
The University of Saskatchewan
Department of Computer Science

Technical Report #2007-01



Generating New Types of Documentation

Ian Hopkins

October 23, 2007

Abstract

Software documentation is an important artifact of any software de-
velopment project, yet it may be costly to produce and keep up to date.
Many tools have been proposed to assist in generating and locating docu-
mentation automatically so as to reduce the burden of having up to date
documentation available. In this paper I present a model for classifying
different types of documentation, classify existing tools using this model,
and then explore prototype tools that produce documentation types not
well covered by existing tools. After presenting their implementations, I
evaluate the prototype tools in respect to the original model and show
that they succeed in providing new information without adding major
overhead to the development process.

1 Introduction

Documentation can be valuable in software projects during all phases of software
development and as a deliverable. When re-designing a system, building an
extension, or fixing a bug, developers need to know how the software works so
the effect of changes can be minimized. Maintaining documentation takes time
and is not always done well; Briand found that in practice the documentation
available for software projects is poor, incomplete, and out of date [1]. Yet
Briand’s study also found that this same documentation was useful to developers
in most cases.

Developing documentation can be a large part of the software development
process. Because of the importance of accurate, quality documentation in many
projects, Preistley and Utt developed an extension to the Rational Unified Pro-
cess (RUP) that augments the famous software development process with pro-
cesses for developing documentation [11].

The accuracy of a software project’s documentation can be critical to its suc-
cess. Ensuring the correctness of an application programming interface (API)
for a closed source library is essential to allow third parties to use and/or extend
that library. Automatically generated documentation has become a popular way
to create accurate API documentation. In Forward and Lethbridge’s study of
documentation tools, automated documentation systems like Javadoc, Doxygen,

1



and Doc++ rank second only to Word processors for popularity amongst soft-
ware developers in industry [4]. The popularity of traditional word processors
indicates that although some good tools for generating documentation exist, not
all documentation needs are satisfied by these automated tools.

To better explore what types of documentation can be generated automat-
ically, this paper presents a model for classifying documentation in section 2,
explains related work on automated documentation tools in section 3, and clas-
sifies those systems in section 4. Section 5 introduces prototype tools for gen-
erating documentation, followed by an explanation of their implementation in
section 6 and finally justifies these tools by showing they satisfy new portions
of the documentation model in section 7.

2 Model of Documentation

Software project documentation can refer to many parts of a given project in-
cluding: requirements documentation, source-code comments, a user’s manual,
unit tests, or even a project post-mortem report. To focus my exploration of
generated documentation, I propose a model for classifying software documenta-
tion. This model is aimed at classifying different artifacts of documentation and
specifically does not partition artifacts by their presentation (textual or graphic,
static or dynamic), underlying information source (source code, profiles, run-
time information), or quality, but rather by the types of questions the artifacts
might help answer. The dimensions on which the model classifies documentation
artifacts are explained below:

2.1 Audience

Audience captures the intended user of the artifact. This ranges from the appli-
cation end-user (How do I install this application?), to a third party developer
(How do I include this library in my project?), to an internal developer (How
do I build this application?). The artifact’s content needs to be appropriately
adjusted depending on its audience.

2.2 Abstraction

Abstraction is the degree to which the document abstracts the underlying de-
tails. Abstraction ranges from providing an project overview (How is the project
designed/structured?) to explaining in depth details (How is this sort imple-
mented?).

2.3 Temporality

Temporality describes the intended lifetime of the artifact. This ranges from
long-term concerns (What are the requirements and how have they evolved?)
to short-term queries (What was the last change to this source file?).

2



2.4 Phase

Phase indicates project phases in which the artifact is useful. This may vary
across different development processes (extreme programming vs. waterfall),
but might range from design (What were the motivations for this decision?), to
development (What is the coding convention of this package?), and to testing
(What test cases must this class/method satisfy?), to maintenance (How does
the latest version affect performance?), to post-mortem (Was the original design
achieved?).

