
The University of Saskatchewan
Department of Computer Science

Technical Report #2005-03



Information Retrieval manuscript No.
(will be inserted by the editor)

Updating the Partial Singular Value

Decomposition in Latent Semantic Indexing

Jane E. Tougas1 ⋆, Henry Stern2, Raymond J. Spiteri3 ⋆⋆

1 Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5,

Canada (tougas@cs.dal.ca).

2 Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5,

Canada (stern@cs.dal.ca).

3 Department of Computer Science, University of Saskatchewan, Saskatoon, SK,

S7N 5C9, Canada (spiteri@cs.usask.ca).

Received: date / Revised version: date

Abstract Latent semantic indexing (LSI) is a method of information

retrieval that relies heavily on the partial singular value decomposition

(PSVD) of the term-document matrix representation of a dataset. Calcu-

lating the PSVD of large term-document matrices is computationally ex-

pensive; hence in the case where terms or documents are merely added to

an existing dataset, it is extremely beneficial to update the previously cal-

culated PSVD to reflect the changes. In this article we show how updating

Send offprint requests to: Jane E. Tougas
⋆ Research partially supported by NSERC Canada and a Killam scholarship.

⋆⋆ Research partially supported by a grant from NSERC Canada.



2 Jane E. Tougas et al.

can be used in LSI to significantly reduce the computational cost of find-

ing the PSVD without significantly impacting performance. Moreover, we

show how the computational cost can be reduced further, again without

impacting performance, through a combination of updating and folding-in.

1 Introduction

The seemingly disparate fields of information retrieval (IR) and numeri-

cal linear algebra (NLA) are closely linked via latent semantic indexing

(LSI) [5]. LSI is an IR method based on the vector-space model where a

dataset is represented as a term-document matrix. LSI uses a matrix factor-

ization method known as the partial singular value decomposition (PSVD)

in an attempt to reduce the problems of precision and recall failure caused

by polysemy and synonymy. Many terms have more than one meaning (they

are polysemous). When a polysemous term is used in a search query, ir-

relevant documents about the term’s other meaning(s) may be retrieved,

degrading the precision level of the results. Moreover, many terms have

similar meanings (they are synonymous). When a term that has a synonym

is used in a query, relevant documents containing the synonym, but not the

query term, may be overlooked, degrading the recall level of the results.

Research indicates that LSI is more successful in dealing with the problems

caused by synonymy than those caused by polysemy [5], but this does not

detract from the importance of LSI in IR. As a vector-space model, LSI

examines the document collection as a whole and determines which docu-



Updating the PSVD in LSI 3

ments contain many of the same terms. The more terms that documents

have in common, the more closely related the documents are considered to

be. This process involves creating a term-document matrix A ∈ ℜt×d, in

which there is a column vector for each document, with as many entries

as there are semantically significant terms in the documents. Each entry is

the weighted frequency of a particular term in a particular document. The

term-document matrix represents a t-dimensional space with t-dimensional

document vectors, where t is the number of semantically significant terms.

Each vector contains the coordinates of that document’s location in the

t-dimensional space. Queries are also represented as t-dimensional vectors.

The vectors of documents and queries with many terms in common will be

close together, whereas those with relatively few terms in common will be

far apart. The query vectors are projected into the term-document matrix

using the PSVD.

Even using the most advanced NLA methods, computing the PSVD

of a matrix is an extremely expensive process. Because of the tremendous

size of modern databases, a term-document matrix can potentially be very

large, with hundreds of thousands or even millions of entries. In LSI, this

means that most of the processing time is spent in performing the PSVD

calculation [2], [3]. In a rapidly expanding environment, such as the Internet,

the term-document matrix is altered often as new documents and terms

are added. Recalculating the PSVD of the matrix each time these slight

alterations occur is prohibitively expensive. Traditionally, LSI uses a process



4 Jane E. Tougas et al.

known as folding-in to modify the PSVD. Although this method is very

efficient, its accuracy may degrade, especially the more it is performed. An

efficient and much more accurate approach is to update the PSVD; e.g., [6].

In this approach the existing PSVD is modified to reflect the changes to

the term-document matrix; i.e., the PSVD of the modified term-document

matrix is obtained by modifying the PSVD of the original term-document

matrix.

