchers suggest to manage them through refactoring
and tracking.

Motivation. Clone size is an important parameter while de-
tecting code clones for analysis and management. The default
value of this parameter is 50 tokens for token-based clone
detectors such as: PMD [38], iClones [10], and CCFinder [19].
This value for line-based clone detectors (such as: NiCad [7],
ConQAT [17], Simian [50]) is 6 lines. According to the study
of Wang et al. [57], the best value of this parameter (i.e., lower
threshold of clone size) for NiCad, ConQAT, and Simian is
5 lines for detecting clones in Java and C source code. For
PMD, iClones, and CCFinder, this best value is 26 tokens.
While most of the studies have used the default value of this
clone size parameter, code clones of minimum 6 lines have
been considered in the benchmarking experiments [52], [5].
Modern clone detectors are moving towards a larger minimum
clone size of 10 to 15 lines or similar [48], [53]. Detecting
code clones with a particular minimum threshold of clone size
is important. Code clones with a size which is smaller than
the minimum threshold (such as single or double line clones)
might not appear to be important for management. However,
from our manual investigation of the changes that occurred to
the source code of our subject systems we experience that code
clones with a very small size, such as single line or two line
clones which are not part of other bigger clones, might often
be important for software maintenance such as consistently
updating the code-base. Focusing on this finding, in this study
we introduce the concept of micro-clones and investigate their
importance in software maintenance and evolution. We define
micro-clones in the following way.

Micro-Clones: Code clones having a size that is smaller
than the minimum size of regular code clones are called micro-
clones in our study. Micro-clones are not parts of regular code
clones. The minimum size of a micro-clone fragment is 1
LOC. In our experiment we use the NiCad clone detector for
detecting regular clones. We detect regular code clones of at
least 5 lines which is the best threshold value for NiCad clone
detector for detecting code clones from Java and C source code
as was reported by Wang et al. [57]. Thus, in our experiment,
a micro-clone fragment can have at most 4 LOC. The existing
studies have considered code clones of less than 5 LOC to
be false positives, and have ignored them. Clone detection
researchers report that code clones of less than 6 LOC are
meaningless [5]. To the best of our knowledge, our study is
the first one to investigate the importance of micro-clones in
software evolution and maintenance.

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

50



Fig. 1. The figure shows consistent updates (modifications) in a pair of single line micro clones from our subject system Jabref. We can see two code
fragments (Code Fragment 1 and Code Fragment 2) in revision 60. We also highlight the single line micro clones residing in these two fragments in revision
60. The corresponding code fragments along with the micro clones in revision 61 have also been shown in the figure. We see that the micro clone fragments
were updated (changed) consistently in the commit operation which was applied on revision 60. From the figure we also realize that the surrounding code of
one micro clone fragment is not similar to that of the other micro clone fragment.

TABLE I
RESEARCH QUESTIONS

SL Research Question
RQ 1 What percentage of the consistent changes occur in micro clones?
RQ 2 Are the consistent changes occurring in micro-clones non-trivial?
RQ 3 What proportion of the code clones in a software system are micro

clones?
RQ 4 What type of consistent updates (addition, modifications, or deletions)

are more frequent in micro-clones?
RQ 5 What is the size of the micro-clones that experience most of the

consistent updates?
RQ 6 Do the micro clone fragments that experience consistent updates

remain in the same file or in different files?

Fig. 1 shows examples of single line micro-clones from our
subject system Jabref. The figure shows that the micro clone
fragments were updated consistently in the commit operation
which was applied on revision 60. Figure caption contains the
details. Fig. 1 implies that consistent changes can also occur in
micro clones. Thus, such clones should not be ignored when
making clone management decisions. Automatic support for
tracking (or refactoring when possible) micro-clones can help
us minimize consistent update effort for such clones.

Approach. We perform our investigation on thousands of
revisions of six open-source software systems written in Java
and C. Considering each system we detect regular code clones
of at least 5 LOC (the best minimum threshold for NiCad)
from each of its revisions using the NiCad clone detector.
We also identify the changes that occurred to the code-base
in each of the commit operations. We identify those changes
that are related to consistent updates of the code-base. We then
determine which of these consistent updates occurred to the
regular clones detected by NiCad and which ones occurred

to the micro-clones. We analyze these consistent updates and
answer six research questions listed in Table I.

Findings. According to our analysis on thousands of com-
mits of six subject systems written in Java, and C:

• Overall around 80% of all consistent updates during the
whole period of evolution occur in micro clones. The
regular code clones experience only 16% of the consistent
updates. Section IV-A discusses the remaining 4% of the
consistent updates. The percentage of consistent updates
(consistent additions, deletions, and modifications) oc-
curring in micro clones is significantly higher than that
in regular clones. The consistent updates that occur in
micro clones can be up to 23% of all updates (additions,
deletion, and modifications) during system evolution.

• Around 83% of the consistent updates occurring in micro-
clones are non-trivial (i.e., the updates have effects on
program execution and output).

The current studies on clone management have only consid-
ered regular clones ignoring the micro-clones. However, our
findings imply that micro clones should also be considered
equally important for management. Our research also reveals
that the number of micro-clones is much higher than the
number of regular clones in a software system. We also
analyze different characteristics of micro-clones. The findings
from our analysis are important from the perspectives of
micro-clone management.

Paper Organization. The rest of our paper is organized
as follows. Section II describes the terminology, Section III
discusses the experimental steps, Section IV presents our
experimental results and analyzes those results to answer
the research questions, Section V discusses the related work,

51



Section VI mentions the possible threats to validity, Section
VII discusses the reproducibility of our research, and Section
VIII concludes the paper by mentioning future work.

II. TERMINOLOGY

A. Different Types of Code Clones

Our research involves detection and analysis of code clones
of all three major clone-types: Type 1, Type 2, and Type 3.
We define these clone-types in the following way according
to the literature [42], [41].

