The University of Saskatchewan
Department of Computer Science

Technical Report #2012-03

xd UNIVERSITY OF
SASKATCHEWAN

The Road to Software Clone Management:
A Survey

Minhaz F. Zibran Chanchal K. Roy
{minhaz.zibran, chanchal.roy} @usask.ca
University of Saskatchewan, Canada

February 13, 2012

Contents

1 Introduction and Motivation 1
2 A Systematic Review on Clone Literature 3
2.1 Threat to Validityo 7

3 Code Clone 7
3.1 Clones beyond Source Code 8
3.2 Clone Relationship, 8
3.3 Clone Granularity 9
3.3.1 Which Level of Granularity Is Appropriate? 10

3.4 Intentional and Accidental Clones 11
3.5 Clone Detection Techniques 11
3.5.1 Strengths and Weaknesses of Clone Detection Techniques . . . 14

3.5.2 Challenges in the Empirical Evaluation of Clone Detection Tools 16

3.6 Clone Evolution 17
3.6.1 Clone Genealogy 17
Genealogy Extraction: 18

3.6.2 Clone Change Patterns 18

3.6.3 Need for Improvements 21

3.6.4 Visualization of Clone Evolution 22

4 Clone Management 23
4.1 Clone Management Strategies 23
4.2 Design Space for a Clone Management System 24
4.2.1 Architectural Centrality 24

4.2.2 Triggering of Clone Management Activity 25

4.2.3 Scope of Clone Management Activity 25

4.3 Clone Management Activities 26
4.4 Integrated Clone Detection 27
4.5 Clone Documentation 30
4.6 Clone Tracking 33
4.6.1 Incremental Clone Detection 33

4.7 Clone Annotation 36
4.8 Techniques for Reengineering/Refactoring of Clones 36
4.8.1 Generics and Templates 36

4.8.2 Design Level Approaches 36

Design Patterns: 36

Traits: 37

Aspects: L 37

4.8.3 Synchronized Modification
4.8.4 Consistent Renaming
4.8.5 Refactoring Patterns
Tool Support for Refactoring Patterns:

4.9 Analysis and Identification of Clones for Refactoring
4.9.1 Visualization of Distribution and Properties of Clones
4.9.2 Analysis to Find Clone Based Reengineering Opportunity . . .
Clone Categorization Based On Reengineering Opportunity: .

4.10 Cost-benefit Analysis and Scheduling of Refactoring
4.11 Verification of Clone Modification/Refactoring

5 Industrial Adoption of Clone Management
6 Conclusion

Bibliography

i

52

53

54

List of Figures

N O Ol Wi

Yearly number of distinct authors contributing to clone research . . .)
Categories of publications on software clone research in different years 5
Proportion of publications in each category over the period 1994-2011 6
A clone genealogy with two lineages over versions vy through wvgy 3 [201] 18
Clone change patterns and types of genealogies [171] 20
Clone management workflow 26
Kapser and Godfrey [107] Taxonomy: clone categorization based on

location and functionality 49

il

List of Tables

DTk W N

10
11

Categories of theses on software clone research 4
Code Clone Detection Techniques (extended from [126]) 13
Summary of techniques for clone genealogy extraction 19
Summary of clone management support from integrated tools 31
Summary of tool support for incremental clone detection 35
Summary of clone visualization techniques (extended from Jiang et

al. [94]) . .o 43

Balazinska et al. [16] Taxonomy: categories of function/method level
clones based on (dis)similarity caused by different types of differences 46
Koni-N’Sapu [121] Taxonomy: applicability of different refactoring
patterns on different categories of clones 47
Schulze et al. [178] Taxonomy: applicability of object-oriented (first
three) and aspect-oriented (last three) refactoring patterns to refactor

categories of clones 48
Torres [189] Taxonomy: clone categorization based on concept location 49
Comparison of Code Clone Refactoring Schedulers o1

v

1 Introduction and Motivation

Copying an existing code and pasting it in somewhere else followed by major or minor
edits is a common practice that the developers adopt to increase productivity. Such a
reuse mechanism typically results in duplicate or very similar code fragments residing
in the code base. Those duplicate or near-duplicate code segments are commonly
known as code clones. There are many reasons why the developers intentionally
perform such code cloning. Obvious reasons include reuse of existing implementation
without re-inventing the wheel. More comprehensive discussions on the reasons for
code cloning can be found elsewhere [106, 161, 163]. Code clones may also appear in
the code base without the awareness of the developers. Such unintentional /accidental
clones may be introduced, for example, due to the use of certain design patterns, use
of certain API’s to accomplish similar programming tasks, code conventions imposed
by the organization, and so on.

The reuse mechanism by code cloning offers some benefits. For instance, cloning
of an existing code that is already known to be flawless, might save the developers
from probable mistakes they might have made if they had to implement the same
from the scratch. It also saves the time and effort in devising the logic and typing
the corresponding textual code. Code cloning may also help in decoupling classes or
components and facilitate independent evolution of similar feature implementations.

On the other end of the spectrum, code clones may also be detrimental in many
cases. Obviously, redundant code may inflate the code base, and may increase re-
source requirements. This may be crucial for embedded systems and systems such as
hand held devices, telecommunication switches, and small sensor systems. Moreover,
cloning a code snippet that contains any unknown fault may result in propagation of
that fault in all copies of the faulty fragment. From the maintenance perspective, a
change in one code segment may necessitate consistent changes in all clones of that
fragment. Any inconsistency may introduce bugs or vulnerabilities in the system.
Fowler et al. [58] recognize code clones as a serious kind of code smell.

However, during the software development process, duplication cannot be avoided
at times. For example, duplication may be enforced by the limitation of the program-
ming language in facilitating with necessary mechanism to implement an efficient
generic solution of a problem at hand. Code generators may also generate duplicated
code, that the developers do not want to modify.

Previous research reports empirical evidences that a significant portion (generally
9%-17% [206]) of a typical software system consists of cloned code, and the proportion
of code clones in the code base may be as low as 5% [163] and as high as even
50% [162]. Indeed, due to the negative impact of code clones in the maintenance
effort, one might want to remove code clones by active refactoring, wherever feasible.
However, in reality, aggressive refactoring of code clones appears not to be a very good
idea [39], and not all clones are really removable through refactoring. Due to the dual

role of code clones in the development and maintenance of software systems, as well as
the pragmatic difficulty in avoiding or removing those, researchers and practitioners
have agreed that code clones should be detected and managed efficiently.

Since the emergence of software clones as a research area, significant contribu-
tions over years made the field grow and become quite a matured area of research.
Nonetheless, over the entire course of software clone research there have been notably
three surveys. Koschke [125], in 2007, presented a brief summary of the important
findings about different aspects of software clones including cause-effect of cloning,
clone avoidance, detection, and evolution. along with a set of open questions. In
the same year, Roy and Cordy [163] also published another survey containing a thor-
ough review on those same areas with specific focus on clone the detection tools and
techniques. Recently, Pate et al. [159] published a systematic review on 30 studies
on clone evolution only. In this paper, we present an extensive survey on code clone
research with strong emphasis on clone management.

This paper is organized as follows. In Section 2, we present a systematic review
on a repository of 262 papers on software clone research published over 19 years. The
review draws “birds-eye” view on the overall contributions and growth along different
dimensions of software clone research. The remaining of this survey is the outcome of
careful investigation of literature beyond the said repository, and through analysis in
the light of our experience. Section 3 starts with the necessary background including
the definition and types of clones. Section 3.3 describes the different granularities,
at which code clones can be addressed. Section 3.4 distinguishes intentional and
accidental clones. In Section 3.5, we describe the different clone detection techniques
along with their strengths and weaknesses. Section 3.6 addresses clone evolution with
emphasis on clone change patterns based on the genealogy based evolution model.

Section 4 begins with the management of clones beyond detection. Section 4.1
characterizes different strategies for clone management. In Section 4.2, we briefly de-
scribe the design space for a clone management system. Section 4.3 starts discussion
on the different clone management activities, including integrated clone detection
(Section 4.4), clone documentation (Section 4.5), tracking (Section 4.6) and anno-
tation (Section 4.7). Section 4.8 presents the techniques for clone removal or clone
based reengineering. In Section 4.9, we describe the analyses for the identification of
potential clones as candidates for refactoring /reengineering. The cost-benefit analysis
and scheduling of clone refactoring is then presented in Section 4.10. A discussion
on the verification of clone refactoring is accommodated in Section 4.11. Our under-
standing on the challenges for industrial adoption of clone management is presented
in Section 5, and finally, Section 6 concludes the paper.

2 A Systematic Review on Clone Literature

There has been more than a decade of research in the field of software clones. To
understand the growth and trends in the different dimensions of clone research we
carried out a quantitative review on the related publications. Robert Tiras at the
University of Alabama at Birmingham has been maintaining a repository [181] of
scholarly articles that make significant contributions in the area. Until today, the
corpus consists of 264 scholarly articles published between 1994 and 2012 in different
refereed venues including Ph.D., M.Sc., and Diploma theses. The repository organizes
the publications by categorizing them based on their contributions in four major sub-
areas of clone research. The categories are as follows:

Analysis: This category contains publications that perform analysis on the various
traits of software clones, their reasons, existence, effects in software systems, as
well as investigation of clone reengineering opportunities and implications. A
majority of such publications report findings from qualitative or quantitative
empirical studies.

Detection: Publications in this category address techniques and tools for the detec-
tion of software clones.

Tool Evaluation: This category comprises the publications that contribute to the
quantitative or qualitative evaluation of the techniques and tools for clone de-
tection.

Management: Publications in this category address the issues, techniques and tools
for the management of code clones beyond detection.

Other than the publications that fall in the aforementioned four categories, the
corpus also contains three publications categorized as “Survey of Overall Research”.
After careful reading of those articles, we put them in the ‘Analysis’ category. More-
over, the repository classified the published theses based on simply whether they were
outcomes of Ph.D.; M.Sc., and Diploma programs. We also went through them, and
based on their research focus, we classified them (Table 1) into the above mentioned
four categories.

In our review, we include a total of 262 scholarly articles and theses published
since 1994 until 2012. Since, it is now early 2012 and more contributions are expected
to appear by the end of 2012, we deliberately excluded publications after 2011 for
sanity. The repository also contains a list of tools, events, research groups, and links
relevant to software clone research, which we excluded from the review. We collected
the information by performing automated parsing (followed by manual verification)
of the web (HTML) interface of the repository.

