
The University of Saskatchewan
Department of Computer Science

Technical Report #2004-04

Texture Analysis of Compressed Images

Mark G. Eramian 1

Department of Computer Science, 57 Campus Drive, The University of

Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

Abstract

We introduce a new method of image texture analysis that is based on techniques
that compress images in the form of weighted finite automata (WFA). We show
that the WFA representation of images contain information about an image that
is useful in analysing local texture and define a simple texture analysis method
based on WFA. This method is the first texture analysis method that uses weighted
finite automata and demonstrates the potential of WFA for further developments
in texture analysis and segmentation. We include experiments on sample images
showing the results of our technique and discuss certain advantages that our method
has over other types of methods.

Key words: texture analysis, texture segmentation, weighted automata

1 Introduction

Recently there has been considerable research on image compression tech-
niques using weighted finite automata. Weighted finite automata were first
introduced by Culik [1] and are very similar to the classes of automata pre-
sented by Santos [2]. The idea of encoding greyscale images as a weighted finite
automaton (WFA) was introduced by Culik [1] and he showed that the au-
tomaton representation can be considerably smaller than the original bitmap
resulting in compression rates rivaling those of JPEG compression [3]. Typ-
ically, images are encoded using a quadtree decomposition which generates
a multi-resolution image. Each unique image subsquare formed by this de-
composition is assigned to a state in a weighted finite automaton. Transitions

Email address: eramian@cs.usask.ca (Mark G. Eramian).
1 This resarch was funded in part by the Natural Sciences and Engineering Research
Council of Canada through grant number OPG0000243 (H. Jürgensen) and through
institutional grants provided by the University of Saskatchewan.

Preprint submitted to Elsevier Science 29 July 2004

exist between states when one state’s corresponding subimage is a subquad-
rant of another’s with a possible change in contrast given by the transition
weight. In theory, the encoded image can be decompressed to a bitmap of the
original image at any finite resolution 2k × 2k by running all words of length
k on the automaton. A variety of WFA methods for compression have also
been studied by Lin [4], Katritzke [5], Litow and de Vel [6], and Hafner [7]
who describes a variation that uses a binary tree decomposition. We propose
that the WFA representation is well-suited to image texture analysis due to
the multiresolution information contained therein. In this paper we outline a
method of texture analysis that takes advantage of this property of the WFA
encoding.

In their survey of texture analysis, Tuceryan and Jain [8] suggest that the
various methods of texture analysis can be used to solve four basic types of
problems, namely texture segmentation, texture classification, texture synthe-
sis, and shape from texture. The model for texture analysis we present in this
paper is suited for the segmentation and classification problems. Our method
however, does not assume any knowledge of the image to be analyzed so it does
not fit perfectly into the category of classificiation methods which attempt to
match an image or areas of an image with known texture classes. Instead we
will define broadly what we mean by “highly textured” versus “highly un-
textured” and classify areas of the image based on these relative definitions.
Neither does our method truly attempt to perform a segmentation of the im-
age into regions of homogeneous texture, although it has the potential to be
used as part of a larger segmentation scheme. This is the first proposed texture
analysis technique that uses weighted finite automata and demonstrates the
potential of WFA for use in texture analysis.

Some excellent survey papers such as those by Van Gool et. al [9], Reed and Du
Buf [10], Haralick [11] and more recently, Tuceryan and Jain [8] have attempted
to classify the vast literature of texture analysis methods by grouping them
into a handful of general categores. These, in general, are region-based meth-
ods, boundary-based methods, transform-domain methods, statistical meth-
ods and geometrical methods.

Early region-based methods, such as that used by Reed and Werman [12],
gradually expand homogeneous texture regions from seed points, but this re-
quires some a-priori knowledge of the number and locations of textures in the
image in order to position the seed points. Newer “unseeded” region-growing
methods do not require this knowledge as demonstrated by Hojjatoleslami and
Kittler [13]. In general, the performance of these algorithms degrade when the
boundaries between texture regions are not distinct.

Boundary-based or edge-based methods (e.g. Khotanzad and Chen [14]) try to
find the edges of homogeneous textures and work best when these boundaries

2

are crisp and well-defined. Newer methods that combine boundary-based and
region-based approaches, such as Paragios and Deriche [15] have also been
successful.