2.5 Focus

Focus describes what aspect o the project is primarily described by an artifact.
Parnas introduced this classification of documentation in 1998 and proposed
three categories: constructive which describes the implementation (How does
the is this requirement implemented?), behavioral which describe’s the run-
time behavior (How does the application perform at runtime?), and before/after
which describes state changes over time (What call sequence will put this object
into a desired state?) [9].

3 Related Work

Javadoc is a tool that automatically generates API documentation from special
mark up comments, method signatures, and class and method names in Java
source code [6]. Javadoc was invented by Sun to help generate the documen-
tation for the Java platform API. In Kramer’s discussion of Javadoc, he makes
two important points: first, that keeping documentation in-line with source
code helps keep that documentation up to date and concise; and second, that
developing documentation to satisfy every audience is impractical.

Doxygen is a tool for automating the documentation of C and C++ projects
based on DOC++ and similar to Javadoc (Doxygen even supports the Javadoc
comment format) [14]. Beyond generating API descriptions like Javadoc, Doxy-
gen is able to generate dependency graphs, inheritance diagrams, and class
diagrams in UML that are included in the generated output.

Collard et al. present srcML, an XML format for representing program
source code for which the authors have developed an ANTLR-based generated
translator that can mark up C++ source with srcML tags [2]. Once marked up
in srcML, standard XML tools like XPath and XSLT can be used to execute
ad hoc queries on the program source code. Collard et al. show that srcML
is superior at Linking/Querying, and Software Visualization as compared with
both plain text source code or an abstract syntax tree (AST) representation.
Furthermore, srcML can be generated from a partial parse while ASTs generally
require a complete parse.

Rose is a part of Rational’s Enterprise Suite for software engineering [10].
Although primarily a forward engineering tool, Rose can be used to reverse
engineer some documentation from C++ source code as well as DLL, JAR, and

3



COM exported binaries. In particular, Rose can be used to generate UML class
and inheritance diagrams.

Čubranić and Murphy developed Hipikat, an application that mines soft-
ware project knowledge from the project’s CVS repository, developer mailing
lists, bug tracking database, and website [3]. Hipikat uses the collection of
documentation mined from these sources to suggest relevant documentation to
programmers as they are working on a task. Relevance is determined by inferred
links and information retrieval techniques like cosine similarity of keyword fre-
quency vectors (for example between a query and indexed each document).
Hipikat mines documentation, but generates relationships between documents.
Furthermore, the authors mention that it could be extended to generate some
missing documentation.

Calliope is an IDE plug in developed by Madsen and Nürnberg to record and
look up documentation in a better way than mailing lists (the primary source of
documentation in open source projects) allow [8]. Madsen and Nürnberg specifi-
cally model multi-valence which allows Calliope to support multiple perspectives
or opinions on a given artifact. Although their results were not statistically sig-
nificant (likely due to the small sample size), the authors did find modeling
multi-valence reduced the time spent per documentation change by the docu-
mentation writer as compared to not modeling multi-valence. Documentation
is not generated with Calliope, but navigation, development, and integration of
multi-valent documentation is automated.

Xie and Pei developed MAPO in response to the insufficient documentation
for Apache’s Byte Code Engineering Library (BCEL) [15]. MAPO mines source
code from open-source repositories to find common usage sequences of API
methods, and then presents these to the user. The project aims to augment
Javadoc-like documentation (what methods and their parameters do), with API
usage that shows the context (of other method calls) within which those methods
are usually found.

4 Classification of Related Work

4.1 Audience

Javadoc, Doxygen, and MAPO produce API documentation that targets 3rd
party developers who will be consumers of those APIs. srcML, Hipikat, and
Calliope generate documentation targeted at internal developers, and Rose’s
UML diagrams could be used to compliment either type of documentation. No
tools attempt to automatically generate end-user documentation, likely due to
the knowledge of both the user and domain required to create user documenta-
tion.

4



4.2 Abstraction

Javadoc and Doxygen allow users to drill down from an overview using hypertext
links, but this drill down changes the level in the code structure, not the level
of abstraction. The other tools respond to user queries (srcML via XPath)
and give specific answers to those queries. In general, automated tools do not
provide good overview abstractions.

