
The University of Saskatchewan
Department of Computer Science

Technical Report #2005-04

Practical Structures for Inference in Bayesian

Networks

Kevin Grant1 and Michael Horsch1

Dept. of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5A9

Abstract. Programmers employing inference in Bayesian networks typ-
ically rely on the inclusion of the model as well as an inference engine
into their application. Sophisticated inference engines require non-trivial
amounts of space and are also difficult to implement. This limits their
use in some applications that would otherwise benefit from probabilistic
inference. This paper presents a system that minimizes the space require-
ment of the model. The inference engine is sufficiently simple as to avoid
space-limitation and be easily implemented in almost any environment.
We show a fast, compact indexing structure that is linear in the size of
the network. The additional space required to compute over the model
is linear in the number of variables in the network.

1 Introduction

When programmers wish to employ a Bayesian network in their applications,
the standard convention is to include the entire network, as well as an inference
engine to compute posteriors from the model. Algorithms based on junction-tree
message passing [6] or variable elimination [11, 5] have a high space requirement
and are difficult to code. Furthermore, application programmers not wishing to
implement their own version of inference must import large general-purpose li-
braries. There are few algorithms which can be simply implemented given limited
space.

To overcome some of these difficulties, Darwiche and Provan developed Query-
DAGs [4]. A Query-DAG (or Q-DAG), is a data structure that represents the
desired posterior probabilities as an arithmetic equation parameterized by ev-
idence variables. Computing probabilities involves setting the appropriate ev-
idence variables, and updating the graph. This is accomplished by a minimal
set of multiplications and summations. In other words, the Bayesian network is
“compiled out”, as the resulting structure consists only of node pointers, float-
ing point numbers and boolean variables, easily implementable on any machine.
The evaluator for Q-DAGs is a small set of rules composed of elementary com-
putational operations, such as pointer referencing, binary math, and variable
modification. Together with its evaluation engine, a Q-DAG is self-contained.
However, although the abstraction provided by Q-DAGs makes them univer-
sally implementable, their size may be exponential in the size of the network.

The technique of conditioning [8, 7, 2] requires only linear space. However,
cutset conditioning [8] requires an implementation of the message-passing algo-
rithm, which is non-trivial to program. Recursive conditioning [2] is a step in the
right direction towards an inference engine that is easy to implement. However,
it lacks the desirable properties of Query-DAGs; namely, a run-time structure
with the irrelevant details of the Bayesian network compiled away.

To overcome this problem, we present conditioning graphs. Conditioning
graphs combine the linear space requirements of conditioning with the simplicity
of Q-DAGs. Its components consist of simple node pointers and floating point
values; no high-level elements of Bayesian network computation are included. As
well, the evaluator for conditioning graphs is very simple: evaluating each node
requires a series of binary mathematical operations over floating point values.

The remainder of this paper is structured as follows. Section 2 gives some
necessary background, and introduces elimination trees, which are the basis for
conditioning graphs. Section 3 presents conditioning graphs, and demonstrates
their construction from elimination trees. Section 4 shows how to optimize a
structure when application-specific information is known. Section 5 outlines cur-
rent and future research.

2 Elimination Trees

We denote a random variable with capital letters (eg. X, Y, Z), and sets of vari-
ables with boldfaced capital letters X = {X1, ..., Xn}. Each random variable V
has an associated domain D(V) = {v1, ..., vk}. An instantiation of a variable is
denoted X = x, or x for short. A context, or instantiation of a set of variables,
is denoted X = x or x.

Given a set of random variables V = {V1, ..., Vn} with domain function D,
a Bayesian network is a tuple 〈V , Φ〉. Φ = {φV1

, ..., φVn
} is a set of distribu-

tions with a one-to-one correspondence with the elements of V . Each φVi
∈ Φ

is the conditional probability of Vi given its parents in the network (called con-
ditional probability tables or CPTs). That is, if πVi

represents the parents of Vi,
then φVi

= P (Vi|πVi
). A variable in a Bayesian network is said to be condition-

ally independent of its non-descendents given its parents. This allows the joint
probability to be factorized as:

P (V) =

n∏

i=1

P (Vi|πVi
) (1)

Figure 1 shows an example of a Bayesian network, and the CPTs associated with
each variable, which we use as a running example.