Table 1: Categories of theses on software clone research

\ Title \ Author \ Year \ Category
Representation, Analysis, and Refactoring Tech- | R. Tairas 2010 | Management
niques to Support Code Clone Maintenance
Scalable Detection of Similar Code: Techniques | L. Jiang 2009 Detection
and Applications
Toward an Understanding of Software Code | C. Kapser 2009 | Management

@ | Cloning as a Development Practice
é Assessing the Effect of Source Code Characteris- | A. Lozano 2009 Analysis
B | tics on Changeability
Q: Detection and Analysis of Near-Miss Software | C. Roy 2009 Detection
& | Clones
Code Clone Analysis Methods for Efficient Soft- | Y. Higo 2006 Analysis
ware Maintenance
Effective Clone Detection Without Language Bar- | M. Rieger 2005 Detection
riers
Automated Duplicated-Code Detection and Pro- | R. Komondoor 2003 Detection
cedure Extraction
Improving Clone Detection for Models P. Pfaehler 2009 Detection
& | Clone Detection Using Dependence Analysis and | Y. Jia 2007 Detection
& | Lexical Analysis
& ["Clone Detection Using Pictorial Similarity in Slice | Y. Jafar 2007 Detection
& | Traces
= | Visualizing and Understanding Code Duplication | Z. Jiang 2006 Analysis
in Large Software Systems
Incremental Clone Detection N. Gode 2008 Detection
» | CPC: An Eclipse Framework for Automated Clone | V. Weckerle 2008 | Management
‘% | Life Cycle Tracking and Update Anomaly Detec-
ﬁ tion
& | Semi Automatic Removal of Duplicated Code Y. Liu 2004 | Management
E Automated Detection Of Code Duplication Clus- | R. Wettel 2004 Detection
S| ters
QA Scenario Based Approach for Refactoring Du- | G. Koni-N’Sapu | 2001 | Management
plicated Code in Object Oriented Systems

119

120
92
90 50
60 53 55
3 31 31
30 1
5
10 10 10
5 5 7 5
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Figure 1: Yearly number of distinct authors contributing to clone research
24
20 B Analysis M Detection Management I Tool Evaluation
16
12
8
4 |
o EE] I] |l w II nmi il | = Ml |

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 2: Categories of publications on software clone research in different years

Figure 1 plots the number of distinct authors contributing to clone research in the
years from 1994 through 2011. As the figure indicates, the clone research community
has experienced a significant growth over the recent years. In the Figure 2, we
present the number of publications appeared every year making contributions to
each of the four sub-areas of clone research. As seen in the figure, early work on
software clone research were dominated by the research on clone detection with some
work on analysis. In the recent years, the work on clone analysis and detection has
grown significantly while clone management has emerged and growing as a significant
research topic. Despite the fast growth of the clone research community, the work on
clone management remained much less compared to analysis and detection, which can
be more clearly perceived from the Figure 3. This, in combination with the realized
importance of research in clone management, point to the further need and potential
for research in this sub-area.

® Analysis @ Detection
Management @ Tool Evaluation

Figure 3: Proportion of publications in each category over the period 1994-2011

It can also be noticed from both the Figure 2 and Figure 3 that over the entire
span (1994-2011) of software clone research very few work focused on the evalua-
tion of clone detection techniques or tools, although more than 40 different clone
detection tools have been produced realizing a wide variety of techniques [168]. In-
deed, the detection of clones is a fundamental topic for software clone research, and
the effectiveness of clone management largely depends of clone detection. Therefore,
more work on the evaluation of clone detection tools is necessary to inform scopes
for further improvements. However, the task can be challenging due to a number of
reasons, which we discuss in Section 3.5.2.

2.1 Threat to Validity

The corpus of publications used in our systematic review contains a significant num-
ber of scholarly articles published over 19 years. Still, a few publications might have
escaped the repository. For example, two M.Sc. theses [5, 171] that were completed
at the end of 2011, are yet to appear in the corpus. However, to preserve the repro-
ducibility our systematic review, we did not include such few missing publications.
In fact, the corpus is a result of consistent effort for exhaustive preservation of pub-
lications, which significantly contributed to the software clones research. Hence, we
believe that those few missing articles, if included, would not cause confounding vari-
ation in the findings of our review. Indeed, the remaining of this survey is based on
relevant literature beyond the corpus used in the systematic review.

3 Code Clone

Though, duplicate or similar code fragments are roughly known to be code clones, the
definition of clone has remained more or less vague over the last decade. The vague-
ness is reflected in the definition given by Ira Baxter, “Clones are segments of code
that are similar according to some definition of similarity (Ira Baxter, 2002) [125].”
Such a definition is dependent on how similarity is defined, and also raises question
on how much of code can be regarded as a code segment. Clone research over the past
decade somewhat addressed these issues, and the following categorizing definitions of
code clone currently have been widely acceptable [125, 163, 161].

Type-1 Clone: Identical code fragments except for variations in white-spaces and
comments are Type-1 clones.

Type-2 Clone: : Structurally/syntactically identical fragments except for varia-
tions in the names of identifiers, literals, types, layout and comments are called
Type-2 clones.

Type-3 Clone: Code fragments that exhibit similarity as of Type-2 clones and also
allow further differences such as additions, deletions or modifications statements
are known as Type-3 clones.

Type-4 Clone: Code fragments that exhibit identical functional behaviour but im-
plemented through very different syntactic structure are known as Type-/4 clones.

Indeed, a number of similarity based other taxonomies were also proposed by
Mayrand et al. [148], Balazinska et al. [16], Bellon et al. [28, 127], and Davey et
al. [42], and Kontogiannis [122].

As described, the first three types of clones are defined based on the similarity in
the program text, while Type-4 clone is defined based on semantic similarity. Thus,
Type-4 clones are also called semantic clones. One the other hand, Type-1 clones are
also known as ezact clones, Type-2 clones are also sometimes called renamed clones,
whereas, the Type-2 and Type-3 clones jointly are called near-miss clones [163]. The
terms parameterized clone or p-match clone are often used in the community to refer
to a subset of Type-2 clones, where there must be a bijective mapping between the
identifiers of the two Type-2 clones [125]. Thus, renaming (arbitrary or systematic)
of identifiers are allowed in Type-2 clones, whereas for parameterized clones, those
renaming must be consistent/systemic [163].

For Type-3 clones, the deletion of statement from one code segment can be con-
sidered as an addition of the statement in the other. The difference in the additional
or changed statements in the Type-3 clones are often called the gaps [193], and thus
Type-3 clones are sometimes also referred to as gapped clones [125, 163, 193]. While
the definition of Type-1 and Type-2 clones are quite precise, the definition of Tiype-3
clones still remains vague [125]. The definition does not precisely indicate how much
differences in terms of addition, modification, or deletion of statements are allowed in
code segments to be regarded as Type-3 clones. The practitioners commonly consider
code segments as Type-3 clones when the difference in the statements remain below a
(dis)similarity threshold [11, 140, 164, 205]. However, a consensus on an appropriate
value for such a threshold is yet to be established [125].

3.1 Clones beyond Source Code

Ongoing research also attempts to deal with clones in software artifacts other than
the source code [99], such as clones in higher level code structure [21, 22] or high
level concepts [146], clones in the models of formal model based development [46, 47],
in UML domain models [180], UML sequence diagrams [142], in the graph based
Matlab/Simulink models [160], and duplication in requirement specification docu-
ments [99, 100]. However, this paper focuses on the management of clones in the
source code only.

3.2 Clone Relationship

A clone relationship exists between two code segments, which are clones to each other
according to specification of similarity as prescribed by the definitions stated above.
Such a clone relationship is reflezive (i.e., if code segment A is a clone of B, then B is
also a clone of A). Moreover, for Type-1 and Type-2 clones, the transitive relationship
also exists (i.e., if code segment A is a clone of B, and B is a clone of C, then A is also
a clone of C). However, such a transitive property may not hold for Type-3 clones [27].
The aforementioned definitions also imply that a subset relationship exists among the

Type-1, Type-2, and Type-3 clones. Mathematically, Type-i C Type-j, for i € {1,2}
and j =i+ 1 [119].

Two code segments that are clones to each other (i.e., having clone relationship
between them) are called a clone pair. A clone-class or clone-group is a set of code
segments such that any two of them are clone pairs. The term ‘clone’ is used in the
software community in the following two ways.

‘clone’ as a noun refers to a code fragment that is, according to the aforementioned
definitions, similar enough to one of more other code segments. For instance,
our objective is to find all clones in the code-base.

‘clone’ as a verb indicates the act of producing a code segment (e.g., by copy-
pasting) that is, according to the aforementioned definitions, similar enough to
one of more other code segments. For example, I cloned the function to reuse
it in my context.

3.3 Clone Granularity

The definitions of the all four types of clones are based on the notion of code segment,
but how much of contiguous code can be considered as a code fragment is not made
specific. Thus, contiguous portion of code at different levels of granularity have been
used in the literature. As concerned with source code, the most commonly used
granularities are at the level of the entire source file, class definition, method body,
code block, and statements, which yield the the notion of code clones of the following
five types:

File clone: When two files are found to have contained similar enough source code,
they are called file clones.

Class clone: Two classes of an object-oriented code can be considered as class clones
if they have identical or near identical code.

Function clone: Two functions are considered as clones when the bodies of the
functions consists of code that are similar enough.

Block clone: When two blocks of code (marked with opening and closing braces or
indentation, or the like) are similar enough, they are called block clones.

Arbitrary statements clone: When two groups of statements at arbitrary regions
of the source file are found to be similar enough, they are also regarded as clones
(CCFinder detects such clones).

3.3.1 Which Level of Granularity Is Appropriate?

According to the definition of clone, a pair of very small portion portion of code such
as, two identical identifiers, two similar statements, functions or blocks each having
only one statement can also be valid candidates for clones. However, those tiny code
segments cannot be real clones of pragmatic significance. Thus, the practitioners typ-
ically disregard those code segments that are smaller than a given threshold. Again,
due to the differences in the varying contexts and techniques for clone detection, there
has been no consensus in the community on such a threshold, though minimum 20
to 30 tokens [118, 172] or three to five lines of code [167, 206, 203, 205] is a common
threshold used in practice.

We believe that the chosen granularity of the code segments should exhibit some
characteristics so that the detected clones at that granularity actually becomes use-
ful from the maintenance perspective. In this regard, we propose the following
desired characteristics as inspired by our experience and the criteria proposed by
Giesecke [62].

