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Abstract. It has been suggested that the Hausdorff dimension of an im-
age texture would be a good measure of the texture’s complexity. Binary
images can be generated by Büchi automata over a four-letter alphabet.
The entropy of the ω-language accepted by such a Büchi automaton has
been shown to coincide with the Hausdorff (fractal) dimension of the ω-
language if the language is finite-state and closed. Jürgensen and Staiger
showed that the (local) entropy of finite-state and closed ω-languages
can be effectively computed. Moreover, they postulated that the Haus-
dorff dimension of the ω-language describing an image texture is a good
measure of the texture’s complexity or “messiness”. If true, then local
Hausdorff dimension could be a useful texture feature for image segmen-
tation and classification problems. In this paper we test this claim by
examining the results of a survey on the human perception of texture
complexity which we recently conducted. Our results indicate that there
is virtually no correlation between Hausdorff dimension of texture and
the perceived texture complexity.

1 Introduction

Many computer vision and image processing techniques rely on texture
features computed from an input image to carry out tasks such as image
segmentation and object classification. It has been suggested by Jürgensen
and Staiger [1] that local Hausdorff dimension would be a good feature for
describing how texture complexity varies over an image. Since it is claimed
that Hausdorff dimension would measure the “messiness” or complexity
of a texture, an concept with an ill-defined, elusive definition, it would be
important to verify that Hausdorff dimension is indeed correlated with
human’s notion of texture complexity. Unless this correlation exists, the
use of Hausdorff dimension as a texture feature would be limited at best.

Thus, we are interested in the relationship between the Hausdorff
dimension of ω-languages which describe texture images and the perceived



texture complexity of the image described. Culik II and Kari were the first
to investigate binary and greyscale image compression using automata [2,
3].

Staiger showed that the entropy of regular ω-languages is computable
[4]. It was also shown by Staiger that entropy of a finite-state closed
ω-language coincides with the Hausdorff dimension of the language [5].
Jürgensen and Staiger postulated that the Hausdorff dimension of a lan-
guage would be a good measure of the complexity of a texture generated
by a corresponding automaton [6]. Subsequently they defined the local
Hausdorff dimension [1] and postulated that constructing a map of local
Hausdorff dimension for an image described by a finite-state ω-language
would be a good method of illustrating how relative image texture com-
plexity varied over the image [1].

Software was developed software to compute the local Hausdorff di-
mension of an black and white image in [7].

In this paper we consider whether Hausdorff dimension as a texture
feature really measures the the complexity of the texture as perceived by
humans. We conducted an experiment to determine whether the Haus-
dorff dimension coincides with human perception of texture complexity.

2 Quadtrees, Words, Languages and Automata

It is well-known that a binary image can be represented by a finite
quadtree. Consider an infinite-resolution binary image. This can be repre-
sented by an infinite quadtree Q. The root of Q represents the subsquare
coinciding with the entire image. Its children represent the four subquad-
rants of their parent, and so on. Since Q is infinite, there will be a unique
infinitely long path in Q, beginning at the root, for each white point
in the image. If we label each edge of the quadtree from the alphabet
Σ = {0, 1, 2, 3}, depending on which child of its parent it represents, then
the sequence of labels along infinite paths from the root, which corre-
spond to white points in the image, form right-infinite words. The set of
all such right-infinite words forms a language L(Q) which is the language
of all quadtree addresses of points that are white.

Languages of right-infinite words are called ω-languages. Let Xω de-
note the set of all right-infinite words over the alphabet X. As usual, we
let X∗ denote the set of finite words over X. Note that L(Q) ⊆ Σω. Let
w ∈ Σ∗ and M ∈ Σω. The language

w[−1]M = {ξ | ξ ∈ Σω, wξ ∈ M}



is called a state of M . M is said to be finite-state if it has finitely many
states.

Let pref(M) be the set of all finite prefixes of words in M . The closure
of M is defined as C(L) = {ξ | ξ ∈ Σω,pref({ξ}) ⊆ pref(L)}. An ω-
language is not closed if there is a word ξ ∈ Σω such that pref({ξ}) ⊆
pref(L) but ξ 6∈ L.

A Büchi automaton [8], which recognizes an ω-language, is a nondeter-
ministic finite automaton A = (Q,Σ, s, δ, F ) with state set Q, alphabet
Σ, start state s, transition relation δ and final state set F defined in
the usual way, but with a different acceptance condition which we now
explain.