A common inference problem in Bayesian networks is to compute posterior
probabilities, which is NP-hard [1]. However, several algorithms exist that give
tractable run-times in many cases. The class of algorithms of interest in this case
is conditioning, specifically, recursive decomposition.

Recursive decomposition [7, 3, 10] partitions a network by conditioning on a
subset of its variables (such a subset of variables is deemed a cutset). Each of

Tampering (T)

Fire (L)

Smoke (S)

Report (B)Alarm (A) Leaving (L)

P(T=t) = 0.02
P(T=f) = 0.98

P(S=t |F=t) = 0.9
P(S=f |F=t) = 0.1
P(S=t |F=f) = 0.01
P(S=f |F=f) = 0.99

P(A=t |T=t,F=t) = 0.5
P(A=f |T=t,F=t) = 0.5
P(A=t |T=t,F=f) = 0.85
P(A=f |T=t,F=f) = 0.15
P(A=t |T=f,F=t) = 0.99
P(A=f |T=f,F=t) = 0.01
P(A=t |T=f,F=f) = 0.0001
P(A=f |T=f,F=f) = 0.9999

P(F=t) = 0.01
P(F=f) = 0.99

P(L=t | A=t) = 0.88
P(L=f | A=t) = 0.12
P(L=t | A=f) = 0.001
P(L=f | A=f) = 0.999

P(R=t |L=t) = 0.75
P(R=f |L=t) = 0.25
P(R=t |L=f) = 0.01
P(R=f |L=f) = 0.99

Fig. 1. An example Bayesian network (taken from Poole et al. [9])

these components can be decomposed again, until each component in the final
product is a single variable (with its associated distribution). Figure 2(a) shows
a recursive decomposition for the Fire example given above.

L,R

{} T

S,F

A

P(A | T,F) P(R |L)P(L | A)P(F) P(T)P(S | F)

(a) A recursive decomposition of
the Fire network.

R

L

S T

F

A

P(A | T,F) P(R | L)P(L | A)P(F)P(T)P(S | F)

(b) The elimination tree for the Fire
network.

For this paper, we propose elimination trees, which are related to recursive
decompositions. An elimination tree is a tree whose leaves and internal nodes
correspond to the CPTs and variables of a Bayesian network, respectively. There
is a one-to-one correspondence between nodes in an elimination tree and variables
in the Bayesian network. The tree is structured such that all CPTs containing
variable Vi in their domain are contained in the subtree of the node labeled with
Vi. Figure 2(b) shows a possible elimination tree for the Fire network.

Elimination trees have a close correspondence with elimination algorithms
[11, 5]. The algorithm for building an elimination tree parallels variable elimina-
tion, where an internal node represents the marginalization of its variable label,
and the children of the node represent the distributions that would be multiplied
together. Thus, an internal node is labeled with a variable, but represents a dis-
tribution. Figure 2 gives a simple algorithm for constructing an elimination tree
from a Bayesian network 〈V , Φ〉. In the algorithm, we use dom(T) to represent
the union of all CPT domains from the leaves of T ’s subtree.

Notice that the algorithm in Figure 2 returns a set of trees, rather than
a single tree. In the event that the network is not connected, the number of
disconnected components will correspond to the number of trees returned by
elimtree. For the following discussion, we consider the case where the elimination
tree is a single tree. Cases where multiple trees occur are examined in Section 4.

elimtree(〈V , Φ〉)
T ← {}
for each φ ∈ Φ do

Construct a leaf node Tφ containing φ
Add Tφ to T

for each Vi ∈ V do

Select the set T i = {T ∈ T |Vi ∈ dom(T)}
Remove T i from T

Construct a new internal node ti whose children are T i

Label ti with Vi, and add it to T

return T

Fig. 2. The code for generating an elimination tree from a Bayesian network.