Coverage: The set of all code segments should cover maximal behavioural aspects
of the software.

Significance: Each code segment should possess implementation of a significant
functionality.

Intelligibility: Each code segment should constitute sufficient amount of code such
that a developer can understand its purpose with little effort.

Reusability: The code segments should feature a high probability for informal reuse.

A source file typically contains a large bulk of code (a Java source file may contain
multiple classes, interfaces, and so on). Though, the set of all source files cover all
behavioural aspects of the software, informal reuse at file level is unlikely in a software
system. Classes in object-oriented systems also satisfy the coverage criterion, but they
are also unlikely to be informally reused, as more elegant concepts such as inheritance
and delegation are there for their formal reuse.

Methods or blocks (a method body itself forms a block) cover almost all be-
havioural aspects, and those that are missed (e.g., library/package inclusion, decla-
ration and initializations) can be neglected [62]. Methods and blocks contain imple-
mentation of significant functionality that can be understood with less effort than
to do for an entire source file or class. Methods isolate a functionality and so often
do the blocks, and thus they are likely to be informally reused, as there is no easy
rigorous way to reuse methods from another context [62].

Code segments at the arbitrary statement level satisfy the coverage criterion, but
not the other three criteria. Single statement or short sequence of statements typically

10

don’t cover a unit of significant functionality. The meaning of a statement in general
is likely to be incomprehensible without considering its context, and the context
of the host block or function. Moreover, sequences of import/include statements,
declaration /initialization statements, or the sequences of statements spanning code
boundaries such as boundaries of two functions, classes, or blocks do not exhibit
significant potential for reuse, rather those should be ignored in many cases.

Thus, we suggest that code segments at the level of functions or blocks can be
the most suitable granularity for dealing with code clones, specially for maintenance.
Giesecke [62] also proposed in favour of function as the most adequate level of clone
granularity. Indeed, block level granularity also covers functions, though it does not
distinguish a block that constitutes a function body from that which does not. Driven
by the same understanding, Higo et al. developed CCShaper [79, 76] to post-process
the clone detection result from CCFinder to extract block level clones as the potential
candidates for refactoring.

3.4 Intentional and Accidental Clones

Code clones in a software system can appear in two ways. First, the programmer
copies an existing code, pastes it in another place, and thus reuses the implemen-
tation with or without further modifications. The resulting code may still remain
similar to the original and form a clone-pair. Such clones created by the program-
mer’s deliberate copy-paste-modification activities are known as intentional clones
or copy-pasted clones. There are a number of reasons why programmers create such
intentional clones. An obvious reason is to reuse existing implementation without
“re-inventing the wheel”.

Indeed, similar code segments may also appear in the system without the program-
mer’s intention, and often the developer can even be unaware of the creation of such
clones. For example, due to the developer’s mental model, frequently used idioms
are reproduced from memory instead of deliberate copy-paste [161]. Even different
developers may also produce very similar code while solving a similar problem, or
due to the dictation of certain APIs they use, or using the same design pattern [203].
Such similar code snippets that are not produced by deliberate copy-paste operations
are known as unintentional clones or accidental clones.

Practically, there are many reasons behind the creation of intentional and acci-
dental code clones in a software system. Further details on the root causes of cloning
can be found elsewhere [109, 110, 125, 163].

3.5 Clone Detection Techniques

Over more than a decade of code clone research a number of techniques have been
devised for the detection of code clones and many clone detection tools have been

11

developed. Prominent techniques can be categorized as shown in the Table 2. The
categorization is based on the type of information used in the analysis/comparison and
the type of approaches used for the analysis. The first technique (Tracking Clipboard
Operations) in the table is an action-trace based technique and the rest others are
code similarity based techniques. In this section, we provide a brief summary of
different clone detection techniques, and point out the strengths and weakness of
those techniques in general. More detailed descriptions of those techniques can be
found in the corresponding papers and elsewhere [163].

Tracking Clipboard Operations: This technique of clone detection is based
on the assumption that programmers’ copy-paste activities are the primary reason
for the creation of code clones. So, the technique simply tracks clipboard activities in
the editor (inside IDEs such as Eclipse) when a programmer copies a code segment
and reuses by pasting it. The copied and the pasted code segments are recorded as
clone-pairs.

Metrics Comparison: Metrics based techniques are usually used to detect func-
tion clones. The techniques are based on the assumption that similar code fragments
should yield very similar values for different software metrics (e.g., cyclomatic com-
plexity, fan-in, fan-out). Typically, for the code segments a set of metrics are gathered
into vectors. The differences in the vectors are calculated, where the close vectors
(e.g., measured by Euclidean distance) indicate that their corresponding code frag-
ments are clones.

Texual Comparison: Text based techniques compare program text, typically
line by line, with or without normalizing the text by renaming the identifiers, filtering
out the comments and differences in the layout.

Token Based Comparison: The entire program is transformed into a stream
of tokens (i.e., individual units/words of meaning) through lexical analysis. Then
the token stream is scanned to find similar token subsequences, and the original code
portions corresponding to those subsequences are reported as clones.

Syntax Comparison: Syntax comparison based techniques are developed on the
fact that similar code segments should also have similar syntactic structure. Thus,
the program is parsed to produce syntax tree, where the similar subtrees indicate
that their corresponding code segments are clones.

PDG Based Comparison: For a given program, a set of PDGs (Program
Dependency Graphs) [57] are produced based on the data and control dependencies
among the statements of the program. The code segments corresponding to the
isomorphic subgraphs are identified and reported as clones.

Comparison of Low Level Form of Code: Instead of analyzing and comparing
textual source code, the techniques analyze the lower level code (e.g., assembly code,
Java bytecode) as obtained from the transformation done by the compiler.

Other Techniques: Beside the aforementioned prominent techniques for clone

12

Table 2: Code Clone Detection Techniques (extended from [126])

Tracking Clipboard Operations

copy-pasted code segments are recorded as clones [37, 45, 83, 197]
Metrics Comparison
comparing metrics for functions [123, 124, 132,
148]
comparing metrics for web sites [48, 133]

Textual Comparison
hashing of strings per line, then textual comparison [95, 96]
hashing of strings per line, then visual comparison using dot- [52]
plots
latent semantic indexing for identifiers and comments [146]
syntactic pretty-printing and normalization, then textual [164]
comparison between lines
syntactic pretty-printing and normalization, then comparison [205]
of fingerprinted lines using suffix tree
syntactic pretty-printing and normalization, then hash based [190]
comparison of functions/blocks

Token-based (Lexical) Comparison

suffix trees for tokens per line [10, 11, 12]
token normalizations, then suffix tree/array based search [23, 105, 112]
data mining for frequent token sequences [140]

Syntax Comparison
hashing of syntax trees and tree comparison [25, 198, §]
data mining for frequent syntax subtrees [194]
serialization of syntax trees and suffix-tree detection [55, 127, 138]

[
[

derivation of syntax patterns and pattern matching 54]
metrics for syntax trees and metric vector comparison 91, 154]
PDG Based Comparison

approximate search for similar subgraphs in PDGs [61, 78, 81, 120,

128]
Comparison of Low Level Form of Code
comparing Java bytecode [13, 175]
comparison of compiled (assembler) code [43, 44, 170]

13

detection, other techniques, such as anti-unification [35, 138], formal methods [175],
and combination of distinct techniques [60, 137] were also approached. Tracing of
abstract memory states during the execution of the program was also attempted to
detect semantic clones [116].

3.5.1 Strengths and Weaknesses of Clone Detection Techniques

Due to the orthogonal nature of the different approaches for clone detection, it is inap-
propriate rate one technique over another. Each of the techniques have their strengths
and weaknesses. In this section, we briefly discuss the strengths and weaknesses of
different clone detection techniques. More comprehensive qualitative evaluation of
the existing clone detection techniques and tools can be found elsewhere [165, 168].

Clone detection using clipboard operations (copy-paste) has the benefit that clones
are captured at the time of their creation. However, the technique poses a number of
questions and limitations towards pragmatic design decisions to be made for realizing
the technique in a tool:

e How much (granularity) of copy-pasted code should be recorded as clones?

e Should the copy-pasted code that spans beyond a syntactic block be considered
as clone?

e Copy-pasted code may later be modified and become very different from origi-
nal. Should the very dissimilar code segments still be treated as clones (as done
in CloneScape [37]), or some similarity based decision has to be made?

e Since the tracking of copy-paste activity is coupled with a certain editor, the
technique is vulnerable to changes in the source code outside the editor.

e The technique cannot deal with unintentional /accidental clones, or clones in
legacy systems.

The effectiveness of metrics based techniques depends on the selection of a broad
set of orthogonal significant metrics. Typically, metrics based techniques may be
computationally expensive for the overhead of calculating the chosen metrics. More-
over, due to the fact that different code segments may, at times, have the same value
for certain metrics, the metric based techniques may report many false positives.

The advantage of simple textual comparison is that the technique, in general, is
independent of programming languages and the program does not need to be complete
of syntactically correct. However, the technique (without advanced normalization and
filtering of differences in layouts) may susceptible to even minor changes in the source
code [126]. Due to the use of lexical analysis only, the token based techniques also
can operate on incomplete or syntactically incorrect program. But, the token based

14

techniques may detect code clones that span beyond the boundaries of syntactic
blocks.

The techniques based on syntax comparison suffer from the overhead of invoking
a parser to generate parse tree. Due to the use of a parser, the technique is coupled
with programming language syntax. The parser based syntax comparison techniques
are very accurate in detecting clones that have similar syntactic structure. Still, such
techniques are vulnerable to even subtle differences in the nesting of code, so may fail
to detect many potential clones. Earlier empirical evaluations [28, 27, 9] also suggest
low recall of syntax comparison based clone detection techniques.

PDG based techniques analyze the source code at a level higher than that of syntax
comparison based techniques, and thus can capture the program semantics to some
extent. PDG based techniques can detect clones consisting of non-contiguous code.
However, producing PDGs is computationally expensive. In addition, finding isomor-
phic subgraphs from PDGs is an NP-hard problem [126]. Therefore, approximation
algorithms are used, which do not aim for the optimum. The PDG based approach
is tolerant to reordering of certain program elements, which is both a strength and
weakness of the technique. The ordering of statements specify the execution path
of a program written in traditional imperative language, but the PDG based tech-
niques often disregard such order and reports clones composed of non-contiguous code
segments, there remains quite good chance for false positives in detecting clones of
practical significance.