4.3 Temporality

Hipikat, MAPO, and srcML are designed to answer user queries and generate
documentation on the fly for short term use. Javadoc, Doxygen, Rose, and
Calliope produce artifacts like API references that are long-term and can even
be deliverables that live beyond the development project.

4.4 Phase

Hipikat, Calliope, and Rose are intended to be used by developers in change
tasks likely during the maintenance phase. srcML can be used in both de-
velopment and maintenance, while the other tools are used by 3rd party de-
velopers after delivery. Rose may also be used for forward engineering during
design/development, but Pierce and Tilley did not discuss this in depth. It is
likely that these forward engineering tools are focused on generating code not
documentation.

4.5 Focus

Most of the tools use source code to generate documentation and as such fo-
cus on constructive documentation. MAPO uses source code to gather usage
patterns to produce before/after documentation. Hipikat and Calliope are gen-
erally constructive, but can retrieve other information if it is written manually
and added to the system’s repository.

5 Prototype Tools

To explore parts of the documentation model that are not well addressed by
existing tools, I have begun work on a set of prototype tools. The prototype
tools generate documentation from mostly existing information sources thereby
providing developers with new types of documentation and limited additional
overhead. The prototypes are designed to be interactive so as to produce cus-
tomized (to the current need), disposable documentation with ability to select
different levels of abstraction. The prototypes are also designed as small inter-
acting components so that they can be combined and replaced to answer ad hoc
questions about a given application.

5



5.1 Generated

Generating documentation with the prototype tools involves two major pro-
cesses. First, facts must be extracted from the source code and test results and
stored in a facts database. Second, when users wish to access a certain type of
documentation they use one of the prototype tools to query the facts database.
This process is described further in section 6). By generating documentation
when it is needed, developers can easily obtain documentation for projects when
they need it and do not need to worry about cataloging, persisting, or sharing a
repository of documentation. Furthermore, developers can generate documen-
tation for code that is part of a private branch and has not yet been approved
for the central repository.

By utilizing a process that is similar to compiling source code, developers can
use common applications for both documentation and source code. In deploying
the Javadoc system at sun, Kramer found using similar processes and tools like
version control and bug reports was essential to getting programmer buy-in [6].

Although Forward and Lethbridge found that documentation is generally not
kept up to date, testing and quality assurance documents are [4], thus test cases
and their results (as well as source code and application binaries) are good,
up to date sources of information. Generating documentation automatically
from these sources may therefore lead to more up to date documentation than
manually writing documentation.

5.2 Information Sources

To minimize the overhead for developers of using the prototype tools, all facts
used by the tools are gathered from the following sources:

5.2.1 Source Code

The source code for the application and the comments embedded in that source
code are a valuable source of constructive information. Furthermore, tutorial
example, unit test, load test, and profile test source code can also provide infor-
mation about how to use and interface with portions of the application. Since
unit, load, and profile tests are generally written for essential, core functionality,
these tests likely use and test important features of the application.

5.2.2 Test Execution Results

Unit, profile, and load test results give us a view of the application’s behavior
in terms of test timing, operation counters, and memory usage. Being able to
execute live profile queries on a running application may also provide a great
source of information about the behavior in response to events (e.g. pressing a
button or executing a command). Live profiling is not yet implemented.

6



5.2.3 Version Information

Although the prototype tools do not directly interact with the version control
system, when the facts database is updated, the current version of the source
code is recorded with each fact. Indexing information by version allows us to
easily document changes over time and facilitates inter-version comparisons.

5.3 Interactive

Documentation is generated on the fly in response to a user query. Instead
of consulting voluminous documents, developers can simply generate relevant
documentation at the desired level of abstraction which answers their query.
Furthermore, some of the prototype tools allow the user to drill down to details
of the system from a high-level overview.

Sillito found that programmers ask four distinct types of questions when
doing maintenance tasks [12]. Further, Kramer states that the documentation
needed for a particular software project can depend on business goals [6]. Find-
ing a single representation that is appropriate for all types of questions would
be difficult. Instead, the prototype tools provide a number of different represen-
tations of the information in the facts database that the developer can choose
from when working on a given task.