To calculate probabilities from an elimination tree, we define algorithm P
(see Figure 3). P takes as parameters a node from an elimination tree and a
context, and returns a distribution. We use the following notation: if T is a leaf
node, then let φT represent the CPT at T . If T is an internal node, let VT

represent the variable labeling T , and let chT represent its children.

P(T , c)
if T is a leaf node

Return φT (c)
elseif VT is instantiated in c

Total← 1
for each T ′ ∈ chT

Total← Total ∗ P(T ′, c)
Return Total

else

Total← 0
for each vT ∈ dom(VT)

Total← Total + P(T, c ∪ {vT })
Return Total

Fig. 3. The code for processing an elimination tree given a context.

The following theorem specifies the relationship between the probabilities of
interest and the algorithm P . Its correctness follows from the correctness of the
other recursive decomposition algorithms. See the Appendix for the proof.

Theorem 1 Given a Bayesian network 〈V , Φ〉 and its associated elimination
tree T :

P (xq|c) = αP(T, {xq} ∪ c). (2)

where α = P (c)−1 is a normalization constant.

The major advantage of recursive decompositions (and conditioning in gen-
eral) is the linear space property of the algorithm. It is summarized in the fol-
lowing theorem, whose proof is also found in the Appendix.

Theorem 2 Given a Bayesian network and its corresponding elimination tree
T , P(T, C = c) makes O(nmd) recursive calls and requires O(d) space, where m
is the cardinality of the variable domains, and d is the height of the elimination
tree.

Theorem 2 demonstrates the relationship between the depth of the tree and
the complexity of the algorithm P . The depth of the tree is a consequence of the
order in which the variables are selected from the elimtree algorithm. Choosing
an ordering that optimizes the depth of the tree is an open problem.

There are several optimizations that can be made to this structure. However,
we first consider some implementation details for elimination trees - one that pro-
vides minimal indexing. Further optimization will be considered in subsequent
sections.

3 Conditioning Graphs

In this section, we will give a low-level representation for a Bayesian network as
an elimination tree, and a compact efficient implementation of the algorithm P .

We implement P as a depth-first traversal. When we reach a leaf node, we
need to retrieve the parameter that corresponds to the context. To do this, we
assume that each CPT is stored as a linear array of parameters. Indexing a CPT
assumes an ordering of its variables and the domain values of each variable. Let
{C1, ..., Ck} be an ordering of the variables in a CPT. Ci is the ith variable in
the ordering, and ci is an integer specifying the cith value of Ci’s domain. We
calculate the index of a context {c1, ..., ck} as follows:

index (c1, ..., ck) =

k∑

i=1

cim
k−i (3)

A more efficient version of this function is the Horner form of the polynomial:

1. index ([]) = 0
2. index ([c1, ..., ci]) = ci + m(index ([c1, ..., ci−1]))

For any given ordering of the variables, we can index into a CPT using this
function. If we choose an ordering that is consistent with the path from root
to leaf in the elimination tree, then we can index the CPTs as the context is

constructed, as we traverse the tree. However, to make the associations between
variables and distributions, we require a second set of arcs at each internal
node, referred to here as secondary pointers (call the original pointers primary
pointers). The secondary arcs are added according to the following rule: there is
an arc from an internal node A to leaf node B iff the variable X associated with
A is contained in the definition of the CPT associated with B. The number of
secondary arcs emitting from a node with variable V is equivalent to |chV | + 1,
where chV refers to the number of arcs emitting from V in the Bayesian network.
Cumulatively, the number of secondary arcs in the entire structure is e+n, where
e is the number of arcs in the original network.

R = -1

L = -1

S = -1 T = -1

F = -1

A = -1

0.02
0.98

0.9
0.1
0.01
0.99

0.5
0.99
0.85
0.0001
0.5
0.01
0.15
0.9999

0.01
0.99

0.88
0.12
0.001
0.999

0.75
0.25
0.01
0.99

0 0 0 0 0 0

cpt pos cpt pos cpt pos cpt pos cpt pos cpt pos

Fig. 4. The conditioning graph.