Model-based methods also require a-priori knowledge of the number and types
of textures in an image as they attempt to match regions of an image to pre-
computed statistical models of expected textures in order to perform image
segmentation. Gibbs random fields used by Derin and Elliot [16] and Markov
random fields used by Krishnamachari and Chellappa [17] have been popular
methods.

Transform-domain methods perform their analysis in some other domain rather
than on the image pixels themselves. The most common transform domains
are the Fourier and wavelet domains and examples of these can be found in
Van Gool et. al [9] and Unser [18]. Fourier domain methods suffer from the dis-
advantage that standard Fourier spectra contain no local information, though
some methods have overcome this to a certain extent, for example, Eramian
et. al. [19]. Wavelet domain methods are popular and have the advantage of
allowing for the use of any number of basic wavelet sets, but a-priori informa-
tion is needed to select the most optimal of such sets. In these methods, the
transform process itself can take a prohibitive amount of computer time de-
pending on the application, sizes of images, and the need for speed, however,
this issue is slowly being overcome by technology advances.

Statistical methods work by computing texture features based on the spatial
distribution of grey values in an image. Haralick’s grey level co-occurance
matrices [20] are the most widely used of such texture features. These methods
are not well-suited to segmentation tasks and have been primarily used for
texture classification problems.

Geometric methods assume that texture is composed of a set of basic elements
or primatives. Tuceryan and Jain [21] showed how basic texture elements can
be extracted from an image using the Vonoroi tessellation of the image. Once
these texture elements are extracted, texture features can be computed from
their distribution and orientation.

We introduce a method of texture analysis that examines the structure of
weighted finite automata that are encodings of the original image. We shall
show that this method addresses many of the disadvantages of the aforemen-
tioned methods. In Section 2 we review the basic definitions relating to WFA
and WFA image compression. Section 3 describes our new texture analysis
method and Section 4 presents some experimental results using this method.
We conclude with a summary of results in Section 5.

3

2 Preliminary Defintions and Background

Let
�

, and � denote the sets of real and natural numbers respectively. Let
� 0 = � ∪ {0}.

Let Σ = {a1, a2, . . . , an} be a finite alphabet. Let Σ∗ be the set of all finite
strings (words) over Σ. If n ∈ � 0, Σn denotes all words over Σ of length n.
The empty word is denoted by λ. The length of a word w ∈ Σ∗ is denoted |w|.

For a language L ⊆ Σ∗ and n ∈ � ,

prefn(L) = {w | w ∈ Σn, wΣ∗ ∩ L 6= ∅}

is the set of all prefixes of length n of L and

pref(L) =
⋃
n≥0

prefn(L)

is the set of all prefixes of L. We use the short from pref(w) to denote pref({w})
for w ∈ Σ∗.

To avoid confusion between a tuple and an open interval on a number line,
we shall use angle brackets for all tuples. Thus the point x = 0, y = 1 on
the Cartesian plane would be denoted 〈0, 1〉 and the open interval between 0
and 1 on the real line would be denoted (0, 1). Parameters of functions are
enclosed in parentheses as usual.

A greyscale image I is a set of points over the real space � = [0, 1) × [0, 1) ⊆�
×

�
. Each of these points is assigned a grey value from the interval [0, 1] ⊆

�
.

A grey value of 0 means “black” and a grey value of 1 means “white” with
intermediate values being shades of grey. The point 〈0, 0〉 is the bottom left
corner of the image. The function γ :

�
×

�
→ [0, 1] ⊆

�
associates each

point in � with its grey value.

In practice the image space � must be a set of points with rational coordinates
because points with irrational coordinates cannot be addressed by a finitely
long w. Points with one or more irrational coordinates can only be addressed by
infinitely long non-ultimately-periodic words as summarized by Eramian [22].

