

LATEX, A Short Course Typesetting Mathematics

Mark G. Eramian

The University of Saskatchewan

January 31, 2017

- Math formulas may appear inline or displayed.
- Inline formulas appear in the body of the text. Example:

The equation $f(x) = x^2 + 3$ is a parabola translated upwards by 3.

• Displayed equations are "showcased" on their own line, centered, and separated vertically by from the surrounding text. Example:

The Pythagorean Theorem is very important in trigonometry. This theorem asserts that the equation

$$x^2 + y^2 = z^2,$$

where z is the length of the hypotenuse of a right-angle triangle, and x and y are the lengths of the remaining sides, always holds true.

- Displayed equations are generally used for emphasis of important formulae and can be automatically numbered by LATEX.
- For the moment we will concentrate on how to typeset various mathematical notations.

Typing Inline Mathematics

- In order to typeset mathematics, one must tell LATEX to enter *math mode*.
- For inline formula, this is done simply by enclosing the commands to typeset the formula within a pair of \$'s:

 $f(x) = x^2$ is a parabola.

typesets as

 $f(x) = x^2$ is a parabola.

- Constants and variables are just numbers and single letters.
- Mathematical symbols that are available on the keyboard are:

Keyboard	Typesets as	Keyboard	Typesets as	
+	+	-	_	
=	=	<	<	
>	>	1	/	
:	:	,	/	
I] [[
]]	((
)]			

- Superscript and subscripts (exponents and indices) can be added to any symbol using ^ and _.
- Example: x^2 produces x^2 , x_2 produces x_2 .
- Both super- and sub-scripts can be attached to the same symbol.
- Example: x_2^2 produces x_2^2 .

- If the exponent or index contains more than one character (in the source) then it must be enclosed in braces.
- Example:

 x^2n produces x^2n , while x^{2n}

produces x^{2n} .

• Unlimited nesting of exponents and indices is permitted:

• \$x^{y^2}\$

produces x^{y^2} .

• \$A^{x_i^2}_{j^{2n}_{n,m}}\$

produces $A_{j_{n,m}^{2n}}^{x_i^2}$.

• Note that ^ and _ are only permitted in math mode.

• Short, inline fractions are best typeset using the / character, for example,

\$(a+b)/4\$

for (a+b)/4.

• For complicated fractions use the command:

\frac{numerator}{denominator}

Fraction Examples

- \$\frac{1}{2}\$
 produces: 1/2
- $\frac{1}{a^2+b^2}{a+b} = a-b$

produces:
$$\frac{a^2+b^2}{a+b} = a - b$$

 $\frac{x-y}{\frac{x-y}+\frac{x-y}{1+\frac{a-b}{a+b}}}$

produces:
$$\frac{\frac{a}{x-y} + \frac{b}{x+y}}{1 + \frac{a-b}{a+b}}$$
 (Note nesting of fractions!).

Roots

• Roots are typeset using the command:

 $\sqrt[n]{arg}$

• Example (cube root):

 $\int [3]{8} = 2$

typesets as $\sqrt[3]{8} = 2$.

• Omitting the optional argument n produces the square root.

 ${} = 4$

typesets as $\sqrt{16} = 4$.

- Size and shape of the root sign are automatically fitted to the argument.
- Roots may be nested inside one another to any depth.

三百百百

• Making a copy of your blank.tex workfile (call it math.tex), try to reproduce the following formula:

$$\frac{\sqrt[3]{-q+\sqrt{a^2+b_2}}}{(n+1)^2}$$

TEL

- Integrals are made with the command \int.
- Summations are typeset with the command \sum.
- Sums and integrals usually possess upper and lower limits, specified with the exponent and index commands. For example, the summation

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

is typeset by

 $\sum_{i=1}^{n} i = \sum_{n \in \{n(n+1)\}}^{2}$

- Using your math.tex practice file, try to typeset the following: $2\sum_{i=1}^{n} a_i \left(\int_a^b f_i(x)g_i(x) dx \right)$
- Notice how the exact same formula looks a bit different if set as a displayed equation:

$$2\sum_{i=1}^{n} a_i \left(\int_a^b f_i(x) g_i(x) \mathrm{d}x \right)$$

- Displayed equations are typeset by placing them in one of the following environments:
 - equation numbered displayed formula
 - equation* unnumbered displayed formula
- Enclosing an equation in double \$'s (ie \$\$...\$\$) is a synonym for the displaymath environment.