The purpose of this paper is not only to show that updating the PSVD

is more accurate than folding-in, but also to show that a combination of

folding-in and updating the PSVD (which we call folding-up) is an even

more attractive option than either folding-in or updating the PSVD on their

own. Folding-up offers a significant improvement in computation time when

compared to either recomputing the PSVD or just updating the PSVD. At

the same time, folding-up provides a level of precision that is not statistically

different from that given by recomputing the PSVD each time changes are

made to the term-document matrix.

The remainder of the paper proceeds as follows. Section 2 covers back-

ground information on the PSVD and on the folding-in process, Section 3

gives a description of the algorithms used for updating the PSVD [6], and

Section 5 gives experimental results using the document updating algorithm

and the MEDLINE and CRANFIELD data collections [4]. Finally, Section 6

presents our conclusions.



Updating the PSVD in LSI 5

2 Background

2.1 SVD

The SVD is a matrix factorization that can be used to capture the salient

features of a matrix by determining important vectors (directions) and

quantifying their importance via weighting factors. Given a matrix A ∈

ℜt×d, its SVD is written as A = UΣVT , where U ∈ ℜt×t, V ∈ ℜd×d,

and Σ ∈ ℜt×d. U andV are orthogonal matrices containing the left and

right singular vectors of A respectively. When A is a term-document ma-

trix, U represents the term vectors and V represents the document vectors.

The matrix Σ potentially has non-zero entries only on the diagonal. These

diagonal entries, denoted σj for j = 1, 2, ..., min(m, n) and arranged in non-

increasing order, are known as the singular values of matrix A. The number

of non-zero singular values of a matrix is known as its rank, r.

The SVD can be interpreted as the weighted sum of r rank-one matrices,

A =
∑r

j=1 σjujv
T
j , where uj and vj are the jth columns of matrices U and

V, respectively. This interpretation of the SVD facilitates the formation of

lower-rank approximations of A. Replacing r in this sum by any k with

0 ≤ k < r gives the partial SVD of A, Ak =
∑k

j=1 σjujv
T
j ≈ A. In matrix

form, this is equivalent to taking Uk and Vk to be the first k columns of

U and V, and Σk to be the leading k × k submatrix of Σ, yielding Ak =

UkΣkV
T
k . This approximation can be used to reduce the dimension of the

term-document matrix, while eliciting the underlying structure of the data.

In LSI, the effect of this huge dimensional reduction on the data is a muting



6 Jane E. Tougas et al.

of the noise caused by synonymy and an enhancing of the latent patterns

that indicate semantically similar terms. This means that Ak can actually

be a better representation of the data than the original term-document

matrix. We note, however, that Ak is never explicitly formed; we use the

matrices Uk,Σk, and Vk instead. The number of dimensions k to keep in

the reduced term-document matrix when d is very large is still open to study

and debate, but experiments indicate that values of k between 100 and 300

typically give the best results [3].

2.2 Folding-In

In LSI, when new documents and terms are added to a dataset, it is nec-

essary to modify the PSVD of the term-document matrix to reflect these

changes. Because recomputing the PSVD is very expensive, the method of

folding-in new documents and terms is often used.

Let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d,

where t is the number of terms, d is the number of documents, and k is the

number of dimensions used in the PSVD, such that Uk ∈ ℜt×k,Σk ∈ ℜk×k,

and Vk ∈ ℜd×k. Let D ∈ ℜt×p be the term-document matrix containing

the document vectors to be appended to A, where p is the number of new

documents.

Because we are using the PSVD, D must be projected into the k-

dimensional space, giving Dk:



Updating the PSVD in LSI 7

Dk = DT UkΣ
−1
k .

The projection Dk ∈ ℜp×k is folded-in to the existing PSVD of A by ap-

pending it to the bottom of Vk, giving the modified matrix V̂k ∈ ℜ(d+p)×k.

Uk and Σk are not modified in any way with this method.

Folding-in terms follows a similar process. Let T ∈ ℜq×d be the term-

document matrix containing the term vectors to be appended to A, where

q is the number of new terms.

T must be projected into the k-dimensional space, giving Tk:

Tk = TVkΣ
−1
k .

The projection Tk ∈ ℜq×k is folded-in to the existing PSVD of A by ap-

pending it to the bottom of Uk, giving the modified matrix Ûk ∈ ℜ(t+p)×k.

Vk and Σk are not modified in any way with this method.