Let S be a set. The infinity set of a sequence σ = σ0σ1σ2 . . . ∈ Sω is
defined as In(σ) = {s ∈ S | ∃ωn σn = s} where the symbol ∃ω denotes
the quantifier read as “there exist infinitely many”.

A run of an ω-word ξ = ξ0ξ1ξ2 . . . ∈ Σω on A is a sequence of states
σ = σ0σ1σ2 . . . such that σ0 = s and (σi, ξi+1, σi+1) ∈ δ for any integer
i > 0. The ω-word ξ is accepted by A if and only if there is a run σ of ξ on
A such that In(σ) ∩ F 6= ∅. The set of ω-languages that can be accepted
by a Büchi automaton are called regular ω-languages.

If L(Q) is a regular ω-language, we can construct a Büchi automaton
A that accepts L(Q) (see, for example, [7, 3]). The Büchi automaton can
then be used to generate the original image at any finite resolution of
2n × 2n pixels by determining the acceptance/non-acceptance of every
word in Σn.

Additional background on the relationships between automata, lan-
guages and quadtrees can be found in [9].

Let G = (V,E) be a graph with vertex set V and edge set E ⊆ V ×V .
For any two vertices v1, v2 ∈ V we write v1 ` v2 if there is an edge from v1

to v2, that is, (v1, v2) ∈ E. We denote by `∗ the reflexive and transitive
closure of `. A set of vertices K ⊆ V is a strongly connected component

of G if, for any two vertices v1, v2 ∈ K, we have v1 `∗ v2 `∗ v1 and K

is not a subset of any larger such set of vertices. In other words, every
vertex in K is reachable from every other vertex in K and K must be as
large as possible.

Let A be any finite automaton with state set Q. The underlying graph
AG of A is the graph G = (V,E) such that V = Q and (q1, q2) ∈ E if
and only if there is a transition from state q1 to state q2 in A. For a set
K ⊆ Q, the statement that K is a strongly connected component of A

is equivalent with the statement K is a strongly connected component of

AG.



Let N0 be the set of non-negative integers. For M ⊆ Σω, the structure
function sM (n) : N0 → N0 is defined as

sM(n) = |prefn(M)|

where prefn(M) denotes the number of finite prefixes of length n of words
in M . The entropy, HM , of M is then

HM = lim sup
n→∞

(

1

n
log sM(n)

)

.

The global Hausdorff dimension of M is denoted dimM . If M is finite-
state and closed, then HM coincides with dimM [5]. In particular, if we
assume a base 4 logarithm (which is natural due to our alphabet size) in
the above formula for HM , then

dimM = 2HM . (1)

The global entropy was shown to be effectively computable by Staiger [4].
The local Hausdorff dimension is developed formally by Jürgensen and

Staiger in [1]. The main result of their paper is that the computation of
the entropy of the states of a finite-state and closed ω-language M is re-
duced to the computation of the eigenvalues of certain submatrices of the
transition matrix of M when the indices of the matrix are arranged such
that states in the same strongly connected component of the underlying
graph are contiguous. Since Hausdorff dimension coincides with entropy
for finite-state and closed ω-languages [5], the local entropy computation
yields also local Hausdorff dimension.

Software to compute the local Hausdorff dimension of a finite-state
closed ω-language was developed as part of [7].

3 Perception Experiments

We wished to test the postulate that Hausdorff dimension is a good mea-
sure of texture complexity. To do so we required image textures with a
wide range of Hausdorff dimensions. We created random finite automata
by randomly generating transition matrices as follows.

Given a maximum number of states n, chosen at random, we generated
an automaton with n states. For each state we randomly determined the
number of outgoing transitions m ∈ [1, 4]. Then the destination state
of each of these m transitions were determined randomly. First it was
randomly determined how many, k, of these m transitions will lead to



the same state. Then the destination for these k transitions was chosen
randomly. The destinations for the remaining m − k edges were then
chosen randomly from among the remaining states so that no destination
state was chosen twice. The labels on each of the outgoing transitions
were assigned unique labels from 0 to 3 at random. The result of this
process was an automaton where each state has between 1 and 4 outgoing
transitions and each outgoing transition has a unique label between 0 and
3.

We ensured that the languages accepted by each of the generated
automata were closed by designating every state of each automaton as
final (F = Q for each automaton).

