
The University of Saskatchewan
Department of Computer Science

Technical Report #2009-01

The Bichromatic Square and Rectangle Problems?

Jonathan Backer and J. Mark Keil

Department of Computer Science,
University of Saskatchewan,
Saskatoon, SK, Canada

S7N 5C9

Abstract We examine a variant of the maximum empty square (or rect-
angle) problem: Find an axis-aligned square (or rectangle) that contains
as many blue points as possible without containing any red points. Let
n be the total number of red and blue points. We solve the bichromatic
square problem in O(n log n) time and O(n) space. We also solve the
bichromatic rectangle problem in O(n log3 n) time and O(n log n) space.

1 Introduction

In this paper, we consider instances of the bichromatic problem: Find a �gure of
a certain shape that contains no red points and as many blue points as possible.
Speci�cally, we present e�cient solutions for the the bichromatic axis-aligned
square and axis-aligned rectangle problems. For brevity, all rectangles (and hy-
perrectangles) are assumed to be axis-aligned unless otherwise noted.

Recently, Aranov and Har-Peled posed the bichromatic problem for a vari-
ety of shapes [3], including squares and rectangles. In their paper, Aranov and
Har-Peled present an (1 + ε)-approximation algorithm for the bichromatic ball
problem that runs in O(ndd/2e(ε−2 log n)dd/2+1e) time, for dimensions d ≥ 3.
They conjecture that the bichromatic circle problem is 3sum-hard.

Eckstein et al. explore the bichromatic problem for hyperrectangles in high-
dimensions, which they claim is useful for data-analysis [8]. They show that the
bichromatic hyperrectangle problem is NP-hard, for arbitrarily high dimensions.
They also present a O(n2d+1) time algorithm, for any �xed dimension d. As this
runtime grows exponentially in d, it is impractical for high dimensions, which
motivates the heuristic approach that they develop. In a subsequent paper, two
of the authors, Liu and Nediak, propose a O(n2 log n) time and O(n) space algo-
rithm for the two-dimensional bichromatic rectangle problem [12]. We improve
their runtime bounds by solving this problem in O(n log3 n) time and O(n log n)
space.

The bichromatic problem is a natural variant of the maximum empty shape
problem: Find a �gure of a certain shape that contains no red points and has as
large a volume as possible. The algorithms that we propose for the bichromatic

? This research is supported by the Natural Sciences and Engineering Research Council
(NSERC).

problem use techniques that were successfully applied to the maximum empty
square and rectangle problems [4,2,15]. Edmonds et al. describe a solution to the
maximum empty rectangle problem that is more suitable for data mining large
data sets because it typically requires less space [9].

We note that the bichromatic problem is related to the bichromatic discrep-
ancy problem: Find a �gure of a certain shape that maximises the number of blue
points contained minus the number of red points contained. Dobkin et al. solve
the rectangle bichromatic discrepancy problem in O(n2 log n) time [7]. In their
paper, they relate various discrepancy problems to problems in machine learning
and computer graphics.

2 Maximum Empty Square Problem

We want to �nd a square that does not contain any red points and contains as
many blue points as possible. We call this the bichromatic square (BS) problem.
The BS problem is a variant of the maximum empty square (MES) problem:
Given a rectangle E, �nd a maximum area square that is contained in E that does
not contain any red points. Solutions to the MES problem have been described in
a single line (e.g. �The special case in which a largest empty square is desired has
been solved ... using Voronoi diagrams� [4]). We elaborate this approach to the
MES problem before addressing the BS problem because it forms the foundation
of our approach to the BS problem.

We call a square S viable, if it is contained in E and does not contain any
red points. We call S relevant if it is viable and not properly contained in any
viable square. To solve the MES problem, we search the set of relevant squares.
Our search is based on one basic observation: If two adjacent sides of a viable
square do not touch an obstacle (a red point or the boundary of E), we can
in�ate the square while keeping it viable by sliding out the corner common to
the obstacle-free sides. Equivalently, two opposite sides of a relevant square must
touch an obstacle (see Figure 1a).