• Type 1 Clones. The identical code fragments residing in
a software system’s code-base are called Type 1 clones.
More elaborately, if two or more code fragments in a
code-base are exactly the same disregarding their com-
ments and indentations, then we call these code fragments
identical clones or Type 1 clones of one another.

• Type 2 Clones. Syntactically similar code fragments
residing in a software system’s code-base are known as
Type 2 clones. Type 2 clones are generally created from
Type 1 clones because of renaming identifiers and/or
changing data types.

• Type 3 Clones. Type 3 clones, also known as near-miss
clones, are generally created from Type 1 or Type 2
clones because of additions, deletions, or modifications
of lines in these clones.

B. Consistent Updates in Code Clones

Code clones have a tendency of being updated consistently.
Clone fragments from the same clone group might often
experience the same or similar changes during evolution. We
define consistent updates in code clones in the following way.

Consistent Update: Let us consider a clone-pair (two code
fragments that are similar to each other) in a particular
revision of a subject system. A commit operation was applied
on the revision, and both of the clone fragments were changed
in the commit. If the two clone fragments experienced the same
or similar change in the commit operation, then we say that
the clone fragments were updated consistently.

In our research we consider the same change case. Thus,
if each of the two clone fragments in a clone-pair experience
the same change in a commit operation we consider that the
clone fragments were updated consistently in the commit.

C. Identifying Consistent Updates in Code Clones

Let us consider that the two clone fragments from a clone-
pair were changed in a particular commit operation. We
determine these changes using UNIX diff. Diff outputs three
types of changes: addition, modification, and deletion. We
consider that the clone fragments were updated consistently
if the following conditions hold:

• In case of addition, the same line(s) were added after the
same line in each clone fragment.

• In case of modification, the same line(s) in each clone
fragment should be modified in the same way. In other
words, the lines that were modified and the lines that

TABLE II
SUBJECT SYSTEMS

Systems Lang. Domains LLR Revs

jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 170
LLR = LOC in the Last Revision Revs = No. of Revisions

we obtain after modification should be the same in each
clone fragment.

• In case of deletion, the same line(s) should be deleted
from each clone fragment.

We can check these conditions by comparing the diff outputs
corresponding to the changes in the two clone fragments.

III. EXPERIMENTAL STEPS

We conduct our experiment by downloading six subject
systems written in Java and C from an on-line SVN repository
[37]. Our subject systems have been listed in Table II. We
select these systems for our study, because these are of
diverse variety in terms of application domains, and size.
The revision histories of these systems are also of different
lengths. Moreover, the systems are written in two different
programming languages. We intentionally select our subject
systems emphasizing their diversity so that we can generalize
our findings. We perform a number of experimental steps for
each of the systems. Fig. 2 shows the sequential flow of these
steps. A brief description of each of these steps is given below.

• Downloading each of the revisions (as mentioned in Table
II) of the subject system from the SVN repository.

• Preprocessing the source code files in each revision by
removing comments and blank lines.

• Detecting changes between the corresponding source
code files of every two consecutive revisions by applying
UNIX diff.

• Detecting code clones from each of the revisions by
applying the NiCad clone detector.

• Mapping the changes that occurred to each revision to
the already detected code clones in that revision by using
line numbers of the changes and clones.

• Identifying consistent updates by following the procedure
described in Section II.

• Identifying consistent updates in regular clones and
micro-clones following the procedure in Section IV-A.

We detect code clones using the well known clone detector
NiCad [7] that can detect all three types of clones (Type 1,
Type 2, and Type 3) with high precision and recall [44], [46].
A recent study [54] shows that NiCad is a good choice among
the modern clone detectors in term of detection accuracy. As
suggested in Wang et al.’s [57] study, we detect regular code
clones of at least 5 LOC using NiCad. We also use NiCad for
detecting micro-clones of at most 4 LOC.

52



Fig. 2. Experimental steps for detecting consistent updates in regular clones and micro-clones

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our experiments, report our
experimental results, and analyze our results to answer the
research questions in Table I.

A. Answering the First Research Question (RQ 1)

RQ 1: What percentage of the consistent updates (i.e.,
consistent changes) occur in micro clones?

Motivation. Answering this question is important. As the
regular code clones require consistent updates, the existing
clone trackers consider regular clones for tracking so that such
clones can be updated consistently with reduced effort. If we
find that micro clones also require consistent updates, then
micro clones should also be tracked by the clone trackers.
Tracking micro-clones will help us minimize effort for con-
sistently updating such clones. We perform out investigation
in the following way.

Methodology. We analyze each of the commit operations of
a subject system for answering RQ 1. Considering a particular
commit we extract the changes (using UNIX diff) that occurred
in the code-base. Following the procedure described in Section
II we identify the consistent updates. We first determine which
of these consistent updates occurred in regular code clones.
The remaining consistent updates occurred in micro-clones.
In the following paragraph we provide a clarifying example.

Let us consider a pair of consistent updates. In each of
these updates, a single line of code was modified (e.g., Fig.
1). Let us consider that in one update the line l1 was changed
to l1,modified. In the other update, the line l2 was changed to
l2,modified. These two updates occurred in the same commit
operation. As these updates are consistent updates, we can
realize that the two lines l1 and l2 are identical, and also, the
lines l1,modified and l2,modified are identical. We first examine
whether the two lines l1 and l2 (i.e., the lines before the
occurrence of the updates) belong to the regular code clones
detected by NiCad. If this is true, then we consider these
updates as consistent updates to regular clones. However, if the
identical lines l1 and l2 do not belong to regular clones, then
they are parts of a micro clone pair. Let us consider that the
micro clone fragments mcf1 and mcf2 make this pair where
mcf1 contains l1 and mcf2 contains l2. These micro clone
fragments can be of 4 LOC most. They can even be single line
micro clones, and in this case, mcf1 and mcf2 only consist
of the lines l1 and l2 respectively. The surrounding code of l1
is not similar to that of l2 in this case.