An example of the final structure is shown in Figure 4. We refer to this struc-
ture as a conditioning graph, as the secondary arcs destroy its tree properties.
Note that at each leaf, we store the CPT as an array of values, and the index
as an integer variable, which we call pos. In each internal node, we store a set
of primary pointers (from the elimination tree), a set of secondary pointers, and
an integer representing the current value of the node’s variable.

We maintain one global context over all variables, denoted as g. Each variable
Vi is instantiated in g to a member of D(Vi) ∪ {⋄}). The symbol ⋄ (borrowed
from Darwiche and Provan [4]) is a special symbol that means the variable is
unobserved. Initially, all nodes are assigned ⋄ in g, as no variables have been
instantiated. To calculate P (E1 = e1, ..., Ek = ek), we set Ei = ei in g for
i = 1 to k. While performing the algorithm, when conditioning a node to Vi = vi,
we set Vi = vi. To ‘uncondition’ the variable (after conditioning on all values
from its domain), we set Vi = ⋄ in g. We use -1 to represent ⋄, as then a variable
in a node is observed only if its value is non-negative.

Figure 5 shows an implementation of P . Note that we use dot notation to
refer to the members of the variables. For a leaf node N , we use N.cpt and N.pos
to refer to the CPT and its current index, respectively. For an internal node N ,
we use N.primary, N.secondary, and N.value to refer to the variables primary
children, secondary children, and variable value, respectively. The integers at
each internal node also represent the input from the programmer. To set the
evidence, the programmer would have to set N.value to the appropriate value
for each variable N .

Process(N)
if N is a leaf node

return N.cpt[N.pos]
else if N.value >= 0

for each S′ ∈ N.secondary do

S′.pos← S′.pos ∗m + N.value
Total ← 1
for each P ′ ∈ N.primary do

Total ← Total ∗ Process(P ′)
Total ←

Q

P ′∈N.primary
Process(P ′)

for each S′ ∈ N.secondary do

S′.pos← S′.pos/m
return Total

else

Total ← 0
for i← 0 to m− 1 do

N.value = i
Total ← Total + Process(N)

N.value = −1
return Total

Fig. 5. The process algorithm.

The algorithm assumes that all variables are of size m. Extending condition-
ing graphs to variables of various sizes is easily accomplished with a little extra
storage. If a node stores the size of its variable (as an integer value size) then
we can replace all instances of m with N.size in the algorithm, and it can now
handle multi-sized variables.

A more interesting case is when the variables have sizes that are powers of two
(eg. binary models). In this case, our multiplications and divisions become shift
operations, which is much more efficient. In fact, if our secondary pointers can
refer directly to their corresponding bits in the indexing variables, then shifting
becomes unnecessary altogether, as does the requirement that the entries in
the CPTs be ordered according to the global ordering (although they must be
ordered according to some ordering).

4 Optimizations

4.1 Sensor Models

It is well known that one can condition a Bayesian network on the evidence before
performing inference. This reduces network connectivity, resulting in smaller
cutset widths, and eliminates the evidence nodes from the CPTs, resulting in
fewer marginalizations. If we know that some set of variables will always be
observable, we can likewise modify the conditioning graph to be more efficient.
This is a realistic situation: in any application, there typically exists at least a
small subset of variables that are always observable. Examples of these include
monitor output in medical patient monitoring, and sensor values in car diagnosis.
We refer to these variables that can always be observed as sensor variables.

Considering the Fire model, suppose we know in advance that we will always
be able to observe the state of the fire alarm, and whether or not there is smoke
present (both are easily accomplished using sensors). Hence, our set of sensor
variables is E = {S, A}. We construct the elimination tree by removing E from
the set of variables, and building the elimination tree over the variables that
remain; all the CPTs are included in the tree. Essentially, this constructs a
tree that does not marginalize S or A. See Figure 6(a). A conditioning graph
is constructed from the elimination tree as before, with secondary arcs from
each internal node to the appropriate leaf nodes. As well, the variables in E

are included in the conditioning graph, with secondary arcs pointing to the
appropriate leaf nodes, but they are not connected to the tree structure with
any primary arcs. Figure 6(b) shows the resulting structure.