(a) Range of relevant
squares.

p

q

s

B(p, q)

S

(b) Relevant square cen-
tred on horizontal segment
of bisector.

(c) Relevant square cen-
tred on Voronoi point.

Figure 1: Connection to Voronoi diagrams of the red points. Voronoi edges are illus-
trated with dotted lines.

This opposite side observation establishes a connection to Voronoi diagrams.
Note that the L∞ distance between two points (x1, y1) and (x2, y2) is max(|x1−
x2|, |y1 − y2|). Let p and q be points where a relevant square S touches two
obstacles (see Figure 1b). If s is the centre of S, then the L∞ distance between p
and s is exactly the L∞ distance between q to s. Hence, s lies on the L∞ bisector
of p and q, denoted B(p, q). Typically, B(p, q) is composed of two diagonals and
one horizontal or vertical segment. The centre s lies on the non-diagonal portion
of B(p, q) because p and q lie on opposite sides of S. Moreover, s lies on an edge
of the L∞-Voronoi diagram because s has more than one nearest obstacle.

Remark 1. The centre s of a relevant square lies on a non-diagonal edge of the
L∞-Voronoi diagram of the obstacles (red points and boundary of E).

Unfortunately, there are degenerate cases where the above observation does not
hold (see Figure 1c). When we solve the BS problem, we address these excep-
tions, which leads to a careful reformulation of Remark 1 as Lemma 3. Our
approach to handling these degeneracies also applies to the MES problem. Ig-
noring these technicalities, the MES problem can be solved by (a) constructing
the L∞-Voronoi diagram (VD) of the obstacles and (b) examining each non-
diagonal segment of the VD. Step (a) can be executed in O(n log n) time and
O(n) space [11]. Step (b) can be executed in O(n) time because each Voronoi
edge has at most one non-diagonal segment and the VD has O(n) edges [11].
Therefore, the MES problem can be solved in O(n log n) time and O(n) space.

3 Bichromatic Square Problem

We now consider the bichromatic square problem. In this case, we slightly alter
our notion of viability: A square is viable if it does not contain any red points.
Remark 1 still applies, so our approach to the BS problem is similar: (a) construct
the VD of the red points and (b) examine each non-diagonal segment of the VD.

l

Figure 2: Two relevant squares centred on l. Red points are marked with a • and blue
points with a ×.

Our BS approach di�ers from the MES approach in the execution of step
(b). Let l be a non-diagonal segment of the VD (see Figure 2). To solve the MES

problem, it su�ces to calculate the width of the relevant squares that are centred
on l. To solve the BS problem, we must �nd the maximum number of blue points
contained in a relevant square that is centred on l. As Figure 2 illustrates, two
di�erent squares that are centred on l may contain a di�erent number of blue
points. In general, there may be Ω(n) relevant squares that are centred on l and
are important to consider. Later, we show how to examine all relevant squares
centred on l with a plane sweep. The structure of the BS problem allows us
to sweep over all non-diagonal segments in a total of O(n log n) time and O(n)
space.

p

q

(a) Points on opposite corners of a
square.

u

v

(b) Points with the same x-coordinate.

Figure 3: Bisector degeneracies.

Two types of bisector degeneracies may occur when constructing the VD.
Suppose that two points p and q lie on opposite corners of a square (see Fig-
ure 3a). In this case, we simplify our analysis by treating B(p, q) as two diagonals
separated by a degenerate horizontal segment at the midpoint of p and q. An-
other degeneracy occurs when two points u and v have the same x-coordinate. In
this case, B(u, v) has in�nite area (see the shaded region in Figure 3b). When two
points have the same x-coordinate, we treat the point with the lower y-coordinate
as in�nitesimally to the left of the other point. Using this tie-breaking scheme,
the bisector in Figure 3b is the dotted curve. We handle the case where two
points have the same y-coordinate similarly. By addressing bisector degeneracies
in this way, bisectors have the following important property.

