ATEX, A Short Course Typesetting Mathematics

Mark G. Eramian

The University of Saskatchewan

$$
\text { January 31, } 2017
$$

Mathematical Formulas

- Math formulas may appear inline or displayed.
- Inline formulas appear in the body of the text. Example:

The equation $f(x)=x^{2}+3$ is a parabola translated upwards by 3 .

Mathematical Formulas

- Displayed equations are "showcased" on their own line, centered, and separated vertically by from the surrounding text. Example:

The Pythagorean Theorem is very important in trigonometry. This theorem asserts that the equation

$$
x^{2}+y^{2}=z^{2},
$$

where z is the length of the hypotenuse of a right-angle triangle, and x and y are the lengths of the remaining sides, always holds true.

Mathematical Formulas

- Displayed equations are generally used for emphasis of important formulae and can be automatically numbered by ATEX.
- For the moment we will concentrate on how to typeset various mathematical notations.

Typing Inline Mathematics

- In order to typeset mathematics, one must tell ${ }^{L} \mathrm{~A}_{\mathrm{E}} \mathrm{EX}$ to enter math mode.
- For inline formula, this is done simply by enclosing the commands to typeset the formula within a pair of \$'s:
$\$ f(x)=x \wedge 2 \$$ is a parabola.
typesets as
$f(x)=x^{2}$ is a parabola.

Basic arithmetic

- Constants and variables are just numbers and single letters.
- Mathematical symbols that are available on the keyboard are:

Keyboard	Typesets as...	Keyboard	Typesets as...
+	+	-	-
$=$	$=$	$<$	$<$
$>$	$>$	$/$	$/$
\vdots	\vdots	\prime	\prime
l	\quad	$[$	$[$
$]$	$]$	$($	$($
$)$	$]$		

Exponents and Indices

- Superscript and subscripts (exponents and indices) can be added to any symbol using ^ and _.
- Example: $\$ \mathrm{x}^{\wedge} 2 \$$ produces $x^{2}, \$ \mathrm{x}_{-} 2 \$$ produces x_{2}.
- Both super- and sub-scripts can be attached to the same symbol.
- Example: $\$$ x_2^2\$ produces x_{2}^{2}.

Exponents and Indices

- If the exponent or index contains more than one character (in the source) then it must be enclosed in braces.
- Example:
\$x ${ }^{\wedge} 2 n \$$
produces $x^{2} n$, while
\$x^\{2n\}\$
produces $x^{2 n}$.

Exponents and Indices

- Unlimited nesting of exponents and indices is permitted:
- \$x^\{y^2\}\$
produces $x^{y^{2}}$.
 produces $A_{j_{n, m}^{2 n}}^{x_{i}^{2}}$.
- Note that ^ and _ are only permitted in math mode.
- Short, inline fractions are best typeset using the / character, for example,
\$ $(a+b) / 4 \$$
for $(a+b) / 4$.
- For complicated fractions use the command:
\frac \{numerator\}\{denominator\}

Fraction Examples

- \$ \backslash frac $\{1\}\{2\} \$$ produces: $\frac{1}{2}$
- \$ $\operatorname{frac}\left\{a^{\wedge} 2+b^{\wedge} 2\right\}\{a+b\}=a-b \$$
produces: $\frac{a^{2}+b^{2}}{a+b}=a-b$
$\$ \backslash f r a c\{\backslash f r a c\{a\}\{x-y\}+\backslash f r a c\{b\}\{x+y\}\}\{1+\backslash f r a c\{a-b\}\{a+b\}\} \$$ produces: $\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$ (Note nesting of fractions!).
- Roots are typeset using the command:
\sqrt[n]\{arg\}
- Example (cube root):
\$ $\operatorname{sqqrt}[3]\{8\}=2 \$$
typesets as $\sqrt[3]{8}=2$.
- Omitting the optional argument n produces the square root.
$\$ \backslash \operatorname{sqrt}\{16\}=4 \$$
typesets as $\sqrt{16}=4$.
- Size and shape of the root sign are automatically fitted to the argument.
- Roots may be nested inside one another to any depth.
- Making a copy of your blank.tex workfile (call it math.tex), try to reproduce the following formula:

$$
\frac{\sqrt[3]{-q+\sqrt{a^{2}+b_{2}}}}{(n+1)^{2}}
$$

- Integrals are made with the command \int.
- Summations are typeset with the command \sum.
- Sums and integrals usually possess upper and lower limits, specified with the exponent and index commands. For example, the summation

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

is typeset by

$$
\$ \backslash \operatorname{sum} _\{i=1\}^{\wedge} n i=\backslash f r a c\{n(n+1)\}\{2\} \$
$$

- Using your math.tex practice file, try to typeset the following:

$$
2 \sum_{i=1}^{n} a_{i}\left(\int_{a}^{b} f_{i}(x) g_{i}(x) \mathrm{d} x\right)
$$

- Notice how the exact same formula looks a bit different if set as a displayed equation:

$$
2 \sum_{i=1}^{n} a_{i}\left(\int_{a}^{b} f_{i}(x) g_{i}(x) \mathrm{d} x\right)
$$

Displayed Formula

- Displayed equations are typeset by placing them in one of the following environments:
- equation - numbered displayed formula
- equation* - unnumbered displayed formula
- Enclosing an equation in double \$'s (ie \$\$. . . \$\$) is a synonym for the displaymath environment.
- Using the equations you have already typeset in math.tex, try enclosing them with different displayed equation environments:
- equation
- displaymath

You may want to place some text before and after your displayed equations to really get a sense of where the displayed equation will appear.