Kirk found that documentation can be difficult to navigate, split up, and
index for large frameworks [5]. Allowing the user to determine what docu-
mentation to generate, using manual filtering, and allowing drill down from
high-level abstractions down to source code details may help simplify navigat-
ing documentation.

5.4 Small tools

Instead of using an integrated, heavy-weight framework for documentation, I
have built a collection of small tools that developers can easily combine or
replace to suit their needs. The tools are command line based and are connected
by pipes. The tools are simple and could be added to a makefile for automating
the generation of some standard documentation.

As a conclusion of Forward and Lethbridge’s study of documentation tools,
he recommends that future systems strive to be light-weight and disposable
[4]. I have designed these tools to be light-weight and simple to replace so
that developers can customize the documentation system to meet their needs.
Kramer reports that users have customized the output formatting of Javadoc
by replacing the default doclets produced by Sun [6]. Javadoc can also be
customized with taglets which allow for custom mark up tags in source code
comments.

7



6 Implementation

6.1 System Overview

Figure 1: System Diagram

1. Up to date, raw source code is passed to the source code parser and the
output from unit, load and profile tests are passed to the test result parser.

2. Both the source code and test results parsers direct their output to the
SQLite3 facts database. When information is stored in the database it is
indexed by the source code version from which it was generated.

3. A user executes a command line query to one of the prototype tools.

4. The command line tool makes specific queries to the database which re-
turns matching facts about the application being queried.

5. Tools generate XML output which is then sent to an output formatting
tool.

6. The resulting formatted output file (JPG, PDF, or HTML file) is opened
by the user with a viewer for that output format.

6.2 Tools

6.2.1 Source Parser

The source parser is implemented as a series of PERL and TXL scripts that
mark up source code with XML tags and is an extension of the parser by Andrew
Sutherland [13]. The parser recognizes and marks up package, class, method,
parameter, constructor, thrown exception, and member variable declarations as
well as method and constructor calls. Once the source code is marked up, the
declarations, calls, line numbers, comments, and current version are recorded in
the facts database by a PERL script. The source code parser can also be used
to infer facts based on keywords in the source files. This process of updating

8



the facts database could be automated as part of the build process for the
application so that the fact database is always in sync with the application
binaries.

The current version marks up some references but does not completely re-
solve them as this can get quite complicated (e.g. parsing types from Run-
time.getRuntime().getTotalMemory()). Although the parser is currently only
able to process Java source code, the TXL Java language grammar could likely
be changed to handle other C-based object oriented language with some modifi-
cations. Furthermore, source code marked up in a similar XML format, srcML
for example [2], could be transformed with a short XSLT script.

6.2.2 Test Results Parser

As part of the build process, the unit and profile tests will need to be executed
and their output parsed for inclusion in the facts database. The profile and unit
tests export XML which can easily be parsed by a PERL script. The results are
linked to both the source code which implements the tests as well as the source
code that is tested. These links are only preliminary in the prototype tools.

6.2.3 Facts Database

The facts database is implemented as an SQLite3 file-based database that in-
dexes facts by type (package, class, method, variable, etc.), version, and parent
(the Test class is the parent of its setUp method). The facts database has a
simple schema that allows application developers to easily extract the informa-
tion they want. Furthermore, the database is extensible in that new columns
can be added to the data tables without changing how the prototype tools use
the existing data. For example, the database could be extended to attribute
changes to CVS users.

Although exceptions and method/constructor calls can be recorded in the
facts database, this is not implemented in the current version.

6.2.4 Complexity Analysis

This prototype tool uses the facts database to extract information about the
source lines, comment lines, external complexity, and profile for each method in
a given project. This information is visualized in a Dynamic Hypertext Markup
Language (DHTML) document. The resulting document can be viewed in any
modern web browser and allows the user to filter classes by keyword, and drill
down to individual methods. External complexity is defined as the number of
unique types one must know about to use a given method which is the size of the
set formed of the return type, the parameter types and any thrown exceptions.

The current implementation does not consider exceptions as they are not
recorded in the facts database. Figure 2 shows the prototype Complexity Anal-
ysis tool run on an open-source Point of Sale solution called synPOS [7].