Property 1. As a point b traces the bisector B(p, q) between two points, the
distance from b to q (equivalently p) changes unimodally, reaching its minimum
at the non-diagonal segment.

There are exceptions to Remark 1. We will shortly identify O(n) relevant squares
that cover all exceptions. First, we describe how to e�ciently process these ex-
ceptions.

Lemma 1. Given a set T of O(n) rectangles (possibly unbounded), we can count
the number of blue points inside each rectangle in T using O(n log n) time and
O(n) space.

Proof. We sweep a horizontal line from −∞ to ∞. We store the blue points
that are below the sweep line in a balanced binary tree sorted by x-coordinate.
For each node in the tree, we maintain the number of blue points stored in
the subtree rooted at that node. Blue points can be inserted into the tree in
O(log n) time. This simple data structure allows us to count the number of blue
points contained in [a, b] × (−∞, y] in O(log n) time, when the sweep line is at
y. Two queries of roughly this type su�ce to count the number of blue points in
a rectangle because [a, b]× [c, d] = ([a, b]× (−∞, d]) \ ([a, b]× (−∞, c)). ut

Every unbounded relevant square is not covered by Remark 1. These squares
are either full planes, half planes or quarter planes (see Figure 4a). There is at
most one relevant full plane, four relevant half planes, and O(n) relevant quarter
planes. We can enumerate all relevant quarter planes with four plane sweeps
(e.g. we can handle the case illustrated in Figure 4a in one sweep).

A Voronoi point occurs where the boundaries of three or more distinct
Voronoi cells meet. As Figure 1c illustrates, relevant squares centred at Voronoi
points may not be covered by Remark 1. Fortunately, there are onlyO(n) Voronoi
points [11], and they are represented explicitly in the VD. Hence, we can e�-
ciently enumerate them.

(a) Unbounded squares extend-
ing to x = −∞ and y = −∞.

p

q

p

q

p

q

(b) Squares with a red corner.

Figure 4: Atypical relevant squares.

A bounded relevant square with a red point on a corner is called a corner
square (see Figure 4b). We enumerate corner squares in order to reduce the
number of cases that we must consider in the Lemma 3. This does not a�ect
the asymptotic performance of our algorithm because there are only O(n) such
squares: A corner square is uniquely de�ned by a red point p and the corner
on which it must lie (e.g. upper left, lower left, upper right, or lower right).
Let UL(p) denote the unique bounded relevant square with a red point p on its
the upper-left corner. As illustrated in Figure 4b, UL(p) has a red point q (not
necessarily unique) on the lower right half of its boundary (the bottom and right
edges excluding the lower-left and upper-right corners). This observation allows
us to enumerate all corner squares e�ciently.

Lemma 2. We can enumerate all O(n) corner squares in O(n log n) time and
O(n) space.

Proof. We describe how to �nd all UL(p) with a red point on its bottom edge.
The case where a red point is on the right edge is analogous. The basic idea is to
sweep out the bottom edge of UL(p) until it hits q. The area swept out by the
bottom edge forms a cone (see Figure 5). This cone contains the diagonal, but
not the left edge. We simultaneously grow all the cones so that the amortised
time per cone is low.

ℓ

p

q

o

Figure 5: Sweep line approach to identifying corner squares.

We sweep a horizontal line ` from ∞ to −∞ while maintaining a list of
growing cones that reach `. We store the apex of each such cone in a balanced
binary tree sorted by x-coordinate. If two such apexes p and q have the same
x-coordinate, we treat the point with smaller y-coordinate as in�nitesimally to
the left of the other point.

When ` passes over a red point q, we update the balanced binary tree: First
we remove all of the cones whose base touches q (they can grow no further),
and then we add q. The apexes of all the cones that touch q occur consecutively
in the sorted list of points maintained by the sweep line. To �nd the rightmost
apex in the consecutive range, we search the tree for the apex p that lies just to
the left of q (see Figure 5). Then we walk to the left through the list of apexes
until we �nd the apex o of a cone that does not touch q (see Figure 5). The total
time to �nd all of the cones that touch q is O(log n+ k), where k is the number
of such cones. This algorithm takes O(n log n) because each cone is added and
removed once. ut

The relevant squares that are not enumerated (i.e. bounded, non-corner squares
that are not centred at a Voronoi point) are called �oating. We say that a side
of a relevant square is supported, if its interior contains a red point. The next
lemma is a precise reformulation of Remark 1.