We detect all three types of regular code clones using the
NiCad clone detector, and then determine which of the consis-
tent updates occurred in these regular clones. The remaining
consistent updates occurred in micro-clones. We should note
that two consistent updates that did not occur in regular clones
were considered to have occurred in micro-clones if these
updates satisfy the following conditions:

• In the case of consistent additions, none of the additions
was made after a line that contains only a single character.

• In the case of consistent deletions, none of the deletions
involved deleting only a single line that contains only a
single character.

• In the case of consistent modifications, none of the
modifications was made to a single line that contains only
a single character.

We apply these conditions, because we were careful that
lines containing a single character should not be considered
as micro-clones. However, we did not apply these condi-
tions when determining whether consistent updates occurred
in regular clones, because regular clones might have lines
containing only a single character and additions, deletions
or modifications might happen to such lines. Such consistent
updates can also occur to micro-clone fragments that contain
more than one line. However, our restrictions regarding micro-
clones help us in avoiding unmeaningful micro-clones. By
examining all the commit operations of a subject system we
determine the following measures:

• AU (All Updates): The total number of updates (addi-
tions, deletions, and modifications) that occurred during
the whole period of system evolution.

• ACU (All Consistent Updates): The total number of
consistent updates.

• CURC (Consistent Updates in Regular Clones): The
total number of consistent updates in regular clones.

• CUMC (Consistent Updates in Micro Clones): The
total number of consistent updates in micro-clones.

• UCU (Uncategorized Consistent Updates): The total
number of consistent updates that neither occurred in
regular clones nor were considered to have occurred in
micro-clones. Such consistent updates involve additions
after, deletions of, or modifications to lines containing
only a single character.

In Table III, we show these measures for each of our subject
systems. We see that the number of uncategorized consistent
updates (UCU) is very low for each system. For three subject

53



TABLE III
NUMBER OF CONSISTENT UPDATES IN REGULAR AND MICRO CLONES

Systems AU ACU CURC CUMC UCU

jEdit 6261 669 0 554 115
Freecol 16320 3565 500 3063 2
Carol 8253 1714 0 1551 163
Jabref 14917 1777 861 904 12
Ctags 2114 109 35 74 0
Camellia 3118 749 0 719 30
AU = Total number of updates during the whole period of evolution.
ACU = Total number of consistent updates during whole evolution period.
CURC = Total number of consistent updates in regular code clones.
CUMC = Total number of consistent updates in Micro-clones.
UCU = Total number of consistent updates that neither occurred in regular

clones nor were considered to have occurred in micro-clones.

jEdit Freecol Carol Jabref Ctags Camellia Overall
0

20

40

60

80

Percentage of consistent updates that occurred in regular clones with
respect to all consistent updates
Percentage of consistent updates that occurred in micro-clones with
respect to all consistent updates

Fig. 3. Comparing the percentages of consistent updates in regular clones
and micro-clones with respect to all consistent updates

systems, jEdit, Carol, and Camellia, there were no consistent
updates in regular clones. For each of the candidate systems,
the number of consistent updates in micro clones is higher
compared to regular clones.

We also determine the percentages of consistent updates
that occurred in regular clones and micro-clones with respect
to all consistent updates. These percentages for each of our
candidate systems are shown in Fig. 3. From the figure it
is clear that the percentage regarding micro clones is always
greater than the percentage regarding regular clones. We also
show the overall percentages (the two right most bars in Fig.
3) considering all subject systems. We see that while overall
80% of all consistent updates occur in micro clones, only
16% of the consistent changes occur in regular clones. The
remaining 4% of the consistent updates are uncategorized
consistent updates.

Statistical Significance Test. We also wanted to determine
whether the percentage of consistent updates in micro clones
is significantly higher than the percentage of consistent up-
dates in regular clones. We investigate six subject systems
in total. Thus, we have six percentages for micro clones,
and six corresponding percentages for regular clones. We
perform Mann-Whitney-Wilcoxon (MWW) tests [30], [31]

jEdit Freecol Carol Jabref Ctags Camellia Oveall
0

10

20

Percentage of consistent updates that occurred in regular clones with
respect to all updates
Percentage of consistent updates that occurred in micro-clones with
respect to all updates

Fig. 4. Comparing the percentages of consistent updates in regular clones
and micro-clones with respect to all updates

to determine whether the six percentages for micro clones
are significantly different than those for regular clones. We
conduct our tests considering a significant level of 5%. We
should note that MWW test is non-parametric [30], and thus,
it does not require the samples to be normally distributed.
MWW test can be applied to both small and large sample
sizes. From our tests we see that the percentages regarding
micro clones are significantly different than the percentages
regarding regular clones with a p-value of 0.00512 for the
two-tailed test case. As the percentage regarding micro clones
is always higher than the percentage regarding regular clones,
we realize that the percentage of consistent updates in micro
clones is significantly higher than the percentage of consistent
updates in regular clones.

Fig. 4 shows the percentage of consistent updates in micro
clones and regular clones with respect to all updates during
the whole period of evolution. From the graph we realize that
the percentage of consistent updates that occur in micro clones
can often be considerable with respect to all updates during
evolution. The graph shows that overall around 13.46% of all
updates are consistent updates that occur in micro-clones. This
percentage for regular clones is only 2.73%. The percentage
regarding micro clones of our subject system Camellia is the
highest one (around 23%) according to Fig. 4.

Answer to RQ 1: From our investigation and analysis
we can state that around 80% of all consistent updates
during system evolution occur in micro clones. Also,
only 16% of the consistent updates occur in regular
clones. According to our statistical significance tests,
the percentage of consistent updates occurring in micro
clones is significantly higher compared to regular clones.
We also find that the consistent updates that occurred in
micro clones can be up to 23% of all updates.