9



Figure 2: Complexity Analysis Tool’s output. Comparing memory usage and
timing of four sorting algorithms.

Figure 3: Callgraph Analysis Tool’s output. Compares the call graphs of two
sorting tests from the main() function to the swap() function.

6.2.5 Callgraph Analysis

This prototype tool uses both static analysis and profile traces to determine call
graphs in the application. This tool could compare two test cases by generating
a call graph for each and using the edit distance algorithm to find how the two
graphs differ (possible overlaying the two graphs in a visualization). Callgraphs
can be difficult to generate due to the number of calls in a given application,
but this could be reduced by allowing users to filter the graphs to include only
calls the user is interested in (by keyword or depth).

The callgraph analysis tool is not yet implemented and is only an idea. An
idea of how the output of this tool might be formated is presented in figure 3.

6.2.6 Unit Test Analysis

The unit test analysis tool records the results of unit tests (pass or fail) and
stores them in the facts database. The information recorded in the database can

10



Figure 4: Unit Test Analysis Tool’s output. Comparing memory usage and
timing of four sorting algorithms.

provide developers with a number of interesting perspectives on the state of the
application. First, a developer can get an overview of how many tests passed and
how many failed. Second, developers can determine their progress by comparing
the number of tests passed now with a previous version. Third, developers can
look for how new tests may break old versions possibly suggesting potential
patches. Fourth, the unit test analysis tool can provide detailed analysis on
what code has been exercised as the result of a given unit test.

The analysis and output formatting portion of this tool are not yet imple-
mented, but unit test information is being stored in the facts database. Figure
4 shows a potential output format for this tool.

6.2.7 Profile Test Analysis

Profile tests are similar to unit tests, but are marked up with special profile start,
count, and stop instructions. The start and stop instructions record a profile of
both CPU time and memory usage for the test. The count instruction is used
to count individual operations (e.g. swap operations in a sort implementation).
This information is collected while the tests are running and added to the facts
database. The results are then exported to XML for easy manipulation and
visualization. The information collected by the profile tests can help developers
consider a number of different aspects of the application’s performance: first,
an overview of memory and CPU usage over the entire suite can help pinpoint
problem areas; second, regressions in performance can be spotted easily by
comparing results from two different versions; third, developers can easily see

11



Figure 5: Profile Analysis Tool’s output. Comparing sorting algorithm execu-
tion time against included baseline algorithms.

how the application reacts to different situations; and fourth, the application
can be compared to known baselines, like an O(n) algorithm or a competitor’s
solution, for both space, operation counting (difficult with competitor solutions,
but may be possible with byte-code instrumentation), and time usage.

The profile instrumentation tools work and visualization is done with graphs
in a Microsoft Excel spreadsheet. This could easily be ported to gnuPlot to be
better in line with the goal of using small components in the tool chain. The
profile instrumentation also includes algorithmic baselines (e.g. Waste O(n)
space, Waste O(n logd m) time) for comparison. Figure 5 illustrates comparing
baselines to sorting algorithms.

6.2.8 Output Formats

The implemented prototype tools use XML and DHTML as output formats. I
have also done some investigation into an interactive AJAX profiler that would
allow the user to view live application performance as they used an application
from within a web browser. This is not fully implemented, but seems both a
promising tool and format for visualizing source code facts.

7 Evaluation

7.1 Proof of concept

The first portion of evaluating the ideas in this paper is to prove that I can build
tools to extract, store, and visualize the types of information developers might
be interested in that are not well implemented in existing tools. To do this I have
implemented a complexity analysis prototype, part of the unit test prototype,
and the profile analysis prototype tools. Evaluating these tools required an
application with some complexity and known performance characteristics (for
comparing the results with).