Clone detection in the compiled code (e.g., assembly code, binary executable,
Java bytecode) requires the source code to be complete and syntactically correct.
Moreover, compilation generates the lower level code that often normalizes syntactic
variants of source code into a compact canonical representation free from comments
and differences in the layouts as in the source code. This, in principle, should make it
easier to capture semantically equivalent constructs that might “look different” in the
source code written in a high level language [43]. On the contrary, small difference
in the source code may produce very different sequences of bytes in the compiled
code, and thus finding code clones based on byte code similarities may be even more
difficult than finding clones in source code [13]. Moreover, clone detection based on
the analysis of compiled code is typically performed at class level, because distin-
guishing the portion corresponding the functions, blocks or other level of granularity
and mapping those back to locations in the higher level source code can be very
challenging.

The purpose of clone detection techniques is not limited to only clone management
for improved software maintenance. The variable strengths of different clone detection
techniques lead to their applications in solving diverse research problems such as,
plagiarism detection [31, 74|, program fault localization [26, 36, 89, 92, 103], malware
detection [34, 196], finding crosscutting concern code [33], aspect mining [113, 32],

15

quality assessment of requirements specification [101], and more. Indeed, the choice
of an appropriate clone detection technique largely depends on the context and the
purpose [126].

3.5.2 Challenges in the Empirical Evaluation of Clone Detection Tools

Typically, the effectiveness of clone detection is measured in terms of precision (p)
and recall (r),
|Cs N Oy |Cs N Cy|
= — V= r = ——
|Cal |l

where C,; denotes the set of clones that a particular clone detection tool identifies,
and Cj refers to the set of clones actually existing in the code base. But, how can
one accurately find all the clones in a system? A reference corpus is necessary to
serve as the set of all clones in a system. To obtain this, manual investigation can
be a solution for small systems, but the time and effort needed for such a subjective
analysis is likely to be impractical for a fairly large system. However, the reference
corpus needs to be large to be able to evaluate the scalability of the clone detector
under consideration. Therefore, in practice [190, 205], one or more clone detectors
that are already known to be effective, are applied to detect clones from a system,
and the union of all the sets of clones reported by those tools, is used as a reference
corpus to examine the precision and recall of the clone detection tool to be evaluated.

Using a similar idea, Bellon et al. [28] carried out a case study to compare the
effectiveness of six clone detectors (CCFinder, CloneDr, Dup, Duploc, Duplix and
CLAN) representing different clone detection techniques. Bellon’s study [28], which was
performed about six years ago, is still the most comprehensive quantitative study on
the comparative evaluation of clone detectors, and the reference benchmark produced
from the study is the only notable benchmark data available to date [126]. A similar
but smaller scale study was also conducted earlier by Bailey and Burd [9].

Bellon’s benchmark data was constructed as the union of the sets of clones re-
ported by the clone detectors subject to the study. Then the precision and recall for
each tool was computed based on how many of the benchmark clones a particular
tool detected. Thus, the result was skewed in favour of those tools that contributed
more in the construction of the benchmark data. Moreover, only 2% clones of the
reference set were manually verified. Hence, there is a possibility that the benchmark
data might have included significant amount of false positives that could have been
reported by those participating tools.

The Need for Reference Benchmark: The above discussion suggests that, a
reliable large set of benchmark data! is still necessary, and new tools should be evalu-

Similar to what available at http://math.nist.gov/MatrixMarket/ used in comparative stud-
ies of algorithms for numerical linear algebra.

16

http://math.nist.gov/MatrixMarket/

ated with the standard benchmark data before publication [125]. Both precision and
recall should be reported, as precision or recall alone draws a partial picture only.
Moreover, both the runtime complexity and memory efficiency should be reported,
since these two criteria affect the scalability of a certain technique. Theoretical run-
time complexity only can be misleading, because high memory requirement may
cause time-consuming page swapping at the operating system level, and increase the
execution time in practice [169].

The creation of a reliable large benchmark data set with manually verified clones
can be a mammoth task. The tedious work of manual investigation and verification
can be accomplished by collaborative efforts from the community. The mutation
framework [166] proposed by Roy and Cordy can also be used for the purpose by
injecting a set of artificially created (and manually verified) clone fragments in various
locations of a certain code base, and the set of synthetic clones can serve the purpose
of a reference benchmark. Indeed, the vagueness in the definitions of clones may lead
to disagreement in different human evaluators’ perception of clones, as found in the
study of Walenstein et al. [195]. Therefore, the purpose of the benchmark data should
be defined first, and the definition of similarity should be formalized accordingly, as
well as the level of clone granularity. A purpose could be, for example, the evaluation
of clone detection techniques for clone maintenance and removal.

3.6 Clone Evolution

Software development and maintenance in practice follow a dynamic process. With
the growth of the program source, code clones also experience evolution from version
to version. Many studies have been conducted to date for understanding the overall
evolution [4, 3, 143, 65, 206], stability of cloned code [14, 66, 82, 130, 131, 151], the
relation of clone evolution with software faults [19, 69, 179], and other characteristics
of clone evolution. While the high studies inform the characteristic and impact of
code cloning, more lower level analyses that investigate the change patterns in the
evolution of individual clone fragments can suggest techniques for optimizing clone
management including refactoring and removal. However, there is a recent survey
on clone evolution [159]. Hence, we keep this section brief with specific focus on the
evolution of individual clone fragments and their change patterns.

3.6.1 Clone Genealogy

Kim et al. [117, 118] first coined the term clone genealogy, which refers to a set of
one of more lineage(s) originating from the same clone-group. A clone lineage is a
sequence of clone-groups evolving over a series of versions (revision or release) of the
software system. Thus, a clone genealogy (Figure 4) describes the evolution history
of a particular clone-group over subsequent versions of the system. The extraction

17

of clone genealogies from a series of versions of a program has been identified as the
fundamental task to study the evolution of individual clone-groups.

Inconsistent Change: A,
No Change: A,B Addition: F

No Change:B

Clone

Vis2
Added: D,E Inconsistently '
Inconsistently Changed: E Consistently Changed:E
changed: C Subtract: C,D Added:G

Figure 4: A clone genealogy with two lineages over versions v, through vg, 3 [201]

Genealogy Extraction: To map clones across subsequent versions of a program
(i.e. extraction of clone genealogies) mainly four different approaches have been found
in the literature, as summarized in Table 3. While most of these approaches [19, 14,
118, 172, 7] focused on genealogies of Type-1 and Type-2 clones, gCad [171, 173] is
the only Type-3 clone genealogy extractor to date released as a separate tool.

3.6.2 Clone Change Patterns

Recent genealogy based studies [118, 172, 173] on clone change patterns characterized
the evolution of a particular clone-group based on the following four categories of
transitions between subsequent versions of the software system.

Addition/Grow: One or more clone fragments is added to the clone-group in the
next version.

Deletion/Shrink: One or more clones disappeared from the clone-group in the next
version.

Consistent Change: All clone in the clone-group experience the same set of changes
during transition to the next version.

18

Table 3: Summary of techniques for clone genealogy extraction

| Approach | Strength | Weakness | Citation |

Separate clone detection from each ver- | flexible quadratic runtime [70], | [14,

sion, and then similarity based heuristic susceptible to large | 118,
mapping of clones in pairs of subsequent change in clone 172]
versions

Clones detected from the first ver- | faster than | can miss the clones intro- | [7, 19,
sion are mapped to consecutive versions | the above | duced after the first ver- | 129,
based on change logs obtained from | technique sion [171] 187]

source code repositories
Clones are mapped during the incre- | faster than | cannot operate on the | [68,
mental clone detection that used source | the above two | clone detection results | 155]

code changes between revisions techniques obtained from tradi-

tional non-incremental

tools [171]
Separate clone detection from each ver- | improved susceptible to similar | [145,
sion, functions are mapped across subse- | runtime overloaded /overriden 171,
quent versions, then clones are mapped functions 173]

based on the mapped functions
*A combination of the first and second approaches was also used in some studies [29]

Inconsistent Change: During transition to the next version, at least one clone in
the clone-group experiences changes that are inconsistent with changes in other
member(s) of the clone-group.

Same/No Change The clone-group moves to the next version without experiencing
any change in the members.

On the basis of the aforementioned categorization, clone genealogies are classified
as follows:

Static Genealogy: A genealogy where the clones in the clone-group do not experi-
ence any change over the series of subsequent version.

Inconsistently Changed Genealogies: A genealogy where one or more clones in
the clone-group experience inconsistent changes during transition between any
two subsequent versions.

Consistently Changed Genealogies: A genealogy where none of the clones in
the clone-group experience inconsistent changes during transition to subsequent
versions.

Dead Genealogy: A genealogy that does not survive till the last version (i.e. before
the last version the clone-group disappears).

19

Vi Vi+1 — Vi+2 ___ Vi+3 Vi+4
(Last Version)
@§§®§
AR F A/ 12 RS2
@ | ST ST TS TS
SalaCal INOaHRC
® §§§ @
© o Hif-ofiife)il g

Figure 5: Clone change patterns and types of genealogies [171]

Alive Genealogy: A genealogy that survives at the last version of the software
system.

Aversano et al. [7] further caracterized inconsistent change pattern into two cat-
egories:

Independent Evolution: In independent evolution, the clones of a clone-group,
once changed inconsistently, evolve independently across versions. Thus, inde-
pendent evolution may cause branching with multiple lineages in a genealogy.

Late Propagation: In late propagation, one or more clones in a clone-group may
experience inconsistent changes and may disappear from the clone-group in the
next version, but at a later version those clones re-appear in the clone-group.

Studies [14, 29] on clone change patterns revealed that inconsistent changes in
clones sometimes caused program faults. Moreover, late propagation is reported to
have even more significant correlation with software defects and thus concluded to
be “more risky than other clone genealogies” [19].

Using the clone genealogy model, recently Saha [171] studied the change patterns
in the evolution of clones in five open-source software systems. Major findings from
the study report some common properties of frequently changed clone-groups, such as,
cohesive clone-groups having small number of clones experienced more changes than

20

others. Intuitively, such clone-groups can be easier for modification/refactoring and
it is unlikely that the developers of those open-source systems used any tool support
dedicated for clone management. Thus the clone changes could have exhibited a
very different pattern, had the developers used proper clone management tool. The
frequent changes to small cohesive clone-groups rather suggests the necessity of tool
support for dealing with specially the dispersed (or diffused [59]) large clone-groups.