Our findings imply that we should not ignore micro clones
while making clone management (refactoring and/or tracking)
decisions, because micro clones experience a significantly
higher percentage of consistent updates compared to regular

54



jEdit Freecol Carol Jabref Ctags Camellia Oveall
0

20

40

60

80

100

Percentage of non-trivial consistent updates in micro clones

Percentage of trivial consistent updates in micro clones

Fig. 5. Comparing the percentages of trivial and non-trivial consistent updates
in micro-clones

clones. Tracking or refactoring (when possible) micro-clones
can help us minimize effort for consistent updates in such
clones. The existing studies on detection and management of
code clones only focus on regular clones. From our findings
we believe that micro clones should also be considered equally
important for refactoring and tracking. Possibly, tracking is the
most suitable technique for managing micro clones, because
these are very small in size compared to regular clones. In a
previous study on regular clones, Zibran et al. [60] found that
larger regular clones are more attractive to the programmers
for refactoring. As micro clones are even smaller than the
minimum size of the regular clones, micro clones may not
be promising to the programmers for refactoring. In the next
research question (RQ 2) we analyze whether the consistent
updates occurring in micro-clones are trivial or not.

B. Answering the Second Research Question (RQ 2)

RQ 2: Are the consistent changes occurring in micro-clones
non-trivial?

Motivation. In order to realize the importance of micro-
clones, we need to know whether the consistent updates
occurring in micro-clones are at all meaningful. If we see that
micro-clones experience non-trivial consistent updates during
evolution, then it should be a good motivation behind consid-
ering micro-clones for management. We manually analyze the
consistent changes that occurred in micro-clones to determine
whether they are trivial or not. We perform our investigation
in the following way.

Methodology. We identify the consistent updates (additions,
modifications, and deletions) in micro clones by sequentially
examining the commit operations of a subject system as
described in RQ 1. We record the distinct updates in an HTML
file, and then manually analyze these updates to determine
whether they are trivial or not. We previously noted that
we process the source code in each revision by removing
comments and blank lines before applying UNIX diff and
identifying consistent updates. Kawrykow and Robillard [21]
investigated non-essential changes in the code-base. They
report that rename-induced modifications, local variable ex-
traction, trivial keyword modification, and whitespace updates
can be considered as non-essential changes. We mark such

changes as trivial ones during our manual analysis of the
HTML files. From each of the subject systems we record the
first 50 distinct consistent updates in micro-clones during our
sequential examination of the commit operations. From our six
candidate systems we record 300 consistent updates in total.
We manually analyze these updates and annotate each one as
a trivial or non-trivial one. We then determine the percentage
of trivial and non-trivial consistent updates in micro-clones.
We show these percentages for each subject system in Fig. 5.
The figure shows that the percentage of non-trivial consistent
updates is much higher than the corresponding percentage
of trivial consistent updates in each subject system. All the
consistent updates in micro clones of our subject system
Freecol are non-trivial. We see that overall around 83% of
the consistent updates can be non-trivial. Such an observation
complies with the findings of Kawrykow and Robillard [21].
They found that overall 15% of the updates in a system can
be trivial updates. In our manual investigation this percentage
is 17% (=100-83) overall.

For each of the subject systems we generate a HTML file
that contains the first 50 distinct consistent updates in micro-
clones of that system. We annotate the HTML files by marking
each consistent update as a trivial or a non-trivial one. These
HTML files are available on-line [6]. During our manual
analysis we observe that the non-trivial consistent updates
mostly occur in method calls, assignment statements, and if-
conditions residing in micro-clone fragments.

Answer to RQ 2: According to our analysis, most of
the consistent updates (83% of the consistent updates)
occurring in micro-clones are non-trivial updates.

Our findings imply that the consistent changes occurring in
micro-clones are mostly non-trivial. Thus, micro-clones should
not be ignored when deciding about clone management.

C. Answering the Third Research Question (RQ 3)

RQ 3: What proportion of the code clones in a software
system are micro clones?

Motivation. From our answer to RQ 1 we realize that most
of the consistent updates during system evolution occur in
micro clones rather than regular clones. We wanted to make
a comparison between amounts of micro clones and regular
clones in a software system. If we see that the number of micro
clones is much higher compared to the number of regular code
clones in a software system, then it is possibly more important
to investigate the micro clones and see which ones are more
likely to experience consistent updates. We answer RQ 3 in
the following way.

Methodology. For answering RQ 3 we investigate the last
revision (the latest revision as mentioned in Table II) of each
of our subject systems. We first apply the NiCad clone detector
on the latest revision in order to detect the regular clones of at
least 5 lines of code. Then, we again apply NiCad for detecting
code clones with a minimum of one line and a maximum of 4
lines of code. However, many of these code clones can reside

55



TABLE IV
NICAD SETTINGS FOR DETECTING REGULAR AND MICRO-CLONES

Clone Min Max Identifier Dissimilarity
Granularity Line Line Renaming Threshold

Regular Clones block 5 20000 blind renaming 20%
Micro Clones block 1 4 blind renaming 20%

TABLE V
NUMBER OF DISTINCT REGULAR AND MICRO CLONE FRAGMENTS IN EACH

OF OUR SUBJECT SYSTEMS

jEdit Freecol Carol Jabref Ctags Camellia

CRC 3823 305 226 171 139 93
CMC 6146 4449 2244 2306 284 203
CRC = Count of Regular Clones. CMC = Count of Micro Clones.

in the already detected regular clones. By excluding such code
clones that reside in regular clones we get the micro clones.