A weighted quadtree is a quadtree in which every node has an associated real-
valued weight. A greyscale image quadtree Q is a complete weighted quadtree
of height n where every node is present up to and including level n. Such a tree
is said to specify an image at resolution n (an image with pixel dimensions of
2n×2n). Each node is assigned an address that is a word over the alphabet Σ =
{0, 1, 2, 3}. Addresses are assigned to each node recursively in the following
way:

4

• The root of the tree is assigned the empty word λ.
• If the word w is the address of a node, then the words w0, w1, w2 and w3

address the first, second, third and fourth children of that node, respectively.

We write d(Q, w) to denote the node of Q that is addressed by w. Every
node corresponds to a finite subsquare of I. A subsquare is a square that is
closed on the left and bottom sides, and open on the top and right sides. 2

A subsquare is given by a size l (the length of its side) and a center point c,
formally a pair 〈l, c〉 ∈ [0, 1]× � . Words over Σ∗, as above, address a restricted
set of subsquares.

Let s(w) be the subsquare corresponding to d(Q, w). The notation s(w) can
also be read as “the subsquare of � addressed by w”. We recursively define s

as follows.

s(ε) = 〈1, 〈1

2
, 1

2
〉〉.

If s(w) = 〈l, 〈x, y〉〉 then
s(w0) = 〈 l

2
, 〈x − 1

4
l, y − 1

4
l〉〉 (the bottom left quadrant of s(w)),

s(w1) = 〈 l
2
, 〈x − 1

4
l, y + 1

4
l〉〉 (the top left quadrant of s(w)),

s(w2) = 〈 l
2
, 〈x + 1

4
l, y − 1

4
l〉〉 (the bottom right quadrant of s(w)), and

s(w3) = 〈 l
2
, 〈x + 1

4
l, y + 1

4
l〉〉 (the top right quadrant of s(w)).

We slightly abuse our notation and write 〈x, y〉 ∈ s(w) = 〈l, 〈cx, cy〉〉 if the
point 〈x, y〉 is a member of [cx −

l
2
, cx + l

2
) × [cy −

l
2
, cy + l

2
), that is, 〈x, y〉 is

within the subsquare s(w). If P ⊆ � is a set of points then we may also, for
some w ∈ Σ∗, write P ⊆ s(w) if 〈x, y〉 ∈ s(w) for every 〈x, y〉 ∈ P .

Thus a word over Σ∗ is the address of a node in the quadtree Q as well as
the address of a subsquare of size 2−|w|. We have yet to discuss the weights
assigned to each quadtree node. For any w ∈ Σ∗ we denote by g(Q, w) the
weight associated with d(Q, w). We let

g(Q, w) =
1

l2

y+
l

2∫

y− l

2

x+
l

2∫

x− l

2

γ(x, y) dx dy

where 〈l, 〈x, y〉〉 = s(w). Thus g(Q, w) is the average grey value of all of the
points in s(w).

Definition 1 (Culik [1]) Let Σ = {a1, a2, . . . , an} be a finite alphabet of n

letters. A function F : Σ∗ →
�

is an average preserving function if for all
w ∈ Σ∗

F (w) =
1

n
(F (wa1) + F (wa2) + · · ·+ F (wan)) .

2 Partially open subsquares are necessary to avoid the same point being present in
multiple subsquares. See Eramian [22] for further details.

5

For a quadtree Q, if g is an average preserving function, then Q defines a
multiresolution greyscale image. It is clear that g as defined above will always
be an average preserving function.

Definition 2 (Culik [1]) A weighted finite automaton (WFA) is a tuple A =
〈Q, Σ, ∆, α, β〉 where

Q is a finite set of states.
Σ is a finite alphabet 3

∆ : Q × Σ × Q → [−∞,∞] is the transition or weight function.
α : Q → [−∞,∞] is the initial distribution.
β : Q → [−∞,∞] is the final distribution.
If ∆((p, a, q)) = g 6= 0 then there is a transition from state p to state q with
label a and weight g.

The initial and final distributions assign to each state an initial weight and
a final weight respectively. These are analogous to the initial state and final
states in a classical finite automaton except that here, each state can be initial
or final with a certain weight.

