The University of Saskatchewan
Department of Computer Science

Technical Report #2006-02

S Sl

an__an




An Investigation of 3D Visual Metaphors for Software

Andrew Sutherland
Software Research Lab
Department of Computer Science
University of Saskatchewan
andrew.sutherland@usask.ca

April 6, 2005

Abstract

Software visualization is an emerging field that is be-
coming of greater interest due to the increasing size
and complexity of software. Three-dimensional visu-
alization has the possibility of improving understand-
ing and comprehension of software by providing a vi-
sual metaphor that more closely resembles the way
human beings interact with real-world objects. An in-
vestigation into what kinds of visual metaphors sup-
port cognitive understanding of software is performed.
Nowel techniques for representing software in three di-
mensions are offered as supplements to existing im-
plementations and ideas for future prototypes.

1 Introduction

When presented with a difficult problem involving
relatively large amounts of data, it is human nature
to externalize the problem by writing down facts
and figures. Creating visual aids takes the burden of
remembering large amounts of information and frees
up mental power, allowing us to identify patterns
and work out solutions to the problem more easily.
Card et al. describe a visualization as serving two
separate purposes: the first being to communicate
the idea (which requires having an idea in the
first place), and the second being able to create or
discover new ideas; to use the special properties of
visual perception to resolve logical problems [4].

Designing software is a complex process and
the software itself is a complex artifact. Like any
difficult or complex problem, understanding and
working with a piece of software can be enhanced by
using visual aids. Software visualization is an area of
information visualization that focuses on visualizing
the varying types of information associated with
software design, development, and maintenance.
The use of visualization helps developers and non-
developers alike gain a better understanding of how
software is built, executed, debugged, and changed
over time.

In recent years, the capabilities of graphic processors
have increased to impressive levels. Naturally, the
visualization community has an interest in utilizing
this new technology to create more interesting and
useful visualization applications. However, it is not
immediately clear how to harness this new tech-
nology in order to create not only an aesthetically
pleasing visualization, but an application that en-
hances some aspect of software engineering with the
use of visual aids. This paper defines an organization
of the various techniques currently used to visualize
software. A number of problems are identified
with current visualizations, and three-dimensional
visualization is offered as a viable solution.



2 Related Work

Given that the necessary technology is becoming
more available, it seems logical to extend visual-
izations to take advantage of the third dimension.
There is no doubt that three-dimensional visual
representations are more exciting and engaging
than flat representations, but it is an open question
under what conditions 3D visualizations are better
than their 2D counterparts [4]. 3D poses much
greater implementation challenges as it introduces
additional parameters to the visualization such as
lighting, texture, and additional degrees of freedom
for movement. There is also a need for more process-
ing power and specialized hardware when using 3D
although this is becoming less of a disadvantage as
more powerful technology is quickly becoming more
available. Thus, the question becomes how much
of an advantage is gained by involving the third
dimension and is it worth the tradeoff of increased
complexity?

There have been a number of studies that give
encouraging results in favour of the use of a third
dimension in visualization. Tavanti and Lind [13]
performed an experiment with spatial memory using
2D and 3D displays, which was later extended and
repeated by Andy Cockburn [5]. The experiment
involved subjects recalling the locations of letters
of the alphabet that were hidden behind squares
placed on a flat surface (for 2D) and on a landscape
(for 3D). Their results indicated that using a 3D
display better supported the ability of the subject to
recall the placement of the letters and they claim it
supports the notion that user interface performance
can be improved by incorporating perspective effects.

Irani et al. [9] investigated recent research on
human perception and made use of structured
object recognition theory to define a syntax for
mapping informational objects such as software
components and relationships to three-dimensional
graphical objects. Structure-based recognition
theory states that when a structure is viewed, the
human perception system breaks the structure down
into primitive shapes such as cones, cubes, lines,

etc. Irani claims that if informational structures
can be mapped into structured objects built from
these primitive shapes, then the structure of the
information will be automatically extracted as a
part of normal human perception. The syntax they
derived involves a number of simple 3D shapes along
with a ruleset that defines how the shapes can be
arranged to create various structures. The best
way to represent a particular aspect of software
(for example, a dependency between classes) was
determined by performing experiments where the
subject would choose the best representation from a
variety of compositions. Figure 1 shows an example
of a selection of compositions that could be used
to represent class dependency. Overall, the most
popular choice in this case was Composition C.