Table V shows the number of distinct regular and micro
clone fragments in the last revision of each of our candidate
systems. We detected regular clones and micro clones of all
three types (Type 1, Type 2, and Type 3) using the settings
in Table IV. Section II contains the definitions of these three
clone-types. By looking at the settings we can realize that
there can be no Type 3 micro clones with such settings. A
micro clone fragment can only have 4 lines of code at most.
Let us consider a micro clone pair that consists of micro clone
fragments each having 4 lines of code. If one line in a clone
fragment differs than the corresponding line of code in the
other fragment, then the proportion of dissimilarity between
the two fragments becomes 25% (one line is different within 4
lines), and it exceeds the dissimilarity threshold as mentioned
in Table IV. Thus, the number of micro-clones reported in
Table V include Type 1 and Type 2 micro clones only.

From Table V we realize that the number of micro clones
in a subject system is generally higher than the number of
regular clones. Considering all subject systems we find that
the number of micro clones is around three times higher than
the number of regular clones. In Fig. 6 we can also see the
comparison of the amounts of regular and micro clones in
percentages. The overall percentages of regular and micro
clones considering all subject systems are around 23.33% and
76.67% respectively.

Answer to RQ 3: From our experimental results and
analysis we realize that the number of micro clones in a
software system is generally higher than the number of
regular clones in that system. Micro clones are around
thrice in quantity compared to regular clones.

For each subject system we create two HTML files. One file
contains distinct pairs of Type 1 micro clones, and the other file
contains distinct pairs of Type 2 micro clones. We previously
mentioned that Type 3 micro clones are not possible with the
settings (Table IV) that we have used. These two files for each
subject system are available on-line [6]. By looking at the Type

jEdit Freecol Carol Jabref Ctags Camellia Oveall
0

20

40

60

80

100

Percentage of distinct micro clone fragments with respect to all clone
fragments (i.e. w.r.t. distinct regular and micro clone fragments)
Percentage of distinct regular clone fragments with respect to all clone
fragments

Fig. 6. Comparing the percentages of regular and micro-clones

1 and Type 2 micro clone pairs it seems that Type 1 micro
clones are more suitable for management (such as tracking or
refactoring) than Type 2 ones. However, the number of Type 2
micro clones is much higher than Type 1 micro clones. We also
observe that micro clones mostly consist of small methods, if-
blocks, else-blocks, try-blocks, and catch-blocks.

From RQ 1 and RQ 3 we realize that the number of
micro clones in a software system is generally much higher
compared to regular clones, and more importantly, most of
the consistent changes during software evolution occur in the
micro clones. Moreover, our answer to RQ 2 implies that
the consistent updates occurring in micro-clones are mostly
non-trivial. As the number of micro clones is very high in a
software system, it is possibly important to analyze which ones
have higher possibilities of experiencing consistent updates,
and which type of consistent updates they mostly experience.
These analyses can help us devise mechanisms for efficient
management of micro clones. We perform such analyses in
the following research questions.

D. Answering the Fourth Research Question (RQ 4)

RQ 4: What type of consistent updates (addition, modifica-
tions, or deletions) are more frequent in micro-clones?

Motivation. Answering RQ 4 is important from the perspec-
tive of clone tracking. If it is observed that a particular type
of consistent update (additions, deletions, or modifications)
is more likely to occur in micro-clones compared to other
types, then this information can help us develop a change
type sensitive clone tracker. When a clone tracker having the
capability of tracking micro-clones will sense that particular
type of update in a micro clone fragment, it can assume a high
likeliness that the other micro clone fragments in the same
group (i.e., in the same micro clone class) will also require
that update to keep the micro clone fragments consistent. We
perform our investigation in the following way.

Methodology. By following the methodology described in
RQ 1 we identify the consistent updates that occurred in
micro clones. Considering each of these updates we determine
whether this is an addition, modification, or deletion. We
examine all the consistent updates that occurred in micro-
clones during the whole period of evolution and determine
how many of these are consistent additions, modifications, or

56



TABLE VI
NUMBER OF DIFFERENT TYPES OF CONSISTENT UPDATES IN MICRO

CLONES

Systems CUMC CAMC CMMC CDMC

jEdit 554 64 387 103
Freecol 3063 282 2592 189
Carol 1551 298 1085 168
Jabref 904 120 710 74
Ctags 74 18 42 14
Camellia 719 43 649 27
CUMC = Total number of consistent updates in Micro-clones.
CAMC = Total number of consistent additions in Micro-clones
CMMC = Total number of consistent modifications in Micro-clones
CDMC = Total number of consistent deletions in Micro-clones

jEdit Freecol Carol Jabref Ctags Camellia Oveall
0

20

40

60

80

Percentage of consistent additions to micro clones with respect to all
consistent updates to micro clones
Percentage of consistent modifications to micro clones with respect to
all consistent updates to micro clones
Percentage of consistent deletions to micro clones with respect to all
consistent updates to micro clones

Fig. 7. Comparing the percentages of different types of consistent updates in
micro-clones

deletions. We show these numbers in Table VI for each of
our candidate systems. From the table we see that the number
of consistent modifications in micro clones is generally much
higher than the number of consistent additions, and consistent
deletions. Fig. 7 shows the percentages of different types
of consistent updates with respect to all consistent updates
during the whole evolution. The graph clearly demonstrates
that the percentage of consistent modifications is always higher
than the corresponding percentages of additions or deletions.
We also show the overall percentages considering all subject
systems. We see that overall around 80% of all consistent
updates in micro clones are consistent modifications. The
overall percentages for consistent additions and deletions are
12% and 8% respectively.

We also wanted to understand whether the percentage
of consistent modifications in micro clones is significantly
higher compared to the percentage of consistent additions and
deletions. We performed Mann-Whitney-Wilcoxon tests [30],
[36], [31] for this purpose. We first determine whether the
percentages of consistent modifications from our six subject
systems are significantly different than the six percentages re-
garding consistent additions. We perform our tests considering
a significance level of 5%. From our tests we realize that
the percentages of consistent modifications are significantly

different than those of consistent additions with a p-value
of 0.005 for the two tailed test case. As the percentage of
modifications is always higher, we can decide that the percent-
age of consistent modifications to micro clones is significantly
higher than the percentage of consistent additions to such
clones. We also perform MWW tests [30], [36], [31] in a
similar way to determine whether the percentages of consistent
modifications are significantly higher than the percentage of
consistent deletions. Our test results (with a p-value of 0.005)
again confirm that the percentage of consistent modifications is
significantly higher than the percentage of consistent deletions.