- Using the equations you have already typeset in math.tex, try enclosing them with different displayed equation environments:
 - equation
 - displaymath

You may want to place some text before and after your displayed equations to really get a sense of where the displayed equation will appear.

- Vanilla LATEX does not have good support for multiline equations.
- The amsmath package is superior for this purpose.
- To use the package we must put the following command in our document preamble:

```
\usepackage{amsmath}
```


Aligning a List of Equations

- A common need is to list a few equations, one per line, and have them horizontally aligned.
- This can be done with the align environment.
- A typical (but not the only) form of usage is:

```
\begin{align}
eq1ls &= eqn1rs \\
eq2ls &= eqn2rs \\
eq3ls &= eqn3rs
\end{align}
```

Ampersands are alignment points, $\$ to end a line is mandatory. Do not use $\$ on last line.

Aligning a List of Equations

• Example:

THEF.

```
\begin{equation}
\begin{align}
x &= y\\
f(x) &= 2n^2 + 5n + 1\\
&= 0(n^2)
\end{align}
\end{equation}
```

produces:

$$x = y \tag{1}$$

$$f(x) = 2n^2 + 5n + 1 \tag{2}$$

$$=O(n^2) \tag{3}$$

Working with the align environment.

- The \nonumber command can be placed at the end of a line, before the \\ to suppress the equation number on that line.
- The starred variant, align*, turns off all equation numbering.
- Other variants are possible such as multiple columns of aligned equations.
- For further possibilities, and other multiline equation environments see the amsmath package documentation.

• Adding again to math.tex, try typesetting the following using the align environment:

$$(x+3)(x+2)(x+1) = (x^2 + 5x + 6)(x+1)$$
 (4)

$$= x^3 + 6x^2 + 11x + 6$$
 (5)

• Try suppressing one of the equation numbers with \nonumber

• You can create a reference to a numbered equation using the

\label{string}

command.

- For multi-line equations (align) the label should go at the end of the line before the double-backslash.
- For equation environments, the label can go anywhere within the environment.
- You can typeset the number labeled equation using

 $\ f{string}$

• The string argument is a unique symbolic name for the equation number.

• Try labeling the second line of your multi-line equation with: \label{mystring}.

(Remember to put it just before the double backslash)

• Following your align environment, typeset the sentence:

Please refer to equation $\ref{mystring}$.

Re-run $\Box T_E X$ and view – you may have to run $\Box T_E X$ twice for the number to appear.

• Put a \nonumber at the end of the first equation (before the double backslash) and re-typeset to see how the label number in the sentence following the equation changes.

- All mathematical symbols must be typeset in math mode.
- Greek letters are typeset by commands with the name of the letter:
 - $\lambda = \ \alpha$
 - $\lambda = \lambda \lambda$
 - σ typesets σ
- Uppercase Greek letters are distinguished by capitalizing the first letter of the command:
 - $\lambda = \delta \delta$
 - Δ

Mathematical Symbols

• Other common mathematical symbols:

∖times	\times	∖cap	\cap	∖cup	U
$\setminus cdot$	•	$\setminus leq$	\leq	\geq	\geq
∖subset	\subset	\subseteq	\subseteq	∖supset	\supset
\setminus neq	\neq	\setminus in	\in	$\not\in$	¢
∖leftarrow	\leftarrow	$\$ rightarrow	\rightarrow	\not\subseteq	É
∖emptyset	Ø	\setminus infty	∞		

- LATEX reference books can give you the commands for dozens more symbols. If you can think of a symbol, there is probably a LATEX command for it.
- Most symbols that represent relations can have \not prepended to get the negated version.

• The standard way to typeset math is to put symbols in italics and function names in Roman. For example:

$\sin x$

- We have seen how to do this with \mathrm.
- For common function names, LATEX has built-in commands, for example:
 - $\label{eq:sin_x_log_x_$
- It is preferable to use built-in function names because LATEX is able to achieve more attractive spacing.

- There are many ways to fine-tune the typesetting of formula and additional features such as:
 - Theorem environments
 - Fine-tuning spacing
 - Overlines and underlines (bars and braces)
 - Stacking of symbols to form new symbols
 - Math accents
 - Many more...