The WFA A defines the function ϕA : Σ∗ → [−∞,∞] such that

ϕA(w) =
∑

q0,...,qn∈Q

α(q0) · ∆(q0, a1, q1) · ∆(q1, a2, q2) · . . . · ∆(qn−1, an, qn) · β(qn)

where w = a1a2 · · ·an. Intuitively, to obtain ϕA(w) we compute the sum of the
weights of all paths in A whose labels form the word w where the weight of a
path is the product of the weights of the transitions on the path, the initial
distribution of the first state on the path, and the final distribution of the last
state on the path.

In WFA image compression (encoding) algorithms, the automata are con-
structed so that the function ϕA is identical to, or closely approximates, the
function g for the given image quadtree.

To regenerate the original image from an automaton A at resolution n we run
all words w ∈ Σn on A. A point 〈x, y〉 in the output image is assigned the
grey value ϕA(w) if and only if 〈x, y〉 ∈ s(w). Thus, each word of length n

addresses a pixel of the image at resolution n which contains all of the points
in the subsquare s(w).

Additional information on image/automata encoding and decoding algorithms
and their variations can be found in papers by Culik [1,3], Katritzke[5], Litow
and de Vel [6,23–26], Hafner [7], and Lin [4]. The variation used for our experi-
ments is based on an algorithm due to Culik and can be found in Eramian [22].

3 For images we use the alphabet Σ = {0, 1, 2, 3}.

6

In the next section we present a method of texture analysis that operates on
the weighted automaton that encodes an image. It is the first texture analysis
method to use weighted automata and it demonstrates well the potential for
extracting features from the WFA-encoding of an image. We shall see that it
also addresses some of the shortcomings of other types of methods.

3 Texture Analysis with WFA

The method we will arrive at computes a texture feature which we will call
texture variance. We will use a very simple texture model where we say that
if a there is a large variation in the greylevels of pixels in a small region,
then that region is highly textured; if there is a low variation in greylevels of
pixels in a small region, then the region is highly untextured. Using this very
simple model we can achieve some very promising results. Our first definition
identifies a relationship between greylevel distribution at different resolutions.

Definition 3 Given a weighted finite automaton A = {Q, Σ, ∆, α, β} for
which ϕA(w) = g(Q, w) for some greyscale image quadtree Q for greyscale
image I with Σ the usual quadtree alphabet {0, 1, 2, 3}, the successor variance
v : Σ∗ →

�
of a word w ∈ Σ∗ is

v(w) =
∑

a1,a2∈Σ,a1 6=a2

|ϕA(wa1) − ϕA(wa2)|.

Note that v(w) ∈ [0, 4] ⊆
�

. The value of v(w) is maximal when two of the
subquadrants of s(w) are totally white (ϕ(wa1) = ϕ(wa2) = 1), and the other
two subquadrants of s(w) are totally black (ϕ(wa3) = ϕ(wa4) = 0). This gives
a sum of v(w) = (1+1+1+1+0+0) = 4. The value of v(w) is minimal when
each subsquare of s(w) has the same greylevel, which gives v(w) = (0 + 0 +
0 + 0 + 0 + 0) = 0. The function v measures how unevenly the greyness of the
subsquare s(w) is distributed into its subquadrants s(w0), s(w1), s(w2), s(w3).
The more unevenly the greyness is distributed, the more textured the original
image within the subsquare s(w).

To obtain local texture information about the subsquare addressed by a word
w, we first compute a vector V , which we call the variance history, such that
Vi = v(prefi(w)). The vector V holds the variances for every prefix of w so that
the large-scale variances are at low indices of V and the small-scale variances
are at the larger indices.

We now introduce the concepts of texture scale and texture variance which are
defined in terms of V .

7

Definition 4 Given V computed from w, we define the local texture scale
about w as:

σ(w) = min{i | Vi+1 > Vi}.

The intuition here is that, as we begin zooming in on a pixel, the variance
should decrease until we are looking at a subsquare where, in the original
image, there is a homogeneous texture. It is clear that if a subsquare s(w)
of the original image contains a homogeneous texture then, at resolution |w|,
v(w) will be small. If we now continue to zoom in, the variance should begin
increasing again as we begin to focus on the details of the texture region itself.
So we define the scale of the texture to be the resolution at which we stop
seeing a decrease in variance, and thus should be indicative of the size of a
region of homogeneous texture.