Lemma 3. Each �oating square has two opposite supported sides and two op-
posite unsupported sides. Hence, its centre lies on the interior of a non-diagonal
segment of the VD.

Proof. Let S be the �oating square centred at s. Clearly, S has two supported
opposite sides because S is bounded and S is not a corner square.

Suppose for contradiction that S has at least three supported sides. We
assume without loss of generality that the unsupported side of S (if it exists) is
the right side. Note that s lies on the boundary of the VD because S has more
than one supported side. Since s is not a Voronoi point, it must lie in the interior
of some Voronoi edge e.

Case 1: Suppose that s lies on a diagonal segment d. Then we can slide s
parallel to d and increase the distance between s and its nearest red point (see
Property 1). However, all four diagonal directions move s closer to the top or
bottom of S, which decreases the distance between s and its nearest red point,
a contradiction.

Case 2: Suppose that s lies on the interior of a non-diagonal segment l. Then
we can slide s parallel to l without changing the distance between s and its
nearest red point (see Property 1). However, sliding s up or to the left moves it
closer to a supported side of S, which decreases the distance between s and its
nearest red point, a contradiction.

Thus, S has two opposite supported sides and two opposite unsupported
sides. We can slide s parallel to the supported sides without changing the distance
between s and its nearest red point or changing the number of its nearest red
points. Hence, s lies on a segment of the boundary of the VD parallel to the
supported sides of S. ut

We now describe how to �nd the �oating square that contains the most blue
points. We do this with two plane sweeps: one sweep over the horizontal segments
of the VD and a second sweep over the vertical segments of the VD. We just
describe the �rst sweep because the second sweep is very similar.

Let h be a horizontal segment of the VD. We call a �oating square h-restricted
if its centre lies on h. To simplify our analysis, we assume without loss of gen-
erality that (a) every h-restricted square has the same width (for a �xed h) by
splitting segments at Voronoi points and (b) each point on h corresponds to the
centre of a �oating square by splitting segments at centres of corner squares.
There are O(n) resulting horizontal segments because there are O(n) edges in
the VD, O(n) Voronoi points, and O(n) corner squares [11].

Any blue point contained in an h-restricted square must lie in the union of
all h-restricted squares, denoted U(h) (see Figure 6a). We partition U(h) into
three regions: the intersection I(h) of all h-restricted squares, the region L(h) of
U(h) \ I(h) to the left of I(h), and the region R(h) of U(h) \ I(h) to the right of
I(h). Note that L(h) is the region swept out by the left side of all h-restricted
squares. Two observations lead to an e�cient algorithm for �nding the �oating
square containing the most blue points: (a) the blue points in I(h) have no e�ect
on which h-restricted square contains the maximum number of blue points, and
(b) the regions swept out by di�erent horizontal segments are disjoint, as stated
in the following key lemma.

Lemma 4. If h and h′ are distinct horizontal segments of the Voronoi diagram,
then L(h) ∩ L(h′) = ∅.

h

U(h)

L(h) I(h) R(h)

(a) Partition of swept region.

U(h)

L(h) I(h) R(h)

l1

l2

l3

r1

r2

(b) Partition of covered blue points.

Figure 6: Sweep of h-restricted squares.

Proof. For contradiction, consider p ∈ L(h) ∩ L(h′). Let S(h) be the �oating
square whose left side touches p and whose centre lies on h, let s(h) be the
centre of S(h), and let t(h) denote the y-coordinate of the top side of a square
S(h). Without loss of generality, we assume t(h) ≥ t(h′)

Case 1: Suppose that t(h) = t(h′). Then S(h) and S(h′) have the same
upper-left corner. Hence S(h) = S(h′) because both squares are relevant. Thus,
s(h) = s(h′), which implies that s(h) is at an endpoint of h. Hence, either S(h)
is a corner square or s(h) is a Voronoi point. So S(h) is not �oating, which
contradicts that p ∈ L(h).