3 Updating Methods

Updating the PSVD when the term-document matrix changes is a more

complicated process than folding-in. However, the end result (in the ab-

sence of roundoff errors) is the exact PSVD of the modified term-document

matrix without the expense of recomputing it from scratch. Typically, the

PSVD is updated to reflect the new documents that have been added to

the document collection. As with folding-in, adding these new documents



8 Jane E. Tougas et al.

will often mean that new terms also need to be added, so the PSVD is

then updated to reflect these changes. Finally, another updating method

allows the PSVD to be updated again to reflect the changes to the term

weights in the term-document matrix caused by the additional documents

and terms. Subsection 3.1 describes document updating, 3.2 describes term

updating, and 3.3 describes term weight updating. Each of the methods de-

scribed is based on the updating method introduced by Zha and Simon [6].

This method does require one QR decomposition and one SVD per update;

however, these potentially expensive computations are only performed on

small intermediate matrices, where the computational complexity scales on

the order of the size of the update and/or the reduced dimension k, not

dimensions of the original matrix (see below).

As before, let Ak = UkΣkV
T
k be the PSVD of the term-document

matrix A ∈ ℜt×d, where t is the number of terms, d is the number of

documents, and k is the number of dimensions used in the PSVD. It is

assumed that the PSVD of A has been computed by some means prior to

updating.

In the following, we let In denote the identity matrix of size n.

3.1 Updating documents

Let D ∈ ℜt×p be the term-document matrix containing the document vec-

tors to be appended to A, where p is the number of new documents, and let



Updating the PSVD in LSI 9

Ã = [A,D] be the updated term-document matrix. The following method

updates the PSVD of A to give the PSVD of Ã.

Let D̂ ∈ ℜt×p =
(

It − UkU
T
k

)

D.

Form the QR decomposition of D̂ such that QDRD = D̂, where QD ∈

ℜt×p is orthonormal, and RD ∈ ℜp×p is upper triangular. Then

Ã = [A,D] ≈ [Ak,D] = [Uk,QD]









Σk UT
k D

0 RD

















VT
k 0

0 Ip









.

Now let Â ∈ ℜ(k+p)×(k+p) be the matrix defined by

Â =









Σk UT
k D

0 RD









.

Form the SVD of Â such that

Â =
[

Ûk, Ûp

]









Σ̂k 0

0 Σ̂p









[

V̂k, V̂p

]T

,

where Ûk ∈ ℜ(k+p)×k, Σ̂k ∈ ℜk×k, and V̂k ∈ ℜ(k+p)×k. Then the PSVD of

Ã in k dimensions (the updated PSVD) is

Ãk =
(

[Uk,QD] Ûk

)

Σ̂k

















Vk 0

0 Ip









V̂k









T

.



10 Jane E. Tougas et al.

3.2 Updating terms

Let T ∈ ℜq×d be the term-document matrix containing the term vectors

to be appended to A, where q is the number of new documents, and let

Ã = [A,T] be the updated term-document matrix. The following method

updates the PSVD of A to give the PSVD of Ã.

Let T̂ ∈ ℜd×q =
(

Id − VkV
T
k

)

TT .

Form the QR decomposition of T̂ such that QTRT = T̂, where QT ∈

ℜd×q is orthonormal, and RT ∈ ℜq×q is upper triangular. Then

Ã =









A

T









≈









Ak

T









=









Uk 0

0 Iq

















Σk 0

TVk RT
T









[Vk,QT]
T

.

Now let Â ∈ ℜ(k+q)×(k+q) be the matrix defined by

Â =









Σk 0

TVk RT
T









.

Form the SVD of Â such that

Â =
[

Ūk, Ūq

]









Σ̄k 0

0 Σ̄q









[

V̄k, V̄q

]T
,

where Ūk ∈ ℜ(k+q)×k, Σ̄k ∈ ℜk×k, and V̄k ∈ ℜ(k+q)×k. Then the PSVD of

Ã in k dimensions (the updated PSVD) is



Updating the PSVD in LSI 11

Ãk =

















Uk 0

0 Iq









Ūk









Σ̄k

(

[Vk,QT] V̄k

)T
.

3.3 Updating term weights

Let S ∈ ℜt×s, where s is the number of terms whose term weights need

adjusting, be a selection matrix in which each column contains one 1, and

all other entries are zero. Let W ∈ ℜd×s be the matrix in which each column

Wi contains the difference between the old term weights and the new term

weights for the term i. Let Ã = A + SWT be the adjusted term-document

matrix. The following method updates the PSVD of A to give the PSVD

of Ã.