Answer to RQ 4: According to our investigations
and analysis, most of the consistent updates that occur
in micro clones are consistent modifications. We also
find that the proportion of consistent modifications to
micro clones is significantly higher than the proportions
of consistent additions or deletions to such clones.

Our findings imply that a micro clone tracker should pri-
marily focus on notifying programmers when a micro clone
fragment will experience a modification so that the program-
mer does not miss to propagate the same modification to the
other micro clones in the same group if necessary.

E. Answering the Fifth Research Question (RQ 5)

RQ 5: What is the size of the micro-clones that experience
most of the consistent updates?

Motivation. Answering RQ 5 is important for developing a
micro clone tracker. If it is observed that most of the consistent
updates occur in the micro clones of a particular size (in term
of lines of code), then we can mainly consider detecting and
tracking micro-clones of that particular size. We perform our
investigation in the following way.

Methodology. We first identify the consistent updates that
occurred in micro-clones by following the procedure described
in RQ 1. Considering each pair of consistent updates that
occurred in a micro-clone pair, we determine the size of the
micro clone fragments in the pair. Determining the size of the
micro clone fragments is tricky. We do it in the following way.

Let us consider two consistent modifications occurred to
two lines l1 and l2 in the code-base. The lines l1 and l2 are
identical according to our considerations in Section II. As we
mentioned in RQ 1, l1 and l2 can be parts of a micro clone
pair where each of the two fragments in the pair contains more
than one line of code. We analyze the code surrounding l1 and
l2 and then determine two code fragments with maximum size
such that:

• One code fragment contains the line l1, and the other
fragment contains l2.

• The code fragments exhibit Type 1 or Type 2 similarity,
and thus, they are of the same size.

• The fragments are disjoint in the case they belong to the
same source code file.

The above conditions ensure that the two code fragments
make a micro clone pair. The surrounding code (i.e., the

57



TABLE VII
NUMBER OF CONSISTENTLY UPDATED MICRO CLONE PAIRS OF DIFFERENT

SIZES

jEdit Freecol Carol Jabref Ctags Camellia

Size 1 237 566 1053 182 31 950
size 2 121 12866 265 138 24 940
Size 3 107 22754 504 88 4 176
Size 4 113 698 1024 125 7 377

jEdit Freecol Carol Jabref Ctags Camellia
0

20

40

60

Percentage of consistently updated micro clone pairs of size 1

Percentage of consistently updated micro clone pairs of size 2

Percentage of consistently updated micro clone pairs of size 3

Percentage of consistently updated micro clone pairs of size 4

Fig. 8. Percentages of consistently updated micro clone pairs

contexts) of these two micro clone fragments are different,
because we determine the biggest fragments that are similar
to each other. We record the size of the clone fragments in
the pair. Size is the number of source code lines in a fragment
of the clone pair. We can easily understand that the lowest
possible value of this size is one, and the highest possible
value is four. Table VII shows the number of consistently
updated micro clone pairs with different size for each subject
system. Fig. 8 shows the percentages of such micro clone
pairs of different sizes. From Fig. 8 we realize that the
percentage of consistently updated micro clone pairs of size
one is the highest for four subject systems: jEdit, Carol, Jabref,
and Ctags. In case of Freecol, the percentage regarding size
three is the highest. The graph implies that the percentage of
consistently updated single line micro clone pairs is the highest
for most of the subject systems.

Answer to RQ 5: According to our investigation, sin-
gle line micro clones experience the highest percentage of
the consistent updates for most of our candidate systems.
The percentage regarding double line micro clones is also
very high for most of the cases.

Our finding implies that it is better not to ignore micro
clones of any size from consideration. However, single line
micro clones have the highest possibility of experiencing
consistent updates for most of the subject systems.

F. Answering the Sixth Research Question (RQ 6)

RQ 6: Do the micro clone fragments that experience
consistent updates remain in the same file or in different files?

jEdit Freecol Carol Jabref Ctags Camellia
0

20

40

60

80

Percentage of consistently updated micro clone pairs having clone
fragments from the same file

Percentage of consistently updated micro clone pairs having clone
fragments from different files

Fig. 9. Percentages of consistently updated micro clone pairs having clone
fragments from the same file or different files

Motivation. Answering this question is important for de-
tecting and tracking micro-clones. If it is observed that the
micro clone fragments that experience consistent updates
generally reside in the same source code file, then we can
primarily focus on detecting and tracking micro clones from
the same file. Thus, the answer from RQ 6 might help us in
efficient designing of a micro-clone detector and tracker. We
investigate this in the following way.

Methodology. We identify the consistent updates in micro
clones by following the procedure described in RQ 1. We
analyze each pair of consistent updates that occurred in micro
clones, and determine whether the micro clone fragments
experiencing the consistent updates reside in the same file or
in different files. We perform this analysis for all pairs of
consistent updates that occurred in micro clones during the
whole period of evolution, and then determine the number
of cases where the consistent updates in a pair occurred in
the same file or in different files. In Fig. 9, we show the
percentages of such cases with respect to all pairs of consistent
updates. The figure shows that the percentage of consistently
updated micro clone pairs consisting of clone fragments from
the same file is most of the time (for five out of six subject
systems) higher than the percentage of consistently updated
pairs consisting of clone fragments from different files.