Figure 1: Perceptual Syntax for Class Dependency

Similar experiments were performed for repre-
sentations of relationship strength, multiplicity,
aggregation, and generalization. After determining
what representations were most accurately per-
ceived, a UML diagram was converted to a 3D
representation using the derived syntax. Both the
regular UML diagrams and their 3D derivations
were presented to a classroom setting of students
with no experience in UML, and questions were
asked to see what representations best portrayed
the relationships between components. The results
obtained indicated that there were 5 times as many
errors when using the UML diagrams as with the 3D
diagrams. Irani claims these results favour the use
of structured 3D representations for visualizing the
structure of software.



While the preceding studies present encourag-
ing results for the use of three dimensions in
visualization, there still remains much investigation
to be done on how best to exploit the additional
dimension to encode information. Work on this area
has been limited, especially in the application of 3D
graphics for visualizing software.

3 Creating an Effective Visual-
ization

To investigate how 3D visualization can be used to
improve understanding of software, it is necessary to
explore the various visualization techniques already
in use and determine the types of metaphors that
represent software in a manner that encourage bet-
ter understanding. A classification of visualizations
for software was determined. Along with determining
what representations are worthwhile, it is important
to determine some of drawbacks or problems that vi-
sualizations tend to suffer from.

3.1 Visual Metaphors

Card et al. state that before understanding the
intuition behind visualization, it is useful to gain an
appreciation for the important role of the external
world in thought and reasoning. To gain this appre-
ciation, the mapping between real world entities and
visual representations is defined as a visual metaphor.
Averbukh states that a visual metaphor is a mapping
that provides correspondence between notions and
objects of the modeled application domain and a
system of similarities and analogies [1]. Bosch et
al. take a more specific approach when defining a
visual metaphor. They claim that metaphors create
the visual representations for sets of data (e.g. a
table) by using primitives, which in turn create
the visual representations for the individual pieces
of data (e.g. data tuples) [3]. For the purposes
of this paper, a visual metaphor is defined as the
transformation of non-physical artifacts and metrics
to viewable entities with colour, shape, and other
visual characteristics. Lanza’s work on software
evolution matrices is a good example of how software

metrics can be mapped to visual attributes [10].
Metrics such as number of methods, number of
instance variables, or lines of code are used to deter-
mine height and width of a rectangle representing a
system component. The same component is mapped
to a rectangle for multiple versions of the system,
each rectangle having a different height and width,
depending on the value of the metrics. When the
rectangles are placed in sequential order, an idea
is obtained of how the metrics for that component
change over time.

Some visual metaphors work better than oth-
ers. This is because the human mind is attuned
to interpret certain visuals in certain ways. Find-
ing visual metaphors that are intuitive to human
understanding is a difficult task.

3.2 Visual Metaphors for Software

There are a number of different metaphors for visual-
izing software. A categorization of visual metaphors
was determined in order to better understand what
types of visualization techniques work better for visu-
alizing certain aspects of software development. The
classification resulted in 3 categories. Firstly, there
are visual metaphors that map individual lines of
code and their attributes to visual primitives. Visual
metaphors based on this idea can be categorized as
being Code-level Metaphors. Many visualization fall
into the category Structural metaphors, which map
the logical structure of a software system to visual
primitives. Lastly, visualizations representing some
temporal component of software (such as software
evolution or run-time execution) can be categorized
as Temporal Metaphors.

3.2.1 Code-level Metaphors

Visualizations in this category operate on individ-
ual lines of code. The purpose of these types of
visualizations is to glean information such as how
files are organized in a system, the age of particular
pieces of the system, and the developers responsible
for writing certain pieces of code. SeeSoft [6] is the
classic example of a software visualization of code.



Lines of code are mapped to individual lines that are
coloured based on a determined attribute (relation
to a system, type of statement, author, date written,
etc.). Figure 2 shows the result of this mapping. The
idea of using colour to represent various types of a
similar element is a central theme in many software
visualizations.

;]
i

ot ) =
o' ot ot

3 %
% %
oot
it the

Figure 2: SeeSoft software visualization

Griswold et al [8] use a visualization called As-
pect Browser that is based on the same metaphor
that SeeSoft uses but have added in an additional
Map Metaphor. Aspect Browser supports the Map
Metaphor with features such as indexing, a cursor
indicating where you are looking in the actual source,
zooming, magnification, and folding to reduce the
size taken up by non-interesting portions of the
visualization. These features preserve screen-space
and allow for greater scalability.