Let Ŝ ∈ ℜt×s =
(

It − UkU
T
k

)

S; let Ŵ ∈ ℜd×s =
(

Id − VkV
T
k

)

W.

Form the QR decomposition of Ŝ such that QMRM = Ŝ, where QM ∈

ℜt×s is orthonormal, and RM ∈ ℜs×s is upper triangular.

Form the QR decomposition of Ŵ such that QNRN = Ŵ, where QN ∈

ℜd×s is orthonormal, and RN ∈ ℜs×s is upper triangular. Then

Ã = A + SWT

≈ Ak + SWT = [Uk,QM]

















Σk 0

0 0









+









UT
k S

RM

















VT
k W

RN









T 







[Vk,QN]T .

Now let Â ∈ ℜ(k+s)×(k+s) be the matrix defined by



12 Jane E. Tougas et al.

Â =









Σk 0

0 0









+









UT
k S

RM

















VT
k W

RN









T

.

Form the SVD of Â such that

Â =
[

Ũk, Ũs

]









Σ̃k 0

0 Σ̃s









[

Ṽk, Ṽs

]T

,

where Ũk ∈ ℜ(k+s)×k, Σ̃k ∈ ℜk×k, and Ṽk ∈ ℜ(k+s)×k. Then the PSVD of

Ã in k dimensions (the updated PSVD) is

Ãk =
(

[Uk,QM] Ũk

)

Σ̃k

(

[Vk,QN] Ṽk

)T

.

4 Folding-up

It is well known that folding-in is a very inexpensive way compared to re-

computing the PSVD to incorporate new information []. However, because

the matrices Vk and Σk are never changed, the quality of the results pro-

duced by folding-in can be expected to deteriorate (perhaps even rapidly)

after even only a small number of updates. On the other hand, updating the

PSVD gives exactly the same result (to within rounding errors) as recom-

puting the PSVD, with significantly less computational expense. However,

it is still significantly more computationally expensive than folding-in. We

now describe a method which we call folding-up that uses a combination of



Updating the PSVD in LSI 13

folding-in and updating at each increment in order to reduce the computa-

tional expense of updating even further without significantly degrading the

results.

The idea behind folding-up is to fold-in documents until the number of

documents folded-in reaches a pre-selected percentage of the current term-

document matrix. If no updates have previously been done, the current

term-document matrix is the initial matrix; otherwise it is the last up-

dated term-document matrix. Once the number of documents that have

been folded-in reaches the pre-selected percentage of the original matrix,

the vectors that have been appended to Vk during folding-in are discarded.

The PSVD is then updated to reflect the addition of all of the document

vectors that have been folded-in since the last update. These document vec-

tors are then discarded. The process then continues with folding-in until the

next update.

The process of folding-up has the overhead of saving the document vec-

tors that are being folded-in between updates; however, it repays this cost

with a saving in computation time, coupled with the precision advantages

of updating. We demonstrate by means of examples below that folding-in

produces results that are not statistically different from those produced by

recomputing the PSVD.



14 Jane E. Tougas et al.

5 Experiments

The experiments in this section are run using Matlab Release 13 on an Ul-

tra3 SunFire V880 (Solaris 8 operating system). Examples 5.1–5.2 use the

MEDLINE text collection [4], containing 1033 documents and 30 queries.

Removing semantically insignificant terms and stemming the remaining

terms gives a term-document matrix AMED ∈ ℜ5735×1033. Examples 5.3–

5.4 use the CRANFIELD text collection [4], containing 1400 documents

and 225 queries. For this collection, no stemming is done, but seman-

tically insignificant words are removed, giving a term-document matrix

ACRAN ∈ ℜ5321×1400. For each text collection, we use a term frequency

inverse document frequency (tfidf) weighting scheme [1]. The measure of

similarity is the cosine of the angle between query and document vectors.

For each example, we start with a term-document matrix and incremen-

tally update it with document vectors until the size of its column space has

approximately doubled. Because the results from recomputing the PSVD

represent what the other methods are attempting to reproduce, we then

compare the final average precision obtained for folding-in, updating, and

folding-up in each example with recomputing the PSVD. The statistical

comparisons are made pairwise using a non-parametric Kruskal-Wallis test

at significance level 0.05. In each case, the average precision for each of the

queries at 11 standard recall levels (0%, 10%, · · · , 100%) is averaged to pro-

duce the overall average precision at each increment of each experiment. For

each method used, we plot the average precision at each of these increments,



Updating the PSVD in LSI 15

starting with the initial term-document matrix. All PSVDs are computed

using the Matlab function svds, with k = 125 for the MEDLINE collection

and k = 300 for the CRANFIELD collection, where k is the number of sin-

gular values and corresponding left and right singular vectors computed. For

the sake of brevity, the experiments described use only document updating.