P(S | F)

R

L

T

F

P(T) P(A | T,F) P(F) P(L | A) P(R | L)

(a) The new conditioning graph.
Note that Fire and Smoke are never
marginalized.

P(S | F)

R

L

S

T

F

A

P(T) P(A | T,F) P(F) P(L | A) P(R | L)

(b) The new conditioning graph, with
nodes for Fire and Smoke.

Fig. 6. The new conditioning graph, utilizing the evidence optimization.

There are definite benefits to this separation of the evidence nodes from the
conditioning graph. Leaving E out of the elimination tree may result in several
distinct trees, each of which is smaller than if they were included. Computing
P (xq|e) only requires processing the component containing Xq in its nodes.
Thus, even though our conditioning graph is static at run-time, we are able to
“prune” away irrelevant parts of the model during compilation. Note that this

P(S | F)

S

T

F

A

P(T) P(A | T,F) P(F)

(a) The conditioning graph, leaving
out Report and Leaving.

f(S,F)

S

T

F

A

f(A,F,T)

(b) The conditioning graph, with
leaf nodes for each internal node
compacted.

f(S,F)

S

F

A

f(A,F)

(c) The conditioning graph, with
Tampering marginalized out.

f(A,S,F)

S

F

A

(d) The final conditioning graph.

Fig. 7. Optimizing the conditioning graph.

requires a pointer from each variable Xq to its corresponding elimination tree,
but these pointers require only linear space to store.

There are other advantages. Reducing the conditioning graph by leaving out
the observable variables may reduce its depth, which can produce exponential
speedup when computing probabilities. Plus, as long as the evidence remains
the same, we need only process the relevant elimination tree to handle multiple
queries over the same evidence.

4.2 Query variables

In variable elimination, it is well known that eliminating barren variables can
improve the time it takes to process a query. Also, any nodes in the Bayesian
network that are d-separated from the query can be removed. These optimiza-
tions can also be used in conditioning graphs, if it is known in advance which
variables will be queried, and which variables will be evidence variables.

For example, if we knew that variables Report and Leaving would never be
queried or observed, then that portion of the network need not even be stored.
This eliminates approximately 33% of the space required for storage. Figure 7(a)
shows the new structure.

If an internal node in a conditioning graph has several leaf nodes, the distri-
butions can be multiplied at compile time, and the single distribution made the
only child of the node. This will reduce the number of multiplications during in-
ference, but has the potential to increase the space requirement of the problem.
Thus it should only be performed if this increase in size is acceptable. On the
other hand, it is possible that this operation may decrease the space required to
store the conditioning graph.

From our previous example, we see that the internal node associated with
Tampering has two leaf nodes, whose CPTs correspond to P (A|T, F) and P (T).
Multiplying these two CPTs produces a factor over {A, T, F}, with 8 values. This
operation does not add to the space requirements (in fact, it reduces them). Sim-
ilarly, the node for Fire has two leaf nodes that can be multiplied with the same
effects. Figure 7(b) shows the conditioning graph after these two optimizations
are performed. Note that the size of the network and the number of operations
necessary has been reduced.

We can take this optimization one step further considering that we know of
variables that will never be observed or queried. If a subtree in the elimination
tree contains only variables that will never be queried or observed, then we can
compact that subtree into a single leaf node at compile time. This amounts
to doing partial elimination, before we condition, and storing an intermediate
distribution, rather than all CPTs from the original network. Once again, this
step has the potential to increase the space requirements of the conditioning tree.
However, we can calculate the size of the leaf node without actually performing
the computation. This allows us to decide beforehand whether such an absorption
is acceptable given our current size restrictions.