We next define texture variance, which will be our measure of how textured
are the homogeneous texture regions that we find.

Definition 5 Given V computed from w, local texture variance is defined as:

τ(w) = max{Vi | i > σ(w)}.

Once we have identified the texture scale, we find the largest Vi such that i

is greater than the texture scale σ(w). This should identify scale at which the
region is most textured. We color the output image O according to the value
of τ(w) such that each for each 〈x, y〉 ∈ s(w) we let

γ(x, y) = log5(τ(w) + 1).

The resulting map of texture variance should give a good analysis of textural
complexity.

Experiments showed quickly that the given definition of σ does not result in a
good measure of texture scale since it is clearly possible to have that σ(ε) be
slightly less than σ(pref1(w)). This could falsely tell us that an entire quadrant
of the of the original image is homogeneous in texture when, in fact, it is not.
Our experiments have shown that finding the global minimum of V captures
the idea of texture scale in a far superior manner. If more than one element
of V are global minima, then we choose the one with smallest index. We thus
redefine σ as follows:

Definition 6 Given V computed from w, the local texture scale about w is

σ(w) = min{i | Vi = min{Vj | 1 ≤ j ≤ |w|}}

8

This definition ensures that we obtain the scale that exhibits the least suc-
cessor variance, and hence should be representative of the scale of a very
homogeneous texture region. This second definition produces results that are
far superior to the first definition. In the next section we show experimental
results consisting of texture scale and texture variance maps of a few natural
images.

4 Experiments

The measures σ and τ can be computed concurrently with the rendering of
the original image from the automaton at any given 2n by 2n resolution. The
successor variance vector V is computed as each input letter of each pixel
address is read. Once a complete word w has been processed, σ(w) and τ(w)
can be easily computed and stored.

A tunable parameter of the implementation is that we can select which el-
ements of V are considered when computing σ(w). In the experiments that
follow, we compute σ(w) using only elements V1, V2, . . . , Vn−1 where n is the
output resolution. The smallest subsquare’s successor variances are left out of
the selection because often this allows a smooth area of a microtexture within
a homogeneous texture region to be selected as the texture scale. This is not
desirable and by not considering Vi in the computation of σ(w) we achieve
improved results.

Consider the texture scale map in Fig. 3 and the texture variance map in Fig.
4 (the original image is shown in Fig. 2). The false color scale used in the
texture variance maps is shown in Figure 1. In the texture scale maps, darker
shades of grey represent large scale and lighter shades represent small scale.
We see that in the texture variance map (Fig. 4) the streams of water from the
fountain, a complicated texture, show up as yellows and oranges indicating a
fairly highly textured region as one would expect. The edges in the marble of
the fountain wall also show up as highly textured as they should. We note that
the face of the fountain wall shows up as a light blue which we expect since it
is fairly smooth, but it is not as smooth as the two main fountains which show
up as large areas where all of the pixel values are white. We should thus expect
that the two large areas of water should be detected as extremely untextured
and they are – showing up as a dark blue. We can see from the texture scale
map (Fig. 3) that most of the image has very small scale texture, and that,
except for the large main water streams, we are primarily discriminating based
on microtexture.

Now consider the next image in Fig. 5 and its texture scale and texture vari-
ance maps (Fig. 6 and Fig. 7 respectively). We see that we are detecting some

9

larger areas of homogeneous texture in this image, particularly on the moun-
tain in the background and the rocks and shrub in the foreground. In the
texture variance map we see that the sky appropriately registers as the least
textured region (dark blue). The edges of the various overlapping slopes are
picked up well showing up as sloping yellow-green lines, and the areas of trees
and shrubs are denoted as moderately textured, showing up as light blues and
greens. The rocks in the foreground register as the most higly textured portion
of the image which seems appropriate.