We desired that the underlying graphs of the generated automata
have only a single strongly connected component, that is, where the en-
tire underlying graph of the automata is strongly connected. This ensures
that the resulting image produced by the automaton has the same local
entropy everywhere. We thus extracted the largest strongly connected
component from the underlying graph of each automaton and saved this
sub-automaton. In this way we obtained a large number of suitable au-
tomata having between 17 and about 20,000 states.

We then calculated the local entropy of each state of each automaton
generated in this way using the algorithm from [1] and software developed
in [7]. Since the automata were restricted so that the underlying graph
of each automaton had only a single strongly connected component, all
states in an automaton had the same entropy and the computed entropy
value is the also the global Hausdorff dimension. This was taken as the
entropy of the texture generated by the automaton.

From these automata we selected a number of automata with entropy
in the range [ 12 , 1]. We did not consider textures with entropy less than 1

2
because, according to Equation 1, languages with entropy less than 1

2 will
generate objects with dimension less than 1 and thus will not look like
textures. We therefore only considered automata which generated images
with Hausdorff dimension between 1 and 2.

For those automata selected from the desired entropy range, we gener-
ated, for each automaton, a 256 by 256 pixel binary image by determining
for each x ∈ Σ8 whether x ∈ L by running x on the automaton. If x ∈ L,
then the pixel addressed by x in the output image was colored white,
otherwise it was colored black.

We then designed a survey questionnaire to be distributed to the
study participants. We selected two sets of nine images from those that
we generated. Images were selected so that their Hausdorff dimensions



covered the range [ 12 , 1] relatively evenly. Moreover, selected images were
also required to have the appearance of a uniform texture. There were six
images that were common to both sets. These two sets of images formed
the basis for our first two survey questions. For each set of nine images, we
presented all nine images on a single page and asked the participants to
“examine the following textures, labeled A through I, and order them from
most complex to least complex”. Participants were not given a definition
of “texture complexity”.

Our third and final survey question consisted of five pairs of images
whose difference in entropy varied from approximately 0.032 to 0.16. We
asked the participants to examine the textures and to indicate, for each
pair of images, which of the images they believed to be “more complex”.
The participants could also choose to indicate that they believed that the
two images in a pair were approximately the “same complexity”.

All surveys were reproduced on the same copy machine to ensure that
each participant saw the same images and were not influenced by possible
distortions introduced by different reproduction methods.

The surveys were distributed at the University of Saskatchewan and
at the University of Western Ontario. There were 101 respondents. Three
respondents failed to complete or gave invalid responses to question 1
and four respondents failed to complete or gave invalid responses to ques-
tion 2. All respondents completed question 3 with valid responses. Data
from incomplete surveys were retained for those questions that were an-
swered with valid responses. See Table 1 for a summary of respondents
and numbers of data sets retained and discarded.

The set of nine images which formed the first test set are shown in
the Appendix.

Question 1 Question2 Question 3

Total respondents 101 101 101

Incomplete or invalid responses 3 4 0

Number of data sets retained 98 97 101

Table 1. Survey Respondents and Data Sets Retained

4 Results

The left side of Figure 1 shows the average complexity ranking assigned
to each image in image set 1 by the survey participants. The survey we



distributed asked participants to rank images in order from most complex
to least complex, thus lower ranks indicate a perception of higher texture
complexity. The x-axis shows the images A through I (as labeled on the
survey form) in order from highest texture entropy to lowest entropy. If
there is a correlation between texture entropy and perceived complexity
we should observe a trend of steadily increasing average rankings from left
to right along the x-axis. The right side of Figure 1 shows the standard
deviation in the rankings for each image. Each image had a rank standard
deviation of around 2 or slightly higher suggesting that there was no
significant agreement among participants on the rank of any of the images.
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Fig. 1. Average Rankings and Standard Deviation of Rankings for Set 1. Images are
shown in order of decreasing entropy.

Figure 2 shows that we obtained results with similar lack of trends for
our second set of images. Only three of the images in this data set were
different from the images in set 1.

Our purpose in having the overlapping image sets for questions 1 and 2
were to see if perception of complexity was altered if textures were viewed
in a different context. We checked to see if there were any respondents
who gave opposite relative rankings to the same images in the two data
sets. That is, for images A and B common to both sets, we looked for
instances where a respondent ranked image A higher than image B in set
1 but ranked B higher than image A in set 2 or vice versa. We determined
that this occurred with 70 out of 96 respondents (72.9%). There were 184
such instances in total for an average of 1.91 instances per respondent.