Continuing with the example, suppose that the need to query the Tampering
node is now eliminated, and assume that it is not observable. Hence, we can
multiply all of its children (there’s only one in this example), and marginalize
out the tampering variable. Figure 7(c) shows the system after we perform this
step. Note that we have reduced the depth of the tree, decreasing our complexity
by a factor of m (2, in this case). As well, the Fire variable now has two leaf
nodes, that can be compacted without increasing the space complexity. Figure
7(d) shows the final product, an extremely small, efficient version of the original
problem. In fact, we have reduced it to a simple lookup, given the values of the
evidence and query. Note that such a reduction is not always possible, but it can
reduce considerable portions of the network given the right variable ordering.

5 Conclusions and Future Work

This paper presents conditioning graphs, a low-level representation of inference in
Bayesian networks. Conditioning graphs allow for Bayesian computation without
storing the original model, or a large inference algorithm. We demonstrate their
construction and operation, generate complexity results for their operation, and
elicit some optimizations to improve their performance.

The system described in this paper is a generalization of conditioning over an
elimination tree. Our work is inspired by the work on recursive conditioning [3]
and adaptive conditioning [10]. However, rather than storing the original model
and a complex inference engine, the abstraction converts the network to a very
simple structure that allows us to compute posterior probabilities using a very
simple, very small algorithm. The space required for storage and inference (over
and above the storage for the parameters of the Bayesian network) is linear in
the size of the model.

This paper presents the preliminary stages of this research project. Order-
ings considered good for standard inference are not necessarily good for the
conditioning graphs. For example, consider a Bayesian network that is a chain
of n variables. Summing out the variables in the order of the chain represents
an optimal ordering in standard inference, but it represents the worst-case time
complexity for the conditioning graph. Finding an optimal variable ordering is
NP-hard, and the research community resorts to heuristics in many cases. Per-
haps the nature of the problem may suggest heuristics that are tailored towards
shallow conditioning graphs.

In our model, many of the operations repeat themselves. Darwiche has demon-
strated in his dtrees how simple caching procedures can increase the time per-
formance of the algorithms exponentially, if the space is available. The caching
procedure is somewhat involved, so porting it directly to conditioning graphs is
not obvious, but marks an available area of research.

A Proofs

A.1 Proof of Theorem 1

Given an elimination tree T , let ΦT represent the set of CPTs represented in
the leaves of T . As well, let V T represent the variables in each of T ’s internal
nodes. We show the following lemma:

Lemma 1. Given an elimination tree T and a context c:

P(T, c) =
∑

vT ∈V T −C

∏

φ∈ΦT

φ(vT , c) (4)

where α is a constant value.

Proof. The base case occurs when T is a leaf node, in which case P(T, c) = φT

(follows from the first conditional block in the algorithm), and
∑

vT ∈V T −C
∏

φ∈ΦT
φ(c) =

φT (c), since V T is empty, and ΦT = {φT }. Hence, the two sides are equivalent,
and the base case holds.

Our inductive step has two cases:

1. T is an internal node, where VT ∈ C. From our definition of P :

P(T, c) =
∏

T ′∈chT

P(T ′, c) (5)

From our inductive hypothesis, we can replace the final term:

P(T, c) =
∏

T ′∈chT

∑

vT ′∈V T ′−C

∏

φ∈ΦT ′

φ(vT ′ ∪ c) (6)

We can rewrite the product of sums as the sum of the product, by unioning
all of the marginalization variables in the summations:

P(T, c) =
∑

vT ∈
S

T ′∈chT
V T ′−C

∏

T ′∈chT

∏

φ∈ΦT ′

φ(vT , c) (7)

Since V T =
⋃

T ′∈chT
V T ′ ∪ {VT } and VT ∈ C, we can rewrite the marginal-

ization variables in the summation in terms of V T :

P(T, c) =
∑

vT ∈V T −C

∏

T ′∈chT

∏

φ∈ΦT ′

φ(vT , c) (8)

Combining the two product terms gives:

P(T, c) =
∑

vT ∈[V T −C]