Answer to RQ 6: According to our experimental
results, micro clone fragments that experience consistent
updates mostly remain in the same file. However, the
subject systems: Freecol, Jabref, and Ctags in Fig. 9 show
that micro clone pairs each having clone fragments from
different files can often require consistent updates. For
our subject system Freecol, the percentage of micro clone
pairs each having clone fragments from different files is
much higher compared to the percentage of micro clone
pairs each having clone fragments from the same file.

V. RELATED WORK

A great many studies [2], [3], [11], [12], [13], [16], [20],
[23], [24], [25], [22], [28], [29], [40], [33], [34], [55], [26],
[51], [15], [47], [58], [59] have been done on detecting,

58



analyzing, and managing code clones. Software researchers
suggest that code clones having a size of less than 6 lines
of code are meaningless from the perspective of management
[5]. None of the existing studies have detected and analyzed
code clones of less than 5 lines of code for refactoring and/or
tracking considering that these are possibly spurious clones in
terms of maintenance. However, in our study we investigate
the importance of micro clones (code clones of less than 5
LOC) in software evolution.

A number of studies [8], [9], [14], [56], [32] have investi-
gated clone tracking. The main purpose of clone tracking is
to ensure consistent updates to the code clones. The existing
studies only consider regular clones for consistent updating.
From our study we find that 80% of the consistent updates
occur in micro-clones during evolution. The regular code
clones only experience 16% of the consistent updates. Our
study thus implies that micro-clones should also be considered
for tracking.

A number of studies [16], [20], [23], [24], [25], [28], [29],
[33], [34] have investigated the impacts of code clones on
software evolution and maintenance. However, these studies
were conducted considering the regular code clones only. In
our study we investigate the importance of micro-clones in
software evolution. Micro-clones have been ignored by the
existing studies on clone impact.

A number of studies [18], [1], [61] have been conducted on
detecting and analyzing the evolutionary coupling of software
entities such as files, classes, and methods. The goal of these
studies is to identify which entities have a tendency of getting
changed together. If two or more entities have a tendency of
changing together, then while changing one of these entities in
future we can suggest the other entities to the programmer to
make changes to these entities consistently with that particular
entity. Most of the studies on evolutionary coupling have been
done on file level evolutionary coupling. Such studies identify
which other files might need to be changed consistently when
a programmer attempts to change a particular file. There are
some studies on method level evolutionary coupling too. In
our study we discover that micro-clones have a tendency of
being updated consistently. Thus, our study contributes to dis-
covering evolutionary coupling considering a finer granularity
(code fragment level granularity of even 1 line).

From our previous discussion it is clear that the existing
studies on clone analysis have ignored micro-clones. Our
experimental results imply that micro-clones should be con-
sidered equally important when making clone management
decisions. The findings from our research questions are impor-
tant towards building a clone tracker considering micro-clones.
We believe that our research makes a significant contribution
towards better management of software systems.

VI. THREATS TO VALIDITY

We conduct our investigations by detecting regular code
clones using the NiCad clone detector [7]. For different
settings of the clone detector, the experimental results and
findings can be different. Wang et al. [57] mentioned this

problem as the confounding configuration choice problem
and performed an in-depth investigation in order to find the
most suitable configurations for different clone detectors. The
setting that we have used for NiCad for detecting regular code
clones was suggested to be the most suitable one by Wang et
al. [57]. Thus, we believe that our findings are important for
consistent evolution of software systems.

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the importance
of micro clones. However, our candidate systems were of
diverse variety in terms of application domains, sizes, revi-
sions, and implementation languages. Thus, we believe that
our findings cannot be attributed to a chance, and these are
important from the perspectives of clone management.

VII. VERIFIABILITY OF RESEARCH

The clone detection tool (NiCad [7]) as well as the subject
systems that we have used in our experiment are available
on-line [35], [37]. The NiCad settings that we have used
for detecting regular and micro clones have been shown in
Table IV. While answering the research questions we have
presented tables containing the raw data obtained from our
investigations. We have created HTML files for our manual
analysis, and these files are also available on-line [6]. Thus,
our research presented in this paper is reproducible.

VIII. CONCLUSION

In our research, we investigate the importance of micro
clones (code clones of 4 LOC or less) in software mainte-
nance and evolution. The existing studies have always ignored
such small clones considering that those are spurious clones.
However, from our experiments on thousands of revisions of
six diverse subject systems written in Java and C languages
we realize that around 80% of the consistent updates during
the whole period of evolution occur in micro clones. The
percentage of consistent updates occurring in micro clones is
significantly higher than the percentage of consistent updates
in regular clones (code clones of 5 LOC or more). We also
find that the consistent updates that occur in micro clones
can be around 23% of all updates during system evolution.
Thus, micro clones should not be ignored when making clone
management decisions. Automatic support for tracking micro
clones can help us considerably minimize effort for making
consistent updates to such clones. We manually analyze the
consistent updates occurring in micro-clones, and realize that
most of these updates (around 83%) are non-trivial. From
our further analysis we discover that consistent modifications
are the dominant consistent updates in micro clones. For
most of our subject systems, single line micro-clones have a
higher tendency of experiencing consistent updates compared
to micro-clones of other sizes. We believe that our findings
are important for developing a micro-clone tracker. We plan
to develop such a clone tracker in the future considering our
findings from this research. The HTML files regarding our
manual analysis of the consistent updates in micro-clones are
available on-line [6].

59



REFERENCES

[1] A. Alali, B. Bartman, C. D. Newman, J. I. Maletic, “A Preliminary
Investigation of Using Age and Distance Measures in the Detection of
Evolutionary Couplings”, Proc. MSR, 2013, pp. 169 – 172.

[2] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study”, Proc. CSMR, 2007, pp. 81 – 90.

[3] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 – 282.

[4] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late
propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 – 1165.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison
and evaluation of clone detection tools. IEEE Trans. Softw. Eng., 33(9),
2007.