3.2.2 Structural Metaphors

An alternative to viewing low-level code is to extract
and visualize the logical structure of the software.
Reverse-engineering techniques are used to perform
the extraction of a fact base containing information
about the components of the system and the rela-
tionships between the components. Visualizing such
a structure can give insights into the design of a
system and aid in decision making when performing
maintenance changes.

These types of visualizations are particularly
effective at representing object-oriented systems, as
the concept of entities or objects is easy to map to a
visual representation.

SHriMP (Simple Hierarchical Multi-Perspective)
Views [12] is a visualization environment that was
designed to enhance how users explore complex infor-
mation spaces. It was one of the first visualizations
to use the concept of nested interchangeable views,
which allow the user to view information at different
levels of abstraction. If the user is interested in
a particular subsystem being displayed, the node
representing that subsystem can be selected and the
perspective will narrow down onto the subsystem,
revealing additional details that are of interest to the
user (such as the classes comprising that subsystem)
and hiding extraneous details (such as the other
subsystems).

3.2.3 Temporal Metaphors

Visualizing the structure of a piece of software
may provide understanding of the system at that
particular moment, but sometimes it may be de-
sirable to understand how software changes over a
longer period of time. Software evolution is defined
as the intrinsic need for continuing maintenance
and development of software used to address an
application or solve a problem in the real world
domain [11]. That is, software must change in order
to retain it’s usefulness in the real world.

Wu et al. [14] have adapted sound spectrographs to
visualize the evolution of software. A sound spectro-
graph is used to visually represent frequency content
of sound and its variation over time. Software
spectrographs are used to visually represent how
the various components of the system change over
versions. Colour is used to indicate the degree of
change. Figure 3 displays an example of a software
evolution spectrograph for the OpenSSH system.



files 3.8

Figure 3: Evolution Spectrograph - Fan In of
Changed Dependencies for OpenSSH

3.2.4 Visualization Pitfalls

Visualization metaphors in all 3 categories tend to
suffer from one or more of the following problems.

e Occlusion - Refers to when objects overlap or ob-
struct one another. This problem is compounded
if there are no features allowing the user to alter
their viewpoint or change the orientation of the
visualization.

e Lack of screen-space - Graph-based visualiza-
tions and visualizations of large amounts of data
often suffer from being unable to view a substan-
tial part of the system in one screen, or objects
become so densely packed that it is impossible
to find specific elements.

o Lack of intuitive interaction - Static visualiza-
tions may be suitable for specific tasks, but it is
more desirable to have an application that can
support a variety of tasks through the use of in-
teraction techniques.

e Poor performance and/or lack of scalability - It
is common for applications to support visualiza-
tion of a dataset of a specific size, but when the
size of the dataset is larger than the target size,
the application fails to maintain an interactive
framerate due to the increased processing power
required.

e Lack of integration with software development
tools - Although not strictly a requirement, a
visualization application is much more likely to
be used when integrated with existing tools. For
example if a software visualization for Java pro-
grams was implemented as an Eclipse plug-in, it
would be much more accessible to software de-
velopers than if it was deployed as a stand-alone
application.

These problems are additional constraints on the
metaphor used for representing software visually.
They must be taken into account in order to
achieve an effective visualization. The use of three-
dimensions may alleviate some of these problems but
may also exacerbate others.

4 Three-Dimensional Visual-

ization Techniques

There are a number of techniques that support three-
dimensional visual metaphors for software. These
techniques work towards eliminating some of the
problems with current metaphors described in the
preceding section.

4.1 Transparency

As mentioned earlier, occlusion is a common problem
found in visualizations, especially graph-based imple-
mentations. The use of a third dimension may even
exacerbate the problem, by introducing perspective
effects [4]. More distant objects grow smaller and
may be more easily occluded by objects at the fore-
front. Appropriate use of transparency can effectively
eliminate the problems of occlusion. By making an
object translucent, the occluding object still has rep-
resentation in the visualization and the occluded ob-
jects are also made visible. Transparency can also
be used to preview the interior structure of objects
in a hierarchical scheme. For example, by mousing
over an object representing a class, the object could
temporarily become less opaque, revealing the inte-
rior methods and fields of the class. The user could
then decide if they want to explore this class based on



their preview of the structure. This technique may
aid in freeing up screen-space and aid in providing
intuitive interaction techniques.