Finally consider our third example shown in figures 8, 9, and 10. Here we see
that the relatively large expanses of sky show up as larger scale textures in
the texture scale map, the stonework of the towers are primarily a small scale
texture and the street in the foreground is primarily an intermediate scale
texture. We also see some anomalous regions where the texture scale is large
(small regions of black) indicating room for improvement of this method. In
this image we have, for the most part, fairly smooth textures with boundaries
between them. This is reflected by the fact that the most highly textured areas
are the edges between these regions. This is desirable, since it shows that our
method has the potential to not only discover two-dimensional features, like
in the previous image, but also one-dimensional features like in this image,
and our first example image.

5 Conclusions

All of the examples in the previous section were computed in a completely un-
supervised setting and the only input to the analysis software was the source
image. This gives our method definite advantages over those that require
a-priori information or supervision, such as model-based and wavelet-based
methods, and to a lesser extent region-based methods. Our method does not
depend on crisp boundaries between texture regions which is another advan-
tage over region-based and edge-based methods. Our method could be clas-
sified as a transform-domain method because we do convert images to the
WFA domain, and back. Although the decompression is very fast, which is an
advantage over Fourier methods, the compression process can be quite slow.

While disadvantages of some other methods are overcome, the method pre-
sented here has its own shortcomings. The quadtree decomposition of the
image means that we are only able to examine a small subset of all possible
subsquares. There may be features of the image that are undetectable be-
cause they either lie precisely on a subsquare boundary or straddle a large
subsquare’s boundary. Moreover, consider two highly textured regions, one
where the greylevel variation is high, but the distribution of greylevels is very
regular, and a texture where the variation is equally high, but the distribu-

10

tion of greylevels is quite irregular. This method cannot tell the difference
between these two textures and will attribute an approximately equal amount
of texture to each region. Finally, while it is true that if a subsquare has low
successor variance it should contain a homogeneous texture, the converse is
not necessarily true. Thus it is possible for a highly textured region to appear
to have a very low successor variance when averaged out at a particular scale
which can result in an inappropriate value of σ. A more sophisticated tex-
ture model is required to overcome these difficulties and will be the subject of
future research.

Nevertheless, given the straighforwardness of the model, we submit that this
method performs remarkably well and is a good general texture analysis algo-
rithm which is suitable for any input image and has certain advantages over
known techniques in general. We do not make any claims to its superiority over
other specific methods, but do claim that it should perform reasonably well on
any image. We also feel that this experiment shows the potential of weighted
finite automata based methods in the area of texture analysis especially given
that it is extremely easy to perform a large number of affine transformations
on images that are encoded as WFA without decompressing (Culik, [27]) – a
property which could be taken advantage of to develop some very sophisti-
cated methods. There remain certain open questions to be followed up upon
including to what degree is the ability to characterize texture affected by the
compression rate, to identify patters in the automata themselves that are char-
acteristic of certain types of texture, and to develop ways of extracting spatial
relationships between objects in the image from the automaton representation.

References

[1] K. Culik II, J. Kari, Image compression using weighted finite automata,
Comput. and Graphics 17 (3) (1993) 305–313.

[2] E. S. Santos, Maximin automata, Information and Control 13 (1968) 363–377.

[3] K. Culik II, J. Kari, Inference algorithms for WFA and image compression, in:
Y. Fisher (Ed.), Fractal Image Encoding and Analysis, Springer-Verlag, 1998.

[4] Y. Lin, H. Yen, An ω-automata approach to the compression of bi-level images,
Electronic Notes in Theoretical Computer Science 31 (1).
URL http://www.elsevier.nl/locate/entcs/volume31.html

[5] F. Katritzke, Refinements of data compression using weighted finite automata,
Ph.D. thesis, University of Siegen (2001).

[6] B. Litow, O. de Vel, On the basic parameters of automaton-based image
compression, Tech. Rep. 99/04, James Cook University of North Queensland

11

(1999).
URL citeseer.nj.nec.com/article/litow99basic.html

[7] U. Hafner, Asymmetric coding in (m)-WFA image compression, Tech. Rep. 132,
Lehrstuhl für Informatik II, U. Wuerzburg (1995).
URL citeseer.nj.nec.com/hafner95asymmetric.html

[8] M. Tuceryan, A. K. Jain, Texture analysis, in: C. Chen, L. F. Pau, P. S. P.
Wang (Eds.), The Handbook of Pattern Recognition and Computer Vision (2nd
edition), World Scientific Publishing Co., 1998, pp. 207–248.