To further illustrate the disagreement over rankings among the par-
ticipants, we have included, as an appendix, a graph for each image in
survey questions 1 and 2 showing the percentages of respondents who as-
signed the image a particular rank. In only a very few cases do we observe
any significant agreement by participants on a particular ranking for a
particular image.
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Fig. 2. Average Rankings and Standard Deviation of Rankings for Set 2. Images are
shown in order of decreasing entropy.

Table 2 shows the results from question 3 of the survey. Participants
were shown five pairs of images and asked to identify for each image pair
(A,B) whether A was more complex than B, B was more complex than
A, or A and B have the same complexity. In each case image A had a
higher entropy than image B. The entropy of each image pair and the
difference in entropy between each pair of images is given in Table 3.

In the case of pair 1, the entropy of image B was considerably higher
than that of A and 85.1% of participants perceived this. For pair 2, the
pair with closest entropy, over 89.1% of the participants believed that the
images had the same complexity, or that image B had higher complexity.
This is perhaps encouraging evidence of correlation between entropy and
perceived complexity given that the entropy of each image texture is so
similar. However, in the case of pair 3, whose texture entropy difference is
greater than that of pair 2, we see that 65.3% of participants believed that
image A was more complex, when in fact image A has lower entropy. There
was considerable disagreement over pair 4 with 53.5% of participants



perceiving that image A was more complex and 44.6% of participants
perceiving that image B was more complex. Lastly, in the case of pair 5,
94.1% of participants perceived that image A was either more complex or
of the same complexity as image B with 61.4% perceiving that image A
was more complex when in fact image B had higher entropy and a greater
entropy difference from its counterpart than pair 4.

Pair Number A more complex Same complexity B more complex

1 11.9 3.0 85.1

2 10.9 38.6 50.5

3 65.3 7.0 27.7

4 53.5 2.0 44.5

5 61.4 32.7 5.9
Table 2. Percentage of respondent’s answers for Set 3. In each case the entropy of
image A was smaller than that of image B. The first column indicates the pair number.
The remaining columns indicate the percentage of respondents who thought that image
A was more complex than image B, image A and B were of the same complexity, and
image B was more complex than image A, respectively.

Pair Number Entropy of Image A Entropy of Image B Difference
1 0.4034 0.5688 0.1654

2 0.5847 0.6164 0.0317

3 0.6726 0.7299 0.0573

4 0.7900 0.8310 0.0410

5 0.8895 0.9347 0.0452

Table 3. Entropy of image pairs.

5 Conclusions and Open Questions

There appears to be no significant correlation between Hausdorff dimen-
sion and perceived texture complexity. There was little agreement among
survey participants over the ordering of the image sets from most com-
plex to least complex; moreover, 72.9% of participants reversed the rela-
tive rankings of pairs of identical images in set 1 versus set 2 suggesting
that perception of complexity may depend on the context in which tex-
tures are viewed. This would mean that a measure of texture complexity



would have to take into account the surrounding context, which Hausdorff
dimension does not.

There was also little agreement over the relative complexity of the
five pairs of images presented. In three of the five cases, the majority
of respondents perceived that image A was more complex than image B
when in fact image A had the lower Hausdorff dimension.

Our conclusion from this study must be that Hausdorff dimension
appears to be unsuitable for characterizing image texture complexity.

Since no definition of “complexity” was given to participants, is it
possible that some participants interpreted “complexity” to mean com-
plexity in the Kolmogorov sense (the succinctness of the texture descrip-
tion) while others interpreted it to mean “regularity” or “disorder” or
even to mean “information content” in the Shannon sense. It is impor-
tant for a feature that measures texture complexity to be independent of
this distinction since many users of image segmentation and classification
techniques are unaware of the difference. Thus, if the lack of correla-
tion is due to these different interpretations of “complexity”, this would
only strengthen the argument that Hausdorff dimension is unsuitable as
a measure of texture complexity.
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6 Appendix

6.1 Sample Images

The following images made up our first data set of nine images.

Image A Image B Image C

Image D Image E Image F

Image G Image H Image I



6.2 Rank percentage for Set 1
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6.3 Rank percentage for Set 2
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