4.2 Immersion

Balzer et al. [2] suggest that a particularly intuitive
visualization metaphor is the landscape metaphor
for software visualization. The landscape metaphor
is based on navigating through a virtual landscape
that is based on the hierarchical structure of a soft-
ware system. While it may not be useful to take
the metaphor to the extremes of representing soft-
ware components as landscape artifacts, the naviga-
tion techniques used in similar applications (such as
video games), may be inducive to providing a famil-
iar means for interacting with hierarchical data. For
example, when a user selects a node representing a
package in a Java program, instead of expanding the
node to show the classes contained in the package,
the user actually enters the node to view the interior
structure. This better represents the relationship be-
tween package and class, and may also allow for the
use of navigation mechanisms that are more similar
to how a user would normally move through a 3D
environment.

4.3 Colour and Lighting

Many visualizations map some attribute of the vi-
sualized software to colour. Colour is often used to
represent recent or sudden change, degree of faults
or bugs, or relevancy to some task the user is per-
forming. Wu’s software spectrographs [14] are a good
example of where colour is used to indicate punctu-
ated change in the evolution of a software system.
When working with three-dimensional visualization,
it may be beneficial to take advantage of the light-
ing mechanisms that are used for applying shading to
an object or lighting up particular areas of a scene.
For example, if the user indicates they wish to view
what classes would be affected by making a particular
change to a method, the potentially affected classes
could be coloured or lit dynamically depending on the
user’s choice. The brightness of the lighting could be
mapped to how closely that class is coupled to that

particular method - the more that particular change
would affect the class, the brighter the effect should
be.

4.4 Animation

It is easy to become disoriented if a visualization of a
graph or a diagram instantly changes arrangements.
Change is more easily observed if the steps in between
that sudden change are shown. Animation can aid
in the transition from one visualization state to an-
other. Software evolution visualization can be aided
by using key-frame interpolation. Key-frame interpo-
lation is often used in video games to animate charac-
ters using still poses or key-frames [7]. The character
is animated by picking two key-frames and blending
together each corresponding pair of vertex positions
using weights. The weight of the blend is based on
the passing of time between the two frames. The re-
sult is a smooth animation without the need to man-
ually provide each intermediate frame. Visualizing
software evolution often involves multiple versions of
a software system. By using visualizations of these
versions as key-frames, an animation of the evolution
of the system could be viewed by interpolating the
individual visualizations that correspond to versions.

5 Prototype

To test the proposed techniques, an experimental
prototype was constructed. The prototype uses the
source transformation language TXL to extract a
fact base from a Java program. The fact base is
then used as data in a graph-based visualization in
OpenGL. Java packages, classes, methods, and fields
are mapped to spheres. The colour of the sphere
is determined by the type of entity (package, class,
etc.), although in future prototypes, colour will likely
be used to represent other software metrics. The
prototype utilizes transparency in a fashion similar
to what was described earlier. If a certain component
is moused over, the component becomes transparent,
showing the other components that would have
otherwise been obstructed. Interaction techniques
such as zooming and rotation were included to give



Figure 4: Transparency as a means for solving occlu-
sion problems

the user the ability to arrange the visualization
with the desired orientation. Clicking or picking an
object (a Java class for example) will zoom the user
into that class so that they can view the interior
methods and fields of the class that was selected.
Hierarchically organizing the data substantially frees
up screen-space and makes the visualization simpler
and easier to understand.

Relationships between classes and methods (method
calls, inheritance, etc.) are mapped to lines between
the related components. A clustering algorithm was
used to arrange the components in a manner that
reflected their logical coupling. Classes that were
more closely coupled were positioned within closer
proximity to one another than classes that were not
as closely coupled. This feature was implemented
with the idea that it would support the natural hu-
man tendency to group related objects. Animation
was used to demonstrate how the structure of the
program changed over several versions of the same
program. When used in conjunction with the clus-
tering algorithm, an idea of how coupling changed
between components was observed and followed
throughout versions. The prototype was shown to
a class of software engineering graduate students at
points throughout its development to measure the
usefulness and effectiveness of visualizing software
in three dimensions. The reactions of the observers
was promising. Students expressed their interest in
visualizing their own programs with the application.
This provides further encouragement to explore

Figure 5: Positioning related objects in clusters

the use of three-dimensional visual metaphors for
software.