∏

φ∈
S

T ′∈chT
Φ′

T

φ(vT , c) (9)

Since ΦT =
⋃

T ′∈chT
Φ′

T , the case is proved.
2. T is an internal node, where VT /∈ C. From our definition of P :

P(T, c) =
∑

v∈VT

P(T, {v} , c) (10)

From our inductive hypothesis, we can replace the final term:

P(T, c) =
∑

v∈VT

∑

wT ∈[V T −C−VT]

∏

φ∈ΦT

φ(wT , {v} , c) (11)

The two summations can be combined, since the second one does not sum
over VT :

P(T, c) =
∑

vT ∈[V T −C]

∏

φ∈ΦT

φ(wT , {v} , c) (12)

Letting vT = wT , {v} gives our desired result.

From this lemma, we can construct our proof of Theorem 1:

Proof. From the previous lemma, we know that:

P(T, {xq} ∪ c) =
∑

vT ∈V T −C−Xq

∏

φ∈ΦT

φ(xq , c) (13)

Since T refers to the elimination tree associated with the network, V T = V ,
and ΦT = Φ.

P(T, {xq} ∪ c) =
∑

v∈V −C−Xq

∏

φ∈Φ

φ(xq , c) (14)

which equals P (xq , c). Dividing this result by α = P (c) gives our result.

A.2 Proof of Theorem 2

Proof. To show linear space, it suffices to show that P is always returning a
single real value when called over an elimination graph, since the algorithm itself
is a depth-first search. Because the algorithm begins at the root nodes, when a
leaf node n(φ) is reached, the context c contains a value for each variable in
the associated distribution, as per the stated properties of elimination graphs.
Therefore, φ(c) is a single value, and the inductive base holds.

For the inductive step, each internal node is a multiplication of the values
returned by its children, or a summation of products returned by its children.
From our inductive hypotheses, the values being returned are single-dimensioned.
Hence, it returns a single value, as the product of multiplication and addition of
single-dimensioned values is also a single dimensioned value.

For time complexity, each internal node in the elimination graph correspond-
ing to an unobserved variable recursively calls P on its children m times - once
for each instantiation of its variable. This means that a node at depth d gets
called O(md) times. In the worst case, every leaf node has every variable in its
ancestry. Such an elimination tree exists for a Bayesian network with one parent
and n−1 leaves, if we sum out the parent variable first. Hence, the total number
of calls for O(n) nodes is O(nmn). By judiciously choosing a better variable
ordering, the depths for each leaf node varies, but is typically less than n.

References

1. G. F. Cooper. The computational complexity of probabilistic inference using
Bayesian Inference. Artificial Intelligence, 42:393–405, 1990.

2. A. Darwiche. Any-space probabilistic inference. In Proceedings of the Sixteenth
Conference on Uncertainty and Artificial Intelligence, pages 133–142, 2000.

3. A. Darwiche. Recursive Conditioning: Any-space conditioning algorithm with
treewidth-bounded complexity. Artificial Intelligence, pages 5–41, 2000.

4. A. Darwiche and G. Provan. Query dags: A practical paradigm for implementing
belief network inference. In Proceedings of the 12th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-96), pages 203–210, San Francisco, CA, 1996.
Morgan Kaufmann Publishers.

5. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

6. S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Sta-
tistical Society, 50:157–224, 1988.

7. S. Monti and G. F. Cooper. Bounded recursive decomposition: a search-based
method for belief-network inference under limited resources. Int. J. Approx. Rea-
soning, 15(1):49–75, 1996.

8. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., 1988.

9. D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence . Oxford
University Press, 1998.

10. F. Ramos, F. Cozman, and J. Ide. Embedded bayesian networks: Anyspace, any-
time probabilistic inference. In AAAI/KDD/UAI Workshop in Real-time Decision
Support and Diagnosis Systems, 2002.

11. N. Zhang and D. Poole. A Simple Approach to Bayesian Network Computations. In
Proc. of the Tenth Canadian Conference on Artificial Intelligence, pages 171–178,
1994.