Case 2: Suppose that t(h) > t(h′). If S(h) is wider than S(h′) as illustrated
in Figure 7a, then the red points supporting the top of S(h′) are contained in
S(h), contradicting that S(h) is viable. So suppose that S(h) is no wider than
S(h′) as illustrated in Figure 7b. If the right side of S(h) is unsupported, we can
in�ate S(h) by pushing out the lower-right corner of S(h), which contradicts
that S(h) is relevant. If the right side of S(h) is supported, then at least three
sides of S(h) are supported. This contradicts Lemma 3 because S(h) is a �oating
square. ut

p

S(h)

S(h′)

(a) S(h) is wider than S(h′).

p

S(h)

S(h′)

(b) S(h) is narrower than S(h′).

Figure 7: Cases when t(h) < t(h′).

Let 〈l1, l2, . . .〉 be the blue points in L(h) sorted by increasing x-coordinate
(see Figure 6b). Similarly, let 〈r1, r2, . . .〉 be the blue points in R(h) sorted by
increasing x-coordinate. We can simultaneously walk through 〈li〉 and 〈ri〉 to
�nd the h-restricted square containing the most blue points in time linear in the
sum of the sizes of the two lists.

Lemma 5. We can compute all of the sequences 〈li〉 associated with all of the
horizontal segments in O(n log n) time and O(n) space.

Proof. We can compute all 〈li〉 in a single plane sweep. While we sweep a vertical
line from −∞ to ∞, we maintain a sorted list in a balanced binary tree of the
topmost point where some L(h) intersects the sweep line. Associated with each
point in the tree is a reference to its corresponding rectangle L(h). Adding and
removing a rectangle is an O(log n) operation. When we hit a blue point b as
we sweep right, we �nd the y-coordinate in the binary tree immediately above
b in O(log n) time. If b is contained in the corresponding box, we add it to that
box's list. ut

The next theorem follows.

Theorem 1. We can solve the bichromatic square problem in O(n log n) time
and O(n) space.

Proof. As described earlier, we can identify the O(n) non-�oating squares in
O(n log n) time and O(n) space (e.g. see Lemma 2). By Lemma 1, we can count
the number of blue points in each non-�oating square in O(n log n) time and
O(n) space.

We now describe how to handle the �oating squares. We just consider squares
restricted to horizontal segments because the vertical segment case is similar.
First, we count the number of blue points in I(h) for every horizontal segment
h in O(n log n) time and O(n) space by Lemma 1. Then we compute 〈li〉 and
〈ri〉 for each horizontal edge in O(n log n) time and O(n) space by Lemma 5.
Finally, we sweep across each horizontal segment h to �nd the h-restricted square
containing the most blue points. This last step takes a total of O(n log n) time
and O(n) space because each blue point belongs to at most one sequence 〈li〉 by
Lemma 4. ut

4 Bichromatic Rectangle Problem

In this section, we show how to �nd a rectangle that contains no red points and
contains as many blue points as possible. We call this the bichromatic rectangle
(BR) problem. Our approach to solving the BR problem is a direct application
of the techniques used to solve the maximum empty rectangle (MER) problem:
Given a set of points red points and a bounding rectangle E, �nd the largest
area rectangle that is contained in E and contains no red points.

We say that a rectangle R is viable if it is contained in E and contains no
red points. We say that R is relevant if it is viable and not properly contained

in any viable rectangle. When looking for a MER, we can restrict our attention
to relevant rectangles because every MER is relevant. A common approach to
�nding a MER is to enumerate all relevant rectangles. This can be accomplished
in O(n log n+ k) time and O(n) space [15], where n is the number of red points
and k is the number of relevant rectangles. This approach works well in practice
because the expected value of k is O(n log n) under modest assumptions about
the red point set [14]. However, in the worst case k ∈ Θ(n2).