We note that similar results are produced using term updating.

5.1 Example 1

We partition AMED ∈ ℜ5735×1033 so that the first 533 columns are used

as the initial term-document matrix, and the remaining columns are added

incrementally in groups of size 10. We compare the average precision (as de-

scribed above) for four methods: recomputing the PSVD at each increment,

folding-in at each increment, updating at each increment, and folding-up

with folding-in at each increment and updates occurring when the number

of documents folded-in reaches approximately 14% of the size of the initial

matrix for the first update, and of the updated matrix thereafter.

As expected, Figure 1 shows that the average precision for folding-in

deteriorates rapidly relative to recomputing the PSVD; the final average

precision is significantly different from that of recomputing the PSVD (p =

0.02).

The average precision for updating does not begin to deteriorate until

the initial matrix is more than one and a half times its original size, and the

increments are less than 1.25% of the size of the matrix; the final average



16 Jane E. Tougas et al.

precision is not significantly different from that of recomputing the PSVD

(p = 0.89). Although the deterioration is slight, it does indicate that doing

many updates that are very small relative to the size of the matrix may

eventually have a negative affect on the average precision. However, the

savings in computation time compared to recomputing, as shown in Table 1,

may more than compensate for this small deficiency; in this case, updating

is more than 100 times faster than recomputing.

Figure 1 shows that in this example, folding-up actually outperforms the

other methods for much of the time, and the final average precision is not

significantly different than recomputing the SVD (p = 0.77); it is also faster

than either recomputing or just updating. See Table 1 for a comparison of

CPU times.

5.2 Example 2

We partition AMED ∈ ℜ5735×1033 so that the first 533 columns are used

as the initial term-document matrix, and the remaining columns are added

incrementally in groups of size 25. We compare the average precision for

the four methods: recomputing the PSVD at each increment, folding-in at

each increment, updating at each increment, and folding-up (as described

in Example 5.1).

As in Figure 1, Figure 2 shows that the average precision for folding-in

deteriorates rapidly relative to recomputing the PSVD; the final average



Updating the PSVD in LSI 17

precision is significantly different from that of recomputing the PSVD (p =

0.02).

The average precision for updating does not deteriorate relative to re-

computing the PSVD, and indeed it is at times slightly better; the final

average precision is not significantly different from that of recomputing the

PSVD (p = 0.84). These results suggest that updating in larger increments,

relative to the size of the matrix, can give better average precision. Again,

Table 1 shows that updating the PSVD is much faster than recomputing

each time the term-matrix changes, but in these examples, folding-in is by

far the fastest method.

Folding-up again outperforms the other methods in terms of precision

at various points of the experiment; the final average precision is not signifi-

cantly different from that of recomputing the PSVD (p = 0.88). It also takes

less computation time than recomputing the PSVD or simply updating it.

Table 1 gives a comparison of the CPU times for the methods.

Method CPU time CPU time

Increments of 10 Increments of 25

Recomputing 5001.60 2045.80

Updating 43.07 22.33

Folding-in 1.35 0.75

Folding-up 15.76 13.14

Table 1 Comparison of total CPU times (seconds) for the MEDLINE collection,

with 500 documents added in groups of 10 and in groups of 25.



18 Jane E. Tougas et al.

500 600 700 800 900 1000 1100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 1 Comparison of average preci-

sions of four methods, for the MED-

LINE collection, with 500 documents

added in 50 groups of 10.

500 600 700 800 900 1000 1100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 2 Comparison of average preci-

sions of four methods, for the MED-

LINE collection, with 500 documents

added in 20 groups of 25.

5.3 Example 3

We partition ACRAN ∈ ℜ5321×1400 such that the first 700 columns are used

as the initial term-document matrix, and the remaining columns are added

incrementally in groups of size 14. We compare the average precision for

four methods: recomputing the PSVD at each increment, folding-in at each

increment, updating at each increment, and folding-up with updates occur-

ring when the number of documents folded-in reaches approximately 8% of

the size of the initial matrix for the first update, and of the updated ma-

trix thereafter. As expected, Figure 3 shows that the average precision for

folding-in falls below that of the other methods; the final average precision

is significantly different from that of recomputing the PSVD (p = 0.03).