3.6.3 Need for Improvements

Studies on clone change patterns using the genealogy based model described above
can suffer from a number of issues. First, due to the threshold based similarity
measure used in practice, specially for Type-3 clones, there remains an open question
on the appropriate value for the threshold. Moreover, for Type-3 clones, is it an
appropriate practice of grouping Type-3 clones into non-overlapping sets? If not, the
traditional notion of genealogy cannot not apply to Type-3 clones. Can we devise a
more appropriate alternative?

Second, a genealogy can be characterized as inconsistently changed if only a single
clone over the entire length of the genealogy experiences even a very minor incon-
sistent change. To draw a better picture, we may capture formation such as, what
portion of clones in clone-groups change in how many versions, how large the changes
are.

Third, the definitions of dead/alive genealogies in terms of the last versions are
subject to the choice of versions one makes to study. Different choice in the number of
versions would have different last version. Moreover, consider a genealogy originated
at the second last version and extends to the last version, while another genealogy
originated from one of the very early versions and extended to the second last version
and at the last version it disappears. The current genealogy model will categorize the
first genealogy as alive, while the second as a dead genealogy. Thus, we are missing
important information about how long the genealogies propagate. Hence, instead of
characterizing as alive/dead genealogies, we might characterize genealogies in terms
of what portion of the series of versions the genealogies span, similar to the notion of
succession-length of Zibran et al. [206].

Finally, from the correlation between late propagation and software defects, can
we really derive a causal relationship concluding that late propagation is riskier than
other clone genealogies? Inconsistence changes are believed to often cause defects, and
clones may disappear from a genealogy due to inconsistent changes. Later modifica-
tions, which could be even bug fixing activities, may cause changes in the disappeared
clone to sync it to its original clone-group. In such a scenario, late propagation actu-
ally contributes in repairing the defect introduced from inconsistent changes. Thus,
we believe, late propagation can really play a dual role and more studies are necessary
to distinguish them.

21

3.6.4 Visualization of Clone Evolution

Visualization support can aid the analysis of clone evolution, and thus different tech-
niques and tools have been proposed for visualizing properties of clone evolution
including the genealogy model.

Adar and Kim [2] developed SoftGuess, a system for clone evolution exploration
that supports three different views. SoftGUESS is developed on top of GUESS [1],
the graph exploration system which models the evolution of a software system using
graphs. The genealogy browser offers a simple visualization of clone evolution where
nodes represent clones, arranged from left to right, and the those that belong to the
same class are arrangedvertically in the same position. Thus, each column repre-
sents a version. Link between a pair of node reflects the predecessor and successor
relationship during the evolution of the software. The encapsulation browser shows
how clones within a clone-group are distributed in different parts of a system and
how they fit in the hierarchical organization of the software system by visualizing the
containment relationship through a tree structure. Finally, the dependency graph
describes how the nodes (package, class or method) within a version are evolved from
other nodes and how they evolve in the next version. In addition, SoftGUESS also
supports charting and filtering mechanisms based on Gython, a SQL type query lan-
guage. However, SoftGUESS lacks an ‘overview’ feature and requires users interaction
for data reduction through queries. Although a query is a powerful mechanism to
identify important patterns of cloning, formulating query could be difficult as this
requires more cognitive effort from the developers.

Recently, Harder and Gode [72] developed a multi-perspective tool for clone evo-
lution analysis, called CYCLONE. It offers five different views to analyze clone data
stored in a RCF file, where RCF is a binary format to encode clone data including
the evolutionary characteristics. The evolution view in CYCLONE visualizes clone ge-
nealogies that uses simple rectangles and circles to denote software entities. Each
circle represents a clone fragments arranged in a set of rows where each row rep-
resents a particular version of the software. The clones that belong to the same
clone class are packed within a rectangle. Finally, lines represent the evolution of a
clone fragments. In addition, the view employs colors to distinguish types and the
changes of the clones. Although the view highlights many important evolutionary
characteristics, the volume of data produced by the genealogy extractor still limits
its usefulness, thus call for overview and filtering mechanisms. A similar visualization
support is available in VisCad [5], with additional flexibility of metric based filtering
of genealogies.

Saha et al. [174] presented an idea for clone evolution visualization using the
popular scatter plot. In their proposed approach, scatter plots show the clone pairs
associated within a pair of software unit (file, directory or package). Based on the
type of clone genealogies they are associated with, clone pairs are rendered with

22

different colors. Selecting a clone pair through user interactions (double clicking on a
clone pair in the scatter plot) shows the associated genealogy in a genealogy browser.
The proposal facilitates developers or maintenance engineers to identify evolutionary
change patterns of the clone classes in a particular version and then provide a way
to call for genealogy browser to dig deeper. However, it does not provide overall
characteristics of the genealogies, and neither an implementation of the proposal nor
an empirical evaluation of the technique is available yet. Moreover, due to the large
number of clone pairs, selection and useful pattern identification in such a scatter
plot can be difficult, which is why different variants of the traditional scatter plots
appeared in the literature [40].

4 Clone Management

“Clone management summarizes all process activities which are targeted at de- tect-
ing, avoiding or removing clones” [62]. Thus, clone management encompasses a broad
categories of activities including clone detection, tracking of clone evolution, and
refactoring of code clones. As support for these operations, the documentation and
analysis of code clones can be regarded as parts of clone management. Moreover,
clone visualization may also be an effective aid to clone analysis, per se, clone man-
agement.

4.1 Clone Management Strategies

For dealing with code clones, Mayrand et al. [147] proposed two concrete activities
namely “problem mining” and “preventive control”, which were further supported by
a later study of Lague et al. [132]. Giesecke [62] categorized them into compensatory
and preventive clone management, respectively. Giesecke [62] suggested that all clone
management activities can be associated with on or more of the three categories:
corrective, preventive, and compensatory management.

Corrective clone management aims for removal of existing clones from the system.
The objective of Preventive clone management is to prevent creation of new clones in
the system. Compensatory clone management deals with applying techniques (such
as annotation, documentation) for avoiding the negative impacts of clones that are
not removed from the system for some valid reasons. In practical settings, avoiding
clones may be impossible at times, and the expectation of a clone-free system can be
unrealistic. Thus, preventive clone management actually refers to proactive manage-
ment [83, 84] that aims to deal with the clones during their creation or soon after
they are introduced. An opposite strategy, retroactive clone management [37] adopts
the post-portem approach [205], where clone management activities initiate after the
development process is complete up to a milestone.

23

Clone management in legacy systems can be the most appropriate for the post-
mortem strategy. Indeed, prevention is easier to cure. Therefore, proactive clone
management is preferable to post-mortem approach. While, ideally, all clones should
be managed proactively, in practical settings, proactive treatment to all clones may
not be feasible or possible. Therefore, a versatile clone management system should
focus on the support for proactive management, while at the same time, should also
facilitate retroactive clone management [37].

4.2 Design Space for a Clone Management System

Most of the clone detectors [105, 164, 91, 78] out there are implemented as stand-
alone tools separate from IDEs (Integrated Development Environments) and typically
searches for all clone in a given code base. While clone detection from such tools can
help clone management in post-mortem approach, researchers and practitioners [62,
71, 83, 84, 132, 154, 204, 205] believe that clone management activities should be
integrated with the development process to enable proactive management.

Hou et al. [84], during the on-going development of their clone management tool
CnP [83], explored the design space towards tool support for clone management. How-
ever, their work was tightly coupled with the clone detection technique based on the
programmers’ copy-paste operations. Thus, their findings are limited in scope to the
management of copy-pasted code, and most of the findings are not applicable to clone
management based on similarity based clone detection.

We identify three major dimensions and some sub-dimensions in the design space
for a versatile clone management tool. These dimensions are inspired by our experi-
ence and the different clone management scenarios reported by Giesecke [62].

4.2.1 Architectural Centrality

The need for the integration of clone management activities with the development
process suggests that the IDEs should include features to support for clone manage-
ment activities during their actual development phase. While a programmer typically
works inside an IDE running on her individual workstation, for fairly large projects,
specially in industrial settings, a team of developers collaboratively work on a shared
code base kept in a version control system (e.g., SVN, CVS) set up on a central server.
Hence, the supports for clone management activities can be implemented as features
augmenting the local IDEs, or the functionalities can be implemented at the central
repository.

Decentralized Architecture: The clone management functionalities, when aug-
ment the features in local IDEs, can enable the individual programmers to exploit
the benefit of clone management. In the decentralized scenario different developers
can use different tools, and some programmers can get the flexibility to completely or

24

partially disregard clone management at their respective situations. Apparently, such
a decentralized implementation may completely disregard the existence of a central
server, and enforces proactive clone management before check-in to the shared repos-
itory. However, this necessitates additional requirement for establishing means for
communication between distributed developers, as well as combining and synchroniz-
ing clone information across all the developers.

Centralized Architecture The centralized architecture inherently aims to sup-
port clone management in distributed development process. The functionalities can
be implemented as a client-server application on top of the central version control
systems. Such a centralized clone management system may require greater effort and
offer less flexibility than a decentralized implementation [62]. Indeed, a client-server
implementation cannot support those individual programmers who work alone on
their stand-alone local machines [205].

4.2.2 Triggering of Clone Management Activity

A clone management activity may be initiated by the practitioner, or such an activity
may be triggered in response to certain actions in the system. Thus, an activity can
be human triggered or system triggered.

Human Triggered Initiative: A developer, after writing or modifying a piece of
code, may invoke search for its clones in the system, and upon finding the clones, she
may analyze and decide how to deal with them. In such an ad-hoc triggering scenario,
the developer, at times, may forget to perform the necessary clone management. An
instance of clone management activity may also be periodically scheduled in advance
as part of a larger plan of process activities, and clone management activities can
be carried out following the post-mortem approach on the current status of the code
base.

System Triggered Initiative: The development environment can trigger clone
management activities in response to certain events, such as saving changes in the
code, or check-in of modified code to the central repository. Such events may no-
tify and suggest the developer to perform the required clone management operations.
However, care must be taken so that those auto-generated notifications and sugges-
tions do not irritate the developer or hinder her normal flow of work.

4.2.3 Scope of Clone Management Activity

An instance of clone management activity may be clone-focused or system-focused. A
clone-focused activity deals with a narrow set of clones of a particular code segment
of interest. On the contrary, a system-focused clone management activity aims to
deal with broad collection of clones in the entire code base, or particular portions of
the system.