[9] L. V. Gool, P. Dewaele, A. Oosterlinck, Survey: Texture analysis anno 1983,
Computer Vision, Graphics and Image Processing 29 (3) (1985) 336–357.

[10] T. Reed, J. M. Hans Du Buf, A review of recent texture segmentation and
feature extraction techniques, CVGIP: Image Understanding 57 (3) (1993) 359–
372.

[11] R. M. Haralick, Image texture survey, in: P. R. Hrishnaiah, L. N. Kanal (Eds.),
Handbook of Statistics, Vol. 2, 1982, pp. 399–415.

[12] T. Reed, M. Werman, Texture segmentation using a diffusion region growing
technique, Pattern Recognition 23 (9) (1990) 953–960.

[13] S. Hojjatoleslami, J. Kittler, Region growing: A new approach (1995).
URL citeseer.nj.nec.com/hojjatoleslami95region.html

[14] A. Khotanzad, J. Chen, Unsupervised segmentation of images by edge detection
in multidimensional features, IEEE Trans. Pattern Anal. Mach. Intell. 11 (4)
(1989) 414–421.

[15] N. Paragios, R. Deriche, Coupled geodesic active regions for image
segmentation: A level set approach, in: ECCV (2), 2000, pp. 224–240.
URL citeseer.nj.nec.com/paragios99coupled.html

[16] H. Derin, H. Elliot, Modeling and segmentation of noisy and textured images
using Gibbs random fields, IEEE Trans. Pattern Anal. and Mach. Intell. 9 (1).

[17] S. Krishnamachari, R. Chellappa, Multiresolution Gauss-Markov random field
models for texture segmentation, IEEE Trans. Image Processing 6 (2).

[18] M. Unser, Texture classification and segmentation using wavelet frames, IEEE
Trans. Image Processing 4 (11).

[19] M. G. Eramian, R. A. Schincariol, L. Mansinha, R. G. Stockwell, Generation of
aquifer heterogeneity maps using two dimensional spectral texture segmentation
techniques, Mathematical Geology 31 (3) (1999) 327–348.

[20] R. M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image
classification, IEEE Trans. Syst., Man Cybernet. 3 (1973) 610–621.

[21] M. Tuceryan, A. K. Jain, Texture segmentation using voronoi polygons, IEEE
Trans. Pattern Anal. Machine Intelligence 12 (2) (1990) 211–216.

12

[22] M. G. Eramian, Image texture analysis using weighted finite automata, Ph.D.
thesis, The University of Western Ontario, London, Ontario, Canada (2002).

[23] B. Litow, O. de Vel, A recursive GSA acquisition algorithm for image
compression, Tech. Rep. 97/2, James Cook University of North Queensland
(1997).

[24] B. Litow, O. de Vel:, The weighted finite automaton inference problem (1995).

[25] B. Litow, O. de Vel, On digital images which cannot be generated by small
generalised stochastic automata, in: Proc. MFCS Workshop on Randomized
Algorithms, 1998, pp. 70–77.
URL citeseer.nj.nec.com/litow98digital.html

[26] B. Litow, O. de Vel, Generalised stochastic automaton image compression, Tech.
Rep. 96/19, James Cook University of North Queensland (1997).
URL citeseer.nj.nec.com/litow96generalised.html

[27] K. Culik II, J. Kari, Finite state transformation of images, Comput. and
Graphics 20 (1996) 125–135.

13

of texture
Low degree

of texture
High degree

Fig. 1. Scale representing degree of texture from “highly untextured” at the dark
blue end to “highly textured” on the dark orange end.

14

Fig. 2. Original Image

Fig. 3. Texture Scale σ of Fig. 2

15

Fig. 4. Texture Variance τ of Fig. 2

Fig. 5. Original Image

16

s

Fig. 6. Texture Scale σ of Fig. 5

Fig. 7. Texture Variance τ of Fig. 5

17

Fig. 8. Original Image

Fig. 9. Texture Scale σ of Fig. 8

18

Fig. 10. Texture Variance τ of Fig. 8

19