The MER problem and BR problem are closely related: Let E be a rectangle
enclosing the red and blue points. If R is a solution to the BR problem, then
R∩E is also a solution. Hence, we can solve the BR problem by enumerating all
relevant rectangles and counting the blue points in each one. Counting the blue
points in a rectangle is an orthogonal range counting query. Using O(n log n)
preprocessing time and O(n log n) space, we can answer such queries in O(log n)
time by using a range tree with fractional cascading [6]. The resulting algorithm
takes O(k log n) time (because k ∈ Ω(n)) and O(n log n) space. This direct
approach is asymptotically faster in expectation (but not worst case) than the
Θ(n2 log n) time algorithm proposed by Liu and Nediak [12].

l1

l2

l3

r1
r2

r3

(a) Every li and rj de�ne a relevant
rectangle.

li

li′

rj

rj′1 2

3 4 5

6 7

(b) McKenna's Lemma.

Figure 8: Structure in the worst case behaviour.

The number of relevant rectangles is Θ(n2) in the worst case. Figure 8a
illustrates one arrangement of points that generates Θ(n2) relevant rectangles:
The red points form two well separated chains of approximately equal length,
where the points on each chain decrease in y-coordinate as they increase in x-
coordinate. Consecutive points on a chain de�ne a corner: a lower-left corner for
consecutive points on the lower chain and an upper-right corner for consecutive
points on the upper chain. We label the corners on the lower chain l1, l2, . . .
from top to bottom. Similarly, we label the corners on the upper chain r1, r2, . . .
from top to bottom. We use the term corner rectangle to refer to the relevant
rectangle with a li as a lower-left corner and a rj as an upper-right corner.
Chazelle et al. [4] reduce the MER problem to �nding the largest empty corner
rectangle (LECR). Their reduction works by �rst explicitly considering all of the

O(n) relevant rectangles not considered by the LECR problem. Hence, this same
approach reduces the BR problem to �nding the corner rectangle with the most
blue points (BCR problem).

Aggarwal and Suri provide an elegant solution to the LECR problem [2]. They
exploit the fact that the areas of the rectangles in this subproblem are related via
a simple inequality. Let Ai,j denote the area of the corner rectangle associated
with li and rj . Then Ai,j +Ai′,j′ > Ai,j′ +Ai′,j , for i < i′ and j < j′ [13]. This
inequality implies that we can �nd the LECR by comparing the areas of just
O(n) rectangles by using the monotone matrix searching technique of Aggarwal
et al. [1]. The LECR problem is used to merge the results of subproblems in
a divide-and-conquer approach to the MER problem. So although the LECR
problem can be solved in O(n) time and O(n) space, solving the MER problem
requires O(n log2 n) time and O(n) space.

We note that if Ai,j denotes the number of blue points in the corner rectangle
associated with li and rj , then the inequality Ai,j + Ai′,j′ > Ai,j′ + Ai′,j still
holds. This can be veri�ed by considering the seven regions associated with the
relevant corner rectangles illustrated in Figure 8b. Let Rk denote the number

of blue points in the kth region. Then Ai,j = R1 + R2 + R3 + R4. Using this
style of counting, it can be veri�ed that Ai,j + Ai′,j′ = Ai,j′ + Ai′,j + R1 + R7.
Hence, Ai,j +Ai′,j′ > Ai,j′ +Ai′,j because R1 ≥ 0 and R7 ≥ 0. Calculating Ai,j

is an orthogonal range counting query. With appropriate preprocessing, Ai,j

can be computed in O(log n) time. Hence, the BCR problem can be solved in
O(n log n) time and O(n log n) space. By combining this method of solving the
BCR problem with the Aggarwal and Suri divide-and-conquer approach to the
MER problem [2], we obtain the following theorem.

Theorem 2. A rectangle containing no red points and as many blue points as
possible can be found in O(n log3 n) time and O(n log n) space.