6 Conclusion and Future Work

An introduction to software visualization was pre-
sented in the context of creating intuitive 3D visual
metaphors to aid in software understanding. A num-
ber of problems were identified with current visual
metaphors for software, and a number of techniques
supporting the use of three-dimensional visualization
were offered as possible alternatives. Possible avenues
for further research include a more formal study of
what arrangements of three-dimensional structures
allow for improved understanding of software and
creating additional prototypes to explore novel tech-
niques for representing software visually. It is be-
lieved that there is a large potential for significantly
aiding in development and maintenance of software
through the use of well-designed visualization tools.



References

1]

Vladimir L. Averbukh. Toward the concep-
tions of visualization language and visualization
metaphor. In HCC ’01: Proceedings of the IEEE
2001 Symposia on Human Centric Computing
Languages and Environments (HCC’01), page
390. IEEE Computer Society, 2001.

Michael Balzer, Andreas Noack, Oliver Deussen,
and Claus Lewerentz. Software landscapes: Vi-
sualizing the structure of large software systems.
In VisSym, pages 261-266, 2004.

Robert Bosch, Chris Stolte, Diane Tang, John
Gerth, Mendel Rosenblum, and Pat Hanra-
han. Rivet: a flexible environment for com-
puter systems visualization. SIGGRAPH Com-
put. Graph., 34(1):68-73, 2000.

Stuart K. Card, Jock D. Mackinlay, and Ben
Shneiderman. Using vision to think. Morgan
Kaufmann Publishers Inc., 1999.

Andy Cockburn. Revisiting 2d vs 3d implica-
tions on spatial memory. In CRPIT ’28: Pro-
ceedings of the fifth conference on Australasian
user interface, pages 25-31. Australian Com-
puter Society, Inc., 2004.

Stephen G. Eick, Joseph L. Steffen, and Jr. Eric
E. Sumner. Seesoft-a tool for visualizing line
oriented software statistics. IEEE Trans. Softw.
Eng., 18(11):957-968, 1992.

Randima Fernando and Mark J. Kilgard. The Cg
Tutorial: The Definitive Guide to Programmable
Real-Time Graphics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

William G. Griswold, Jimmy J. Yuan, and
Yoshikiyo Kato. Exploiting the map metaphor
in a tool for software evolution. In ICSE ’01:
Proceedings of the 23rd International Conference
on Software Engineering, pages 2656—274. IEEE
Computer Society, 2001.

[9]

[10]

[11]

[12]

[13]

[14]

Pourang Irani, Maureen Tingley, and Colin
Ware. Using perceptual syntax to enhance se-
mantic content in diagrams. IEEE Comput.
Graph. Appl., 21(5):76-85, 2001.

Michele Lanza. The evolution matrix:
ering software evolution using software visual-
ization techniques. In IWPSE ’01: Proceedings
of the 4th International Workshop on Principles
of Software Evolution, pages 37-42. ACM Press,
2001.

recov-

M. M. Lehman and J. F. Ramil. An approach to
a theory of software evolution. In IWPSE ’01:
Proceedings of the 4th International Workshop
on Principles of Software FEvolution, pages 70—
74, New York, NY, USA, 2001. ACM Press.

Margaret-Anne Storey, Casey Best, Jeff
Michaud, Derek Rayside, Marin Litoiu, and
Mark Musen. Shrimp views: an interactive
environment for information visualization and
navigation. In CHI ’02: CHI ’02 extended ab-
stracts on Human factors in computing systems,
pages 520-521. ACM Press, 2002.

Monica Tavanti and Mats Lind. 2d vs 3d, im-
plications on spatial memory. In INFOVIS "01:
Proceedings of the IEEE Symposium on Infor-
mation Visualization 2001 (INFOVIS’01), page
139. IEEE Computer Society, 2001.

Jingwei Wu, Richard C. Holt, and Ahmed E.
Hassan. Exploring software evolution using spec-
trographs. In WCRE ’04: Proceedings of the
11th Working Conference on Reverse Engineer-
ing (WCRE’04), pages 80-89. IEEE Computer
Society, 2004.