We note that the overall average precision is low because no stemming of

terms was done when the text collection was processed. The average pre-



Updating the PSVD in LSI 19

cisions for recomputing and for updating the PSVD are very similar, with

the final precisions not being significantly different (p = 0.94), even though

Table 2 shows that in this case, updating is more than 150 times faster than

recomputing the PSVD. Figure 3 also shows that in this example, folding-

up at times outperforms updating but otherwise performs similarly to both

updating and recomputing the PSVD; the final average precision is not sig-

nificantly different from that of recomputing the PSVD (p = 0.86). Table 2

shows that folding-up is more than three times faster than updating, and

more than 580 times faster than recomputing the PSVD at each increment.

5.4 Example 4

We partition ACRAN ∈ ℜ5321×1400 such that the first 700 columns are used

as the initial term-document matrix, and the remaining columns are added

incrementally in groups of size 28. We again compare the average precision

for four methods: recomputing the PSVD at each increment, folding-in at

each increment, updating at each increment, and folding-up (as described in

Example 5.1). As in Figure 3, Figure 4 shows that the average precision for

folding-in falls below that of the other methods; the final average precision is

significantly different from that of recomputing the PSVD (p = 0.03). Again

the average precision of recomputing and of updating the PSVD are again

very similar; the final average precision is not significantly different than

recomputing the SVD (p = 0.88). Folding-in is by far the fastest method,

but as Table 2 shows, updating is still more than 150 times faster than



20 Jane E. Tougas et al.

recomputing the PSVD. Folding-up gives similar overall average precision

to that of recomputing or updating the PSVD; the final average precision is

not significantly different than recomputing the SVD (p = 0.90). However,

in this case is more than 300 times faster than recomputing, and it is almost

twice as fast as updating.

700 800 900 1000 1100 1200 1300 1400

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 3 Comparison of average preci-

sions of four methods, for the CRAN-

FIELD collection, with 700 docu-

ments added in 50 groups of 14.

700 800 900 1000 1100 1200 1300 1400

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recomputing
Updating
Folding−in
Folding−up

Fig. 4 Comparison of average preci-

sions of four methods, for the CRAN-

FIELD collection, with 700 docu-

ments added in 20 groups of 28.

6 Conclusions

LSI makes heavy use of the PSVD in its implementation. Often, the term-

document matrix may need frequent changes when new documents and

terms are added to the data collection. In such cases, it is beneficial to ex-

ploit the previously computed PSVD via updating. We have demonstrated

that updating the PSVD of the term-document matrix each time these types

of changes are made to the matrix is not only much faster (typically by an



Updating the PSVD in LSI 21

Method CPU time CPU time

Increments of 14 Increments of 28

Recomputing 51548.30 26335.33

Updating 294.28 162.11

Folding-in 7.27 4.13

Folding-up 88.82 81.57

Table 2 Comparison of total CPU times (seconds) for the CRANFIELD collec-

tion, with 700 documents added in groups of 14 and in groups of 28.

order of magnitude) than recomputing the PSVD, but it also gives better

average precision than the traditional method of folding-in documents and

terms. We have also demonstrated that folding-up, a new approach that

is a hybrid of folding-in and updating, gives better average precision than

folding-in, with less computation time (typically by a factor of 2 or 3) than

updating alone. Our examples also illustrate a viable method for determin-

ing when to perform the updating in the folding-up procedure based on the

number of documents that are being added as a percentage of the size of the

current term-document matrix. The folding-up method offers an excellent

speed-up in computation time (typically by a factor of between 20 and 30),

with little or no loss of overall average precision compared to recomputing

the PSVD.



22 Jane E. Tougas et al.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-

Wesley Longman Publishing Co., Inc., 1999.

2. M. W. Berry, S. T. Dumais, and T. A. Letsche. Computational methods for

intelligent information access, 1995. Presented at the Proceedings of Super-

computing.

3. M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for

intelligent information retrieval. SIAM Rev., 37(4):573–595, 1995.

4. Cornell SMART System ftp://cs.cornell.edu/pub/smart.

5. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman. Indexing by latent semantic analysis. Journal of the American

Society of Information Science, 41(6):391–407, 1990.

6. H. Zha and H. D. Simon. On updating problems in latent semantic indexing.

SIAM J. Sci. Comput., 21(2):782–791, 1999.