25

4.3 Clone Management Activities

To manage clones, first they have to be identified. The result of clone detection forms
clone documentation that records the location of code segments and their clone re-
lationship. If the code base changes due to ongoing development, the changes and
locations of the clones need to be tracked, and the documentation needs to be updated
accordingly. The clone documentation may be analyzed to determine justification of
clones or to find potential clones for removal. Visualization techniques can aid such
analysis. Clones that are found to have justified reason to exist, may be further
documented and/or annotated. The candidates for refactoring can be scheduled for
modification and/or removal. Upon the application of refactoring operations, a fol-
low up verification may examine if the refactoring caused any change in program
behaviour, and in accordance, may initiate roll back and re-refactoring. Upon com-
pletion of refactoring the clone documentation needs to be updated for consistency.

v v
(Detection)—»(Documentation)—><———

Refactoring
Scheduling
Refacto_ring ¢
Operation
Refactoring
Verification

Figure 6: Clone management workflow

The workflow for a typical clone management system may compose all these ac-
tivities according to as summarized in the Figure 6. In the following sections, we
describe the state of the art in support for each of the clone management activities.

26

4.4 Integrated Clone Detection

There are many clone detection tools our there, each has its own strengths and weak-
nesses. However, for proactive clone management, the support for clone detection
should be integrated with the development process. Therefore, we focus on those
tools that realized the clone detection feature integrated with an IDE or a version
control system.

Juergens et al. developed CloneDetective [102], an open source framework to
facilitate implementation of customized clone detectors. CloneDetective separates
distinct phases of typical clone detection process and offers skeletal implementations
of those phases accompanied by provision for declarative configuration facility for
customizing the clone detection approach. The framework also offers a separate
stand-alone viewer for visually present the result of clone detection. The viewer can be
integrated with the Microsoft Visual Studio.NET or Eclipse IDE. The framework itself
is built on the infrastructure of ConQAT?, an integrated toolkit for software quality
assessment. However, beyond the detection of clones and visualization of the clone
detection result, they offer no further support for clone management. Moreover,the
suffix-tree-based implementation of clone detection approach can detect Type-1 and
Type-2 clones but “probably not” Type-3 [168].

SimScan®, which is a parser-based tool available as plugin to Eclipse, IDEA, or
JBuilder, can detect Type-1, Type-2, and possibly a subset of Type-3 clones. The
potential of SimScan is also limited up to the detection code clones, not beyond that.

Giesecke [62] proposed a generic model for describing clones. The model allowed
separation of concerns among the detection, description, and management of code
clones. The objective was to ease the implementation of tools to support such ac-
tivities. Based on the proposed model, they implemented DupMan, a framework [63]
integrated with the Eclipse platform, and developed a prototype tool having SimScan
as the back-end clone detector. The model and implementation also limited in the
detection of clones and the representation of the clone information for persistence.

Chiu and Hirtle developed CloneScape [37], a plugin to the Eclipse IDE, that
can detect and track code clones based on the copy-paste clip-board activities in the
editor. They proposed a number of views based on heated scatter plot and graph
views to help clone visualization and analysis. However, other than the detection
and visualization of clones, CloneScape offers no further support for clone manage-
ment. Moreover, the implementation of the tool (specially the visualization part)
is incomplete and there is no evaluation of the effectiveness and usability of their
approach.

CloneBoard [45] and CPC [197] are Eclipse plugins similar to CloneScape that
can detect and track clones based on clip-board (copy-paste) activities of program-

’http://www.congat.org/
3http://blue-edge.bg/download.html

27

http://www.conqat.org/
http://blue-edge.bg/download.html

mers. Both CPC and CloneBoard support linked editing of clone pairs as described by
Toomim et al. [188]. However, CPC was implemented as a framework to serve as a plat-
form for future clone management technology, whereas, the focus of CloneScape was
more on clone visualization and navigation, though their implementation remained
incomplete. Hou et al. are developing a toolkit named CnP [83] for clone manage-
ment, which also detects clones based on programmers’ copy-paste activities. Indeed,
the current implementation of CnP offers very limited support for clone management,
which we address in Section 4.8.4.

SHINOBI [112] is an add-on to the Microsoft Visual Studio 2005. For clone detec-
tion, it parses the source code, extracts sequence of pre-processed tokens and creates
an index using suffix array technique. SHINOBI internally uses CCFinderX’s prepro-
cessor, and thus it can detect Type-1 and Type-2 clones only, but not Type-3 [205].
It was developed as a client(IDE)-server(CVS) application to mainly relocate the the
clone detection overhead from the client to a central server. It simply displays clones
of a code fragment underneath the mouse-cursor, no further support for clone man-
agement is offered. CodeRush? is a commercial add-in to the Microsoft Visual Studio
for providing assistance in coding and refactoring. CodeRush version 11.2 recently
introduced a new module DDC for the detection and consolidation of duplicated code.

Li and Thompson developed Wrangler [138], a tool for supporting refactoring of
functional programs written in Erlang. Wrangler can be integrated with Emacs or
Eclipse IDE through the ErlIDE plugin. Wrangler can detect clones from Erlang
programs in several phases. First, the program is parsed to generate AST. Then
the AST is normalized (generalized) by replacing certain expression by placeholders.
The source code corresponding to the generalized AST is then pretty-printed and
serialized into a single sequence of delimited expressions. Each expression statement
is then hashed to generate a sequence of hash values, which are then used to build
a suffix tree. The clones detected from the suffix tree are then examined through
anti-unification for filtering out the false positives. Thus Wrangler can detect Type-1
and Type-2 clones only, but probbaly not Type3. In addition, the clone detection
approach of Wrangler is computationally expensive. The anti-unification technique
for the examination of a single clone-group having n members itself has the O(n?)
worst case runtime complexity [138]. Wrangler also offers limited support for a few
clone management activities, which are addressed in Section 4.8.5 .

Bahtiyar developed JClone [8] as a plugin to the Eclipse IDE for detecting code
clones from Java projects. JClone applies an AST based technique to detect Type-1
and Type-2 clones only. It enables the user to trigger the detection of clones from one
or more selected files or directories. It also offers a few visualization (i.e., TreeMap
and CloneGraph views) support for aiding clone analysis to some extent, but no fur-
ther support for clone management beyond the detection and visualization of clones.

“http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/

28

http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/

However, beside JClone’s inability to detect Type-3 clones, there is no empirical eval-
uation of its performance and accuracy in detecting the other two types of clones, that
it is described to be able to detect. Moreover, incremental detection and the facility
to navigate among the selected code clones are not essential features of JClone, which
are indeed necessary towards the usability of a desired clone management system.

Nguyen et al. developed JSync [154] as a plugin to the SVN version control sys-
tem. Earlier prototypes of JSync appeared as Clever [157] and Cleman [156]. JSync
detects clones based on similarities among the feature vectors computed over AST
representation of the code fragments. To attain computational efficiency, JSync ap-
plies N(N = 16) locality sensitive hashing (LSH) functions to first clusters the code
fragments into N buckets. Indeed, the effectiveness of such a clustering depends on
the definition of those N individual hash functions. But specifications of those hah
functions are not reported, and so no further comments can be made on their effec-
tiveness. Upon having the fragments clustered into N buckets, the fragments in each
bucket are pairwise compared to determine if they are clones. Finally, the clone pairs
are merged to form clone-groups based on the assumed transitive property among
the clones. However, such transitive property may not hold for Type-3 clones, while
it may hold for Type-1 and Type-2 clones only. This implies that JSync’s approach
for clone detection may perform well enough for Type-1 and Type-2 clones, but not
for Type-3. The authors of JSync also noted, “For Type-3 clones, in JSync, the
changes are limited to the minor ones with less than a small pre-defined threshold of
added /removed program elements” [154]. Moreover, the accuracy of clone detection
is proportional to the value of N, and the increase of N also increases computa-
tional overhead. JSync incorporates some features for clone management, which are
discussed in Section 4.6.1 and Section 4.8.4.

CPD’ is a part of Java source code analyzer, PMD. SDD [136] is a clone detection
algorithm based on n-neighbour distance, index and inverted index. An implementa-
tion of SDD® is also freely available as a plugin to Eclipse. Simian” is another clone
detector available as a plugin to Eclipse. Another Eclipse plugin, CloneDigger® ap-
plies an approach based on AST, suffix tree, and anti-unifcation for detecting clones
in source code written in Java or Python. Tairas and Gray [182] also developed a
suffix-tree based clone detector as a plugin for the Microsoft Phoenix framework.
Despite the integration with IDEs all these tools (CPD, SDD, Simian, CloneDigger,
and the tool of Tairas and Gray [182]) offer no support for clone management except
for the detection of Type-1 and Type-2 clones only [29].

Another Eclipse plugin, CloneDR?, is an AST-based clone detector that can de-

Shttp://pmd.sourceforge.net/cpd.html
Shttp://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
"http://www.harukizaemon.com/simian
8http://clonedigger.sourceforge.net/download.html
http://www.semdesigns.com/Products/Clone/

29

http://pmd.sourceforge.net/cpd.html
http://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
http://www.harukizaemon.com/simian
http://clonedigger.sourceforge.net/download.html
http://www.semdesigns.com/Products/Clone/

tect Type-1 and Type-2 clones, but it also fails to detect Type-3 clones in many
scenarios [168]. Beside clone detection, CloneDR offers limited support for clone re-
moval as further discussed in Section 4.8.5. CeDAR [183] can incorporate the results
from different clone detection tools (e.g., CCFinder, CloneDR, DECKARD, Simian, or
SimScan) and can display properties of the clones in an IDE. CeDAR offers no further
support for clone management, except that those clone properties may be useful for
clone analysis. Moreover, it may suffer from the limitations of the underlying clone
detector used internally. Recently, Zibran and Roy [205] developed an Eclipse plu-
gin to facilitate focused search for clones of a selected code fragment. They applied
a suffix-tree-based k-difference hybrid approach to detect both exact (Type-1) and
near-miss (Type-2 and Type-3) clones. They are also extending their tool towards a
versatile clone management tool [204].

Table 4 summarizes the the capabilities of the integrated tools in terms of the
types of clones they can detect and the features for clone management they offer.
However, clone management activities are discussed in more detail in the subsequent
sections.