[6] Consistent updates in micro clones. http://goo.gl/EOjeRY
[7] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool

Demo, 2011, pp. 219 – 220.
[8] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code

Clone Management”, Proc. ICSE, 2008, pp. 843 – 846.
[9] E. Duala-Ekoko, M. P. Robillard, “Tracking Code Clones in Evolving

Software”, Proc. ICSE, 2007, pp. 158 – 167.
[10] N. Göde, R. Koschke, “Incremental clone detection”, Proc. CSMR, 2009,

pp. 219 – 228.
[11] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”,

Proc. ICSE, 2011, pp. 311 – 320.
[12] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 – 74.
[13] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More

Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software”, Proc. EVOL/IWPSE,
2010, pp. 73 – 82.

[14] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE”, Proc. Eclipse
Technology Exchange at OOPSLA, 2007, pp. 16 - 20.

[15] L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related
Bugs”, Proc. ESEC-FSE, 2007, pp. 55 – 64.

[16] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485 – 495.

[17] E. Juergens, F. Deissenboeck, and B. Hummel, “Clonedetective - a
workbench for clone detection research”, Proc. ICSE, 2009, pp. 603
– 606.

[18] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard,“Blending Con-
ceptual and Evolutionary Couplings to Support Change Impact Analysis
in Source Code”, Proc. WCRE, 2010, pp. 119 – 128.

[19] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code”
IEEE Trans. on Softw. Eng., 2002, 28(7):654 – 670.

[20] C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software”, Empirical Software Engineer-
ing, 2008, 13(6): 645 – 692.

[21] D. Kawrykow, M. P. Robillard, “Non-Essential Changes in Version
Histories”, Proc. ICSE, 2011, pp. 351 – 360.

[22] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of
code clone genealogies”, Proc. ESEC-FSE, 2005, pp. 187 – 196.

[23] J. Krinke, “A study of consistent and inconsistent changes to code
clones”, Proc. WCRE, 2007, pp. 170 – 178.

[24] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57 – 66.

[25] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC,
2011, pp. 28 – 33 .

[26] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE,
2012, pp. 310 – 320.

[27] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, Proc. OSDI,
2004, pp. 20 – 20.

[28] A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC,
2010, pp. 65 – 72.

[29] A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227 – 236.

[30] Mann-Whitney-Wilcoxon Test. https://en.wikipedia.org/wiki/Mann%
E2%80%93Whitney U test

[31] Mann-Whitney-Wilcoxon Test Online. http://www.socscistatistics.com/
tests/mannwhitney/Default2.aspx

[32] R. C. Miller, B. A. Myers. “Interactive simultaneous editing of multiple
text regions.”, Proc. USENIX 2001 Annual Technical Conference, 2001,
pp. 161 – 174.

[33] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234.

[34] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone
Stability”, ACM SIGAPP Applied Computing Review, 2012, 12(3): 20 –
36.

[35] NiCad Clone Detector: http://www.txl.ca/nicaddownload.html
[36] Nonparametric Tests. http://sphweb.bumc.bu.edu/otlt/MPH-Modules/

BS/BS704 Nonparametric/mobile pages/BS704 Nonparametric4.html
[37] On-line SVN repository: http://sourceforge.net/
[38] PMD: http://pmd.sourceforge.net/
[39] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc.

MSR, 2010, pp. 72 – 81.
[40] D. C. Rajapakse and S. Jarzabek, “Using Server Pages to Unify Clones

in Web Applications: A Trade-off Analysis”, Proc. ICSE, 2007, pp. 116
– 126.

[41] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”, Proc. CSMR-
WCRE, 2014, pp. 18 – 33.

[42] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc.
ICSM, 2009, pp. 447 – 450.

[43] C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion”, Proc. ICPC, 2008, pp. 172 – 181.

[44] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74 (2009): 470 – 495.

[45] C. K. Roy, J. R. Cordy, “A Survey on Software Clone Detection
Research”, Tech Report TR 2007-541, School of Computing, Queens
University, Canada, 2007.

[46] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. Mutation,
2009, pp. 157 – 166.

[47] R. K. Saha, C. K. Roy, K. A. Schneider, “An Automatic Framework for
Extracting and Classifying Near-Miss Clone Genealogies”, Proc. ICSM,
2011, pp.293 – 302.

[48] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big code”, Proc. ICSE,
2016, pp. 1157 – 1168.

[49] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y. Zou,
“Studying the Impact of Clones on Software Defects”, Proc. WCRE,
2010, pp. 13 - 21.

[50] Simian: http://www.harukizaemon.com/simian/
[51] D. Steidl, N. Göde, “Feature-Based Detection of Bugs in Clones”, Proc.

IWSC, 2013, pp. 76 – 82.
[52] J. Svajlenko, C. K. Roy, “Evaluating clone detection tools with big-

clonebench”, Proc. ICSME, 2015, pp. 131 – 140.
[53] J. Svajlenko, I. Keivanloo, C. K. Roy,“Big data clone detection using

classical detectors: an exploratory study”, Journal of Software: Evolution
and Process, 2015, 27(6):430 – 464.

[54] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”,
Proc. ICSME, 2014, pp. 321 – 330.

[55] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical
study on the maintenance of source code clones”, Empirical Software
Engineering, 2009, 15(1): 1 – 34.

[56] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with
linked editing”, Proc. IEEE Symposium on Visual Languages and Human
Centric Computing, 2004, pp. 173 – 180.

[57] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation”, Proc.
ESEC/SIGSOFT FSE, 2013, pp. 455 – 465.

[58] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, H. Mei, “Can I clone
this piece of code here”, Proc. ASE, 2012, pp. 170 – 179.

[59] S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 –
158.

[60] M. F. Zibran, R. K. Saha, C. K. Roy, “Genealogical Insights into the
Facts and Fictions of Clone Removal”, 2013, ACR, 13(4): 30 – 42.

[61] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining version
histories to guide software changes”, Proc. ICSE, 2004, pp. 563–572.

60