5 Discussion

In this paper, we solve the bichromatic square problem in O(n log n) time and
O(n) space. This algorithm is simple and uses no data structure more complex
than a balanced binary tree. We also solve the bichromatic rectangle problem
in O(n log3 n) time and O(n log n) space. Aggarwal and Suri's solution to the
maximum empty rectangle problem requires O(n log2 n) time and O(n) space
[2]. Removing the additional logarithmic factors from our adaptation of their
approach is an open problem.

There is a substantial interest in the problem of colour range queries (see [10]
for a survey): Given a set of coloured points, preprocess the points to e�ciently
count the number of di�erent colours contained in a series of query ranges. We
note that the techniques in this paper can be used to �nd a square or rectangle
that contains as many di�erent colours as possible with roughly the same time
and space bounds (i.e. we add a new term for the number of di�erent colours).

It is natural to ask if our results can be generalised to higher dimensions.
It is straightforward to solve the bichromatic cube problem in O(n3 log n) time

using the observation that relevant cubes typically have two opposite sides that
touch a red point. The bichromatic three-dimensional hyperrectangle problem
can be solved in O(n3 log2 n) time by enumerating all relevant hyperrectangles
[5] and counting the number of blue points in each one. In both cases, breaking
the cubic runtime barrier is an interesting open problem.

References

1. A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applica-
tions of a matrix-searching algorithm. Algorithmica, 2(1):195�208, 1987.

2. A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rect-
angle. In Proceedings of the third annual symposium on Computational geometry,
pages 278�290. ACM New York, NY, USA, 1987.

3. B. Aronov and S. Har-Peled. On Approximating the Depth and Related Problems.
SIAM Journal on Computing, 38(3):899�921, 2008.

4. B. Chazelle, R.L. Drysdale, and D.T. Lee. Computing the largest empty rectangle.
SIAM Journal on Computing, 15:300, 1986.

5. A. Datta and S. Soundaralakshmi. An e�cient algorithm for computing the max-
imum empty rectangle in three dimensions. Information Sciences, 128(1-2):43�65,
2000.

6. M. de Berg, O. Schwartskopf, M. Overmars, and M. van Kreveld. Computational

geometry. Springer-Verlag Berlin, 2000.
7. D.P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic

discrepancy, with applications to computer graphics and machine learning. Journal
of Computer and System Sciences, 52(3):453�470, 1996.

8. J. Eckstein, P.L. Hammer, Y. Liu, M. Nediak, and B. Simeone. The maximum box
problem and its application to data analysis. Computational Optimization and

Applications, 23(3):285�298, 2002.
9. J. Edmonds, J. Gryz, D. Liang, and R.J. Miller. Mining for empty spaces in large

data sets. Theoretical Computer Science, 296(3):435�452, 2003.
10. P. Gupta, R. Janardan, and M. Smid. Computational geometry: generalized inter-

section searching. In D. Mehta and S. Sahni, editors, Handbook of Data Structures

and Applications, chapter 64, pages 1�17. Chapman & Hall/CRC, 2005.
11. D.T. Lee and C.K. Wong. Voronoi Diagrams in L1(L∞) Metrics with 2-

Dimensional Storage Applications. SIAM Journal on Computing, 9:200, 1980.
12. Y. Liu and M. Nediak. Planar case of the maximum box and related problems. In

Proceeding of the Canadian Conference on Computational Geometry, pages 11�13,
2003.

13. M. McKenna, J. O'Rourke, and S. Suri. Finding the largest rectangle in an orthog-
onal polygon. In Proceedings of the 23rd Allerton Conference on Communication,

Control, and Computing, pages 486�495, 1985.
14. A. Naamad, D.T. Lee, and W.L. Hsu. Maximum empty rectangle problem. Discrete

Appl. Math., 8(3):267�277, 1984.
15. M. Orlowski. A new algorithm for the largest empty rectangle problem. Algorith-

mica, 5(1):65�73, 1990.