4.5 Clone Documentation

Some clone detectors (e.g., CCFinder) record clone information in terms of clone
pairs while some other clone detection tools (e.g., NiCad) record information in terms
of clone-groups consisting of two or more cloned code segments. Typically, clone
detectors describe a piece of code fragment (as well as a clone fragment) using the
host file’s name along with the range of line numbers [164], or the file-name along
with character offset and length of the code fragment [83].

Different clone detectors report the results of clone detectors in different formats
such as XML, HTML, and plain text. There are variations in the reported information
as well. Some clone detectors report clone pairs only, while some other tools report
clones in terms of clone-groups. Such variations make it difficult for data exchange
between clone detectors, which also adds to the challenges in head-to-head empirical
comparison of clone detectors. To minimize the differences in the presentation of clone
information, Harder and Gdéde [72] recently proposed the Rich Clone Format (RCF),
an extendible schema based data format for storage, persistence, and exchange of
clone data.

Note that, the description of code regions in terms of absolute locations in the
host file can be invalidated when changes in the file alters the line numbers, even
if the changes are not inside the code/clone regions of interest. To minimize this
threat, in Wrangler, relative locations of program entities are used instead of absolute
locations [139]. The starting line number of each function in its host file is recorded,
and with the relative location, every function considered to have started from line 1
at column 1. This was expected to save clone regions from being invalidated due to

30

Table 4: Summary of clone management support from integrated tools

Tool Integration Clone detection Supported Support for
with approach clone types management
CloneDetective [102] ConQAT suffix tree 1,2 detection,
visualization
SimScan Eclipse, JBuilder, AST based 1,2,3 detection only
intelliJ IDEA
Simian Eclipse unknown 1,2 detection only
DupMan [63] Eclipse uses SimScan 1,2,3 detection only
CloneScape [37] Eclipse clip-board copy-pasted detection only
operations
CloneBoard [45] Eclipse clip-board copy-pasted detection,
operations linked editing
CPC [197] Eclipse clip-board copy-pasted detection,
operations linked editing
CnP [83] Eclipse clip-board copy-pasted detection,
operations consistent renaming
SHINOBI [112] MS Visual Studio suffix array 1,2 detection only
Wrangler [138§] Eclipse, Emacs AST, 1,2 detection,
anti-unification tracking, folding
JClone [8] Eclipse AST based 1,2 detection,
visulaization
JSync [154] SVN AST, LSH, 1, 2, 3* detection, tracking,
feature vector synchronization,
merging, annotation
CPD PMD fingerprinting 1,2 detection only
SDD [136] Eclipse index, n-neighbour 1,2 detection only
CloneDR Eclipse AST based 1, 2, 3* detection, extract
method refactoring
CloneDigger Eclipse AST, suffix tree, 1,2 detection only
anti-unification
CodeRush MS Visual Studio unknown 1,2, 3* detection,
consolidation
Tool of Tairas MS Phoenix suffix tree 1,2 detection only
and Gray [182] framework
Tool of Zibran Eclipse fingerprinting 1,2,3 detection only

and Roy [205]

AST, suffix tree

31

* limited subset of Type-3 clones

the changes in the pure locations.

Duala-Ekoko and Robillard [49, 51] proposed clone region descriptor (CRD) to
describe clone regions within methods in a way that is independent from the exact
text of the clone region or its location in a file. The definition CRDs in extended
BNF form is as follows:

<CRD > = < file >< class >< CM > [< method >|
< method > = < stgnature >< CM >< block > *
< block > = < btype >< anchor >< CM >
< btype > == ‘for’ | ‘while’ | ‘do’ | ‘if” | ‘switch’ | ‘try’ | ‘catch’

Thus, CRD describes a code/clone region in terms of the distinguishing descrip-
tions of the enclosing file, class, method, block, and a corroboration metric (CM).
The corroboration metric used is simply the addition of cyclomatic complexity and
fan-out of the block. The < anchor > for a block is a distinguishing string description
of for the block, and the derivation of the description is dependent on the type of the
block. The termination statement for loops, the branching predicate for if blocks,
and the switch expression for the switch statements are used as < anchor >. For the
try blocks, CRD uses the list of exception types caught in catch clauses associated
with the block. For catch blocks, simply the type of the exception caught is used
as the < anchor >. Using the CRD scheme, Duala-Ekoko and Robillard developed
CloneTracker [50] for tracking clones during the evolution of the software code base.
CloneTracker uses SimScan as the underlying clone detector, allows the developer
to select individual clone-groups, and supports simultaneous modifications of clone
regions.

However, such a scheme like CRD [49] has a number of limitations. First, small
changes in the code corresponding to the < anchor > (e.g., termination condition of
loop, branching predicate of conditional statements) will invalidate the CRD. Second,
the scheme is vulnerable to nesting levels, and thus a simple addition or removal of
nesting level will invalidate the CRD. Third, the association of ‘else’ blocks with the
closest ‘if” block prevents the CRD scheme to differentiate between the two types of
blocks. Most importantly, the use of the CRD scheme did not save CloneTracker [50]
from re-invoking the underlying clone detector to identify possible changes in the
clones, though the computational expense of re-detection was indicated as one of the
motivations behind the design of CRD.

Markers based tagging support in IDEs like Eclipse can be used for clone docu-
mentation. Such tagging of clones can provide built-in support for accommodating
changes in the source files [37].

32

4.6 Clone Tracking

During the development of an evolving software system frequent changes take place in
the code base. Such changes may introduce new code segments that might form new
clones. Moreover, changes in source files may invalidate the clone regions necessitating
corresponding updates in the recording of clone information. Such updates can be
done in two ways: Re-detection and incremental detection.

Re-detection: The detection of clones from the entire system may be invoked
every time the code changes. This approach may incur too much overhead as the
detection of code clones in a fairly large system can be computationally expensive.
Hence, the approach is unlikely to be suitable for proactive clone management.

Incremental Detection: A better approach is incremental detection, where
only the source code in the modified portion of the code base is examined for any
clones and the outcome is accumulated with the previously preserved clone detection
results.

4.6.1 Incremental Clone Detection

Not many attempts made towards incremental clone detection. The first attempt was
made by Goéde and Koschke [64, 67]. They proposed a suffix tree based algorithm
iClone [64, 67] for incremental detection of clones in subsequent versions of a given
system. As input, iClone needs n revisions of a program that is to be analyzed. In
addition to the source code for each revision, iClones also needs a separate file as
input that summarizes in Subversion!®’s format, all the changes in the source files
for every two consecutive revisions. Each source file is represented as a sequence of
tokens extracted using lexical analysis, and tokens are stored in a token table. For the
detection of clone in the initial revision, a generalized suffix tree (GST) is constructed
for a large sequence of tokens obtained by concatenating token sequences from all the
source files. The paths from the root all the non-leaf internal nodes point to clones in
the code [205]. The GST is preserved and updated during the detection of clones in
the remaining revisions. For the detection of clones in revision 4, only the files that
are changed, added or deleted between revision ¢ — 1 and revision ¢ are examined,
and in accordance, the GST is updated.

iClone’s approach for clone tracking appears to be memory intensive [67, 85], due
to the use and maintenance of a large GST constructed from all tokens of the entire
program. Moreover, the tokens of each source file is stored in separate token table, and
thus a large number of token tables also need to be stored, which may also consume
a significant amount of memory. Indeed, the suffix tree based clone detection tech-
nique of iClone can detect Type-1 and Type-2 clones only, but not Type-3 [67, 205].
Besides, the need for the input as a file summarizing changes between subsequent

Onttp://subversion.tigris.org/

33

http://subversion.tigris.org/

versions further limits the applicability of the technique in the implementation of a
clone management system having decentralized architecture. However, the approach
can be a suitable for clone tracking in a centralized clone management system, where
the source code is kept in a central Subversion repository and the code change
information can easily be made available.

Hummel et al. [85] proposed an index-based incremental clone detection approach.
They demonstrated their technique as a pipeline of three phases: preprocessing, detec-
tion, and post-processing. The preprocessing and post-processing components were
reused from ConQAT. The detection component introduces clone indez, the central
data structure of their approach. The clone index is a list of tuples (file, statement
index, sequence hash, info), where, file is the name of the source file, statement index
is the position in the sequence of normalized statements for the file, sequence hash
is a MDb5 hash code computed over the chunk of n normalized statements from the
statement index, and info contains additional data such as the start and end lines
of the chunk of consecutive statements. The heart of the technique lies in the se-
quence hash, tuples with the same sequence hash indicate clones containing at least
n statements. Consecutive such clones are further merged to report only maximal
clones.

Similar to iClone, the technique of Hummel et al. is also limited in detecting
Type-1 and Type-2 clones, but not Type-3. The first step of the detection algorithm
is to create, for each file, a list of duplicated chunks. For a large software system,
preserving such lists can cause significant memory consumption and updating those
with the changes in the code base can incur significant computational overhead.
The MD5 hashing algorithm, specially for small n, might produce same hash value
for different chunks of statement, and thus may cause false positives in the clone
detection [85]. The technique can also appear inefficient, when the list of tuples are
not maintained as a sorted list, while such maintenance may frequently invoke sorting
overhead whenever the code changes.

Higo et al. [81] also proposed a PDG-based incremental clone detection technique,
where PDGs are generated from the analysis of control and data dependencies in the
program code. The PDGs are preserved in the database, and clone detection is
performed by approximate comparison of PDGs. The PDGs in the database are kept
in sync with the evolving source code by examining only the updated source files.
As mentioned in Section 3.5.1, PDG based techniques are computationally expensive
and they often report non-contiguous clones that may not be perceived as clones by
a human evaluator.

Li and Thompson [139] enhanced the clone detection technique of Wrangler by
introducing incremental detection. The initial clone detection is performed in two
steps. First, the source code is normalized and parsed to produced AST. The AST
is then annotated and serialized. Then a suffix tree based approach is applied to the

34

Table 5: Summary of tool support for incremental clone detection

. Supported Integration
Tool Technique CIOES types with I%)E /VCS
iClone [67] Preservation 1,2 Separate
of suffix tree tool
Tool of Preservation non-contiguous Separate
Higo et al. [81] of PDGs clones tool
Tool of MD5 Hashing 1,2 Integrated
Hummel et al. [85] and indexing with ConQAT
Wrangler [139] AST serialization 1,2 Integrated with
suffix-tree, anti-unification Eclipse, Emacs
JSync [154, 155] AST, LSH, 1,2, 3* Integrated with
feature vector subversion

* limited subset of Type-3 clones

serialized AST for detecting the initial clone candidates. The second step applies
anti-unification technique to get rid of the false positives. The annotated AST is
preserved, which is updated whenever changes take place in the source code.