Multiline Equations

- Vanilla $\operatorname{AT} T_{E X}$ does not have good support for multiline equations.
- The amsmath package is superior for this purpose.
- To use the package we must put the following command in our document preamble:
msmath\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Aligning a List of Equations

- A common need is to list a few equations, one per line, and have them horizontally aligned.
- This can be done with the align environment.
- A typical (but not the only) form of usage is:

```
\begin{align}
eq1ls &= eqn1rs \\
eq2ls &= eqn2rs \\
eq31s &= eqn3rs
\end{align}
```

Ampersands are alignment points, $\backslash \backslash$ to end a line is mandatory. Do not use $\backslash \backslash$ on last line.

Aligning a List of Equations

- Example:

```
\begin\{equation\} }
\begin\{align\} }
x \& \(=\mathrm{y} \backslash \backslash\)
\(f(x) \&=2 n^{\wedge} 2+5 n+1 \backslash \backslash\)
\(\&=0\left(n^{\wedge} 2\right)\)
\end\{align\} }
\end\{equation\} }
```

produces:

$$
\begin{align*}
x & =y \tag{1}\\
f(x) & =2 n^{2}+5 n+1 \tag{2}\\
& =O\left(n^{2}\right) \tag{3}
\end{align*}
$$

Working with the align environment.

- The \nonumber command can be placed at the end of a line, before the $\backslash \backslash$ to suppress the equation number on that line.
- The starred variant, align*, turns off all equation numbering.
- Other variants are possible such as multiple columns of aligned equations.
- For further possibilities, and other multiline equation environments see the amsmath package documentation.
- Adding again to math.tex, try typesetting the following using the align environment:

$$
\begin{align*}
(x+3)(x+2)(x+1) & =\left(x^{2}+5 x+6\right)(x+1) \tag{4}\\
& =x^{3}+6 x^{2}+11 x+6 \tag{5}
\end{align*}
$$

- Try suppressing one of the equation numbers with \nonumber

Referencing Equations

- You can create a reference to a numbered equation using the
\backslash label\{string \} command.
- For multi-line equations (align) the label should go at the end of the line before the double-backslash.
- For equation environments, the label can go anywhere within the environment.
- You can typeset the number labeled equation using
\ref \{string \}
- The string argument is a unique symbolic name for the equation number.
- Try labeling the second line of your multi-line equation with:
\backslash label\{mystring\}.
(Remember to put it just before the double backslash)
- Following your align environment, typeset the sentence:

Please refer to equation \ref\{mystring\}.
Re-run ${ }^{A} T_{E} E X$ and view - you may have to run ${ }^{A} T_{E} E$ twice for the number to appear.

- Put a \nonumber at the end of the first equation (before the double backslash) and re-typeset to see how the label number in the sentence following the equation changes.

Mathematical Symbols

- All mathematical symbols must be typeset in math mode.
- Greek letters are typeset by commands with the name of the letter:
- \$ \backslash alpha\$ typesets α
- \$ ${ }^{\text {lambda\$ typesets } \lambda}$
- \$\sigma\$ typesets σ
- Uppercase Greek letters are distinguished by capitalizing the first letter of the command:
- \$\delta\$ typesets δ
- \$ \backslash Delta\$ typesets Δ

Mathematical Symbols

- Other common mathematical symbols:

\backslash times	\times	\backslash cap	\cap	\backslash cup	\cup
\backslash cdot	\cdot	\backslash leq	\leq	\backslash geq	\geq
\subset	\subset	\backslash subseteq	\subseteq	\backslash supset	\supset
\neq	\neq	\backslash in	\in	\backslash not \backslash in	\notin
\leftarrow	\leftarrow	\backslash rightarrow	\rightarrow	\backslash not \backslash subseteq	$\not \subset$
\emptyset	\emptyset	\backslash infty	∞		

- ${ }^{\text {ATEX }}$ 作 more symbols. If you can think of a symbol, there is probably a ATEX command for it.
- Most symbols that represent relations can have \not prepended to get the negated version.
- The standard way to typeset math is to put symbols in italics and function names in Roman. For example:

$$
\sin x
$$

- We have seen how to do this with \mathrm.
- For common function names, $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ has built-in commands, for example:

$\backslash \sin \times$	$\sin x$	$\backslash \cos \times$	$\cos x$
$\backslash \tan \mathrm{x}$	$\tan x$	$\backslash \log \mathrm{x}$	$\log x$
$\backslash \lim _{2}\{\mathrm{n} \backslash$ rightarrow \backslash infty $\}$	$\lim _{n \rightarrow \infty}$		

- It is preferable to use built-in function names because LATEX is able to achieve more attractive spacing.

Advanced Mathematics

- There are many ways to fine-tune the typesetting of formula and additional features such as:
- Theorem environments
- Fine-tuning spacing
- Overlines and underlines (bars and braces)
- Stacking of symbols to form new symbols
- Math accents
- Many more...