Sorting is an important problem in computer science which has a number

12



Figure 6: Profile Analysis Tool’s output. Comparing memory usage and timing
of four sorting algorithms.

of different solutions each with well documented time and space analyses. Al-
though sorting is a simple problem, some algorithms are sufficiently complicated
and exhibit well defined performance differences. For testing I implemented
seven sorting algorithms listed below with their analyses below where n is the
number of elements to sort:

1. Bubble sort. O(n2) time, O(1) extra space. Usually slower than selection
and insertion sort.

2. Selection sort. O(n2) time, O(1) extra space.

3. Insertion sort. O(n2) time, O(1) extra space.

4. Quick sort. O(n2) time, O(1) extra space. On average takes O(n log2 n).

5. Heap sort. O(n log2 n) time, O(1) extra space.

6. Merge sort. O(n log2 n) time, O(n) extra space.

7. Radix sort. O(n logd m) time, O(n) extra space, where d is the integer
base (2 or 10) and m is the maximum integer in the collection. Radix sort
only works for types that can be decomposed by digit (integers only in
this implementation).

The results of the profile test are presented in Figure 6. This figure shows
that Merge and Radix sort use additional memory compared to quick sort and
heap sort, radix sort is slightly faster than the others, and quick sort executes
in about O(nlog2n) time. The difference in memory usage between quick sort
and merge does not appear as exactly the data size, which is possibly due to the
extra stack frames created by recursion in quick sort. All of these observations
match the known algorithm analyses.

There are some problems with the profile analysis prototype. First, memory
usage is only estimated by making queries to the Java runtime (java.lang.Runtime)
and the numbers reported are not exact. This is because of over allocation

13



and delayed collection by the garbage collector, but is limited by invoking the
garbage collector each time a profile is collected. Second, no optimizations were
implemented even though there are well known cases in which performance can
be drastically increased. One easy optimization for quick sort is to use another
algorithm on short lists since quick sort is inefficient on small lists. Like any ap-
plication profiler, the profile analysis prototype introduces a small performance
overhead by periodically polling the Java runtime and invoking the garbage
collector.

I also implemented a complexity visualization tool and tested this on an
open-source point of sale (POS) application called synPOS [7]. This tested both
the TXL source parser, the facts database, and the complexity visualization tool.
The resulting visualization is shown in Figure 2.

7.2 Relation to Model

Finally, the prototype tools and the information they expose must be validated
in terms of the documentation type model introduced in section 2.

The profile and unit test prototype tools allow us to generate documenta-
tion that not only focuses on how the application was constructed, but also its
behavior at runtime. The profile and unit test analysis tools can can abstract
test results to a few numbers or zoom in on timing and memory usage details
of a single test. The facts database allows us to compare a development build
against a stable release on the fly or generate a comparison of feature tests from
one version to another (a long-term artifact that could be used to encourage
customer upgrades). The profile test suite could be used anywhere from the
design phase (to prototype an idea to see basic performance implications) up
to the maintenance phase (run and report on regression tests on a potential
patch. The profile tool could be used by both internal developers to improve
performance and by 3rd party developers to understand the performance of API
calls.

Profile tests are easy to create from unit tests (in this case, only two lines
were added to the unit tests), introduce only a minor performance overhead in
testing only, and provide an accurate account of the application’s memory usage
and processing time.

8 Conclusion

In this paper, I have introduced a useful model to describe different types of
documentation that I used to classify existing tools. This analysis helped me
explore a set of prototype tools to produce types of documentation not generated
by existing tools. I implemented two of these prototype tools and showed that
the profile analysis tool is effective at identifying both processing time and
memory usage trends. Finally, I have presented the start of my work on other
promising prototype tools for automatically generating documentation.

14



9 Further work

I have plans to extend this work by implementing more of the tools described in
this paper. Once I have a set of working tools I would like to perform a study of
developers using these tools to find out if they do satisfy the dimensions of the
model that I predict they will, if they are useful to developers, and how they
might be improved to provide even better documentation.

Beyond further evaluation of this work, it would be interesting to see how
this work could be combined with management techniques to encourage good
documentation habits within a software project?

Another interesting area not covered by this work, is that of consequences
inherent in linking documentation to source code and test cases via automated
generation. This may have positive benefits including more up-to-date docu-
mentation, but it may reduce the amount of documentation available early in
the project since documentation can be generated quickly later. The documen-
tation may be determined by the implementation when it may be preferable to
have the inverse.

References

[1] Lionel C. Briand. Software documentation: How much is enough? In
CSMR ’03: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering, page 13, Washington, DC, USA, 2003.
IEEE Computer Society.

[2] Michael L. Collard, Jonathan I. Maletic, and Andrian Marcus. Supporting
document and data views of source code. In DocEng ’02: Proceedings of the
2002 ACM symposium on Document engineering, pages 34–41, New York,
NY, USA, 2002. ACM Press.

[3] Davor Cubranic and Gail C. Murphy. Hipikat: recommending pertinent
software development artifacts. In ICSE ’03: Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 408–418, Washington,
DC, USA, 2003. IEEE Computer Society.

[4] Andrew Forward and Timothy C. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In DocEng ’02: Proceed-
ings of the 2002 ACM symposium on Document engineering, pages 26–33,
New York, NY, USA, 2002. ACM Press.

[5] Douglas Kirk, Marc Roper, and Murray Wood. Identifying and addressing
problems in framework reuse. In IWPC ’05: Proceedings of the 13th Inter-
national Workshop on Program Comprehension, pages 77–86, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] Douglas Kramer. Api documentation from source code comments: a case
study of javadoc. In SIGDOC ’99: Proceedings of the 17th annual interna-

15



tional conference on Computer documentation, pages 147–153, New York,
NY, USA, 1999. ACM Press.

[7] Baycloud LLC. synpos. Corporate Website, 2006. http://www.synpos.
com/.

[8] Fredrik H. Madsen and Peter J. Nörnberg. Calliope: supporting high-level
documentation of open-source projects. In MIS ’05: Proceedings of the
2005 symposia on Metainformatics, page 10, New York, NY, USA, 2005.
ACM Press.

[9] David Lorge Parnas. Precise description and specification of software. pages
93–106. Addison-Wesley Professional, 2001/1998.

[10] Robert Pierce and Scott Tilley. Automatically connecting documentation
to code with rose. In SIGDOC ’02: Proceedings of the 20th annual interna-
tional conference on Computer documentation, pages 157–163, New York,
NY, USA, 2002. ACM Press.

[11] Michael Priestley and Mary Hunter Utt. A unified process for software
and documentation development. In IPCC/SIGDOC ’00: Proceedings of
IEEE professional communication society international professional com-
munication conference and Proceedings of the 18th annual ACM interna-
tional conference on Computer documentation, pages 221–238, Piscataway,
NJ, USA, 2000. IEEE Educational Activities Department.

[12] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions pro-
grammers ask during software evolution tasks. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 23–34, New York, NY, USA, 2006.
ACM Press.

[13] Andrew Sutherland. Softsphere - dynamically visualizing coupling in a 3d
environment. Tech Report, 2004. http://www.cs.usask.ca/research/
techreports/2006/TR-2006-03.pdf.

[14] Dimitri van Heesch. Doxygen. Project website, 1997. http://www.stack.
nl/~dimitri/doxygen/.

[15] Tao Xie and Jian Pei. Mapo: mining api usages from open source reposito-
ries. In MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories, pages 54–57, New York, NY, USA, 2006. ACM Press.

16

http://www.synpos.com/
http://www.synpos.com/
http://www.cs.usask.ca/research/techreports/2006/TR-2006-03.pdf
http://www.cs.usask.ca/research/techreports/2006/TR-2006-03.pdf
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

	Introduction
	Model of Documentation
	Audience
	Abstraction
	Temporality
	Phase
	Focus

	Related Work
	Classification of Related Work
	Audience
	Abstraction
	Temporality
	Phase
	Focus

	Prototype Tools
	Generated
	Information Sources
	Source Code
	Test Execution Results
	Version Information

	Interactive
	Small tools

	Implementation
	System Overview
	Tools
	Source Parser
	Test Results Parser
	Facts Database
	Complexity Analysis
	Callgraph Analysis
	Unit Test Analysis
	Profile Test Analysis
	Output Formats


	Evaluation
	Proof of concept
	Relation to Model

	Conclusion
	Further work