The approach maintains a table, where the annotated AST representation of each
expression statement is preserved. The storage and update of the table might cause
significant memory consumption and computational cost. Moreover, the approach
is limited in the detection of only Type-1 and Type-2 clones in functional programs
written in Erlang.

The clone tracking approach of JSync [154, 155] appears to be computationally
elegant. JSync preserves the clone-groups and N buckets obtained from the initial
clone detection. Since JSync is implemented as a plugin to SVN, the change infor-
mation of the source files are readily available, and based on that information JSync
can determine the fragments modified, added to, or deleted from the code reposi-
tory. JSync then removes from the clone-groups those fragments that were changed
or deleted. Then the LSH technique is applied to the newly added and modified
code fragments to place them in the buckets. Then the fragments in each bucket are
compared pair-wise to update the clone-groups. Thus, the clone detection technique
of JSync appears to be inherently incremental and consequently computationally
efficient for tracking clones.

In Table 5, we summarize the techniques and tools proposed for incremental clone
detection. As can be noted, all the tools have vivid limitations in dealing with Type-
3 clones, and the storage of a high volume of data has been a common issue with
all the techniques. Further research in the area my inform techniques for integrated
incremental detection of clones including Type-3 with better storage efficiency.

35

4.7 Clone Annotation

The developers often deliberately create clones, for example, to enable independent
evolution of similar implementations. During the clone management process, the
developer may not want to refactor/remove those clones, and may want to mark
those to indicate such decisions so that they won’t have to encounter those same
set of clones over and over. Moreover, the decision needs to be documented and
shared among different programmers, and there should be facility for the developers
to review those clones later time, in case they want to re-evaluate their management
decision. To the best of our knowledge, such a feature is found only in JSync [154],
which allows the developer to annotate pairs of clones for avoiding future encounters.

4.8 Techniques for Reengineering/Refactoring of Clones

The investigations of opportunities for clone based reengineering and refactoring of
clones for their removal have suggested techniques such as generics, design patterns,
software refactoring patterns, and synchronized modifications of code clones.

4.8.1 Generics and Templates

Basit el al. [24] investigated the potential of generics in removing code clones. They
carried out two case studies on the Java Buffer Library and the C++ Standard
Template Library (STL). The Java Buffer Library was found to have 68% redundant
code, and using generics they were able to remove only 40% of them. Though, they
performed little better for the C++ STL, they concluded that the constraints of
language constructs limit the applicability of generics in clone removal. They further
hypothesized that the meta level parameterizations might perform better as they are
relatively less restrictive than generics or templates.

The hypothesis on the potential of meta level parameterizations was addressed
by Jarzabek and Li [90] in a later study. They also used the Java Buffer Library
for their case study. They applied a generative programming technique using X VCL
(XML-based Variant Configuration Language)'' to represent similar (but may not be
identical) classes and methods in generic and adaptable form. Using the technique
they were able to eliminate 68% of the code from the original Java Buffer Library.

4.8.2 Design Level Approaches

Design Patterns: Balazinska et al. [17] attempted to replace code clones by ap-
plying the strategy design pattern for partial redesign of Java systems. The idea was
to factorize commonalities in the cloned methods and parameterize their differences

Uhttp://xvcl.comp.nus.edu.sg/

36

http://xvcl.comp.nus.edu.sg/

to preserve the original behaviours, and then weave them through the strategy design
pattern. Their approach was realized in a tool named CloRT, and the reengineer-
ing technique was applied to the source code of JDK 1.1.7 for empirical evaluation.
However, the synchronized (thread safe) methods were kept out of the study. The
reengineering process merged the source of 28 methods, but created 84 new methods,
and thus actually increased the line of code (LOC). Indeed, LOC can be a fair estima-
tion for the size of the code base, but not for design quality. Use of a design quality
metric suite could have been used to reflect the actual impact of the reengineering
technique on the quality of of the code. The use of other design patterns, such as
the factory pattern may also produce similar result. Further investigation is needed
towards this possibility.

Traits: Traits [176] are a modularity mechanism that complements inheritance to
facilitate an orthogonal means of sharing functionality in object oriented classes.
Traits can be considered as a language extension, and essentially, a trait is a set of
pure methods (methods that do not directly refer to any instance variable), which
can be used in a class or another trait simply by name. Traits can also be a potential
mechanism for removing duplicated code, specially when it becomes difficult due to
restrictions from inheritance hierarchy. Murphy-Hill et al. [152] applied the traits
mechanism to remove duplicated code from the java.io library. Using 14 traits, they
were able to get rid of 30 duplicated methods by refactoring 12 classes.

Aspects: Aspects [115] and aspect-oriented techniques (AOT) support the mod-
ularization of features that cross-cut the class hierarchy. AOT can be promising
in improving modularization, which consequently may reduce code clones. The be-
haviours that Murphy-Hill et al. [152] parcelled up into traits could also be put into
different aspects, and introduced into the target by a mechanism like intra-class dec-
larations of AspectJ [152]. On the contrary, Jarzabek and Li [90] argues that due to
the lack of parameterization mechanism and constrained composition rules, AOT in
its pure form is not meant for elimination of redundancies. More investigation in this
regard is necessary, which might reveal interesting results and opportunities.

4.8.3 Synchronized Modification

Simultaneous editing has been a popular approach for applying the same editing
operations to multiple segments of identical text.

An early work [150] on simultaneous editing incorporated the feature in a text
processing system called LAPIS [149]. LAPIS offers a library of built-in parsers and
patterns for various kinds of text structure, including HTML and Java source code.
The user is enabled to select multiple regions of text (manually or by using patterns)
and perform simultaneous editing.

37

Toomim et al. [188] proposed to apply simultaneous editing to simultaneously
edit duplicated code. They called such editing as “linked editing”, and to support
this inside editor, they developed CodeLink as an extension to the XEmacs editor.
The “linked editing” of CodeLink is functionally same as the “simultaneous editing”
of LAPIS. However, CodeLink saves the user from explicitly select multiple regions
for edit as to be done with LAPIS. Instead, in CodeLink the user manually selects
two code segments to link them. Then CodeLink applies a LCS (longest common
subsequence) algorithm to map between the differences and similarities in the code
segments, and enables simultaneous editing in the duplicated regions. However, due
their use of the dynamic programming version of LCS algorithm, their approach
appears memory intensive and computationally expensive. For k clones, each of n
tokens, the dynamic programming implementation of LCS algorithm runs in O(n*)
time. Moreover, CodeLink “does not always report the most intuitive set of differences
between any two code fragments” [188]. The support for linked /simultaneous editing
is also available in tools such as CPC [197], CloneBoard [45].

4.8.4 Consistent Renaming

Programmers often perform modifications after copy-pasting a code fragment. Such
modification typically include renaming of identifiers according to the new context of
the cloned code. IDEs like Eclipse provide necessary support for consistently renam-
ing an identifier and all its references within scope. Jablonski and Hou developed
CReN [86] as a plugin to Eclipse that can check for any inconsistencies in the renam-
ing of identifiers within a code fragment and suggest modifications for making the
renaming consistent. They further extended CReN and developed LexId [87], which
supports consistent modification of the same parts of different identifiers in a code
segment. However, the consistent renaming support from these tools are limited to
within a single code fragment, unlike the linked /simultaneous editing between clone
pairs [83]. Jacob et al. developed CSeR [88] by extending the Java editor of Eclipse
to visualize the similarities and differences while a programmer edits a copy-pasted
code. Hou et al. combined CReN and CSeR into a single toolkit named CnP [83],
which they are developing towards support for proactive clone management based on
copy-paste clipboard activities.

Since JSync [154] is developed as a plugin to the SVN version control system,
it can exploit the change information between versions of Java source files to deter-
mine whether any changes occurred in cloned code regions. For such a clone pair it
maps between the nodes of ASTs of the corresponding code using a treed algorithm,
detects inconsistencies in the identifier renaming, and suggests for consistently renam-
ing them. This feature of JSync is very similar to that of the consistent renaming
support of CReN [86]. JSync also supports clone synchronization between clone pairs
when one of the clones changed between version while the other remained unchanged.

38

Clone synchronization of JSync simply accommodates the changes from the modi-
fied code fragments into the unchanged code. In case both the clone pairs changed
between versions, JSync suggests clone merging. For clone merging, JSync suggests
to accommodate the changes from both the clone fragments to each other, and any
conflict is simply left to the user’s resolution. Moreover, the clone synchronization
support of JSync is limited to simple changes in the identifiers, control structures,
literals, and method calls. However, JSync also allows annotating clone pairs in case
the developer wants to retain the inconsistencies. Through an empirical evaluation,
Nguyen et al. [154] reported that JSync can attain 83% precision in recommending
change propagation between clone pairs.

4.8.5 Refactoring Patterns

Fowler in his book [58], presented 72 patterns for refactoring source code in general
for the removal of code smells. Over time the number of refactoring patterns has
increased to 93, and a refactoring catalog'? is maintained that lists and describe them
all. Among those general software refactoring patterns [58|, the following patterns
are found to be suitable for clone refactoring, as suggested by earlier research [75,
76, 104, 119, 135, 177, 199, 202, 203]. Detail about these refactoring patterns can be
found at the refactoring catalog and elsewhere [58].

e Extract method extracts a block of code as a new method, and replaces that
block by a call to the newly introduced method. EM may cause splitting of a
method into pieces. For code clone refactoring, similar blocks of code can be
replaced by calls to an extracted generalized method.

e Move method relocates a method from one class to another class as appro-
priate. This can be used to merge identical methods [135].

e Pull-up method removes similar methods found in several classes by intro-
ducing generalized method in their common superclass.

e Extract superclass introduces a new common superclass for two or more
classes having similar methods, and then applies Pull-up method. This may be
necessary when those classes do not have a common superclass.

e Extract utility-class is applicable in situations, where similar functions are
found in different classes, but those classes do not conceptually fit to undergo
a common superclass. A new class is introduced that accommodates a method
generalizing the similar methods that need to be removed from those classes.

12Catalog of OO refactoring patterns: http://refactoring.com/catalog/

39

http://refactoring.com/catalog/

e Rename refactor is simply altering the names of variables, methods, classes
and so on. The removal/generalization of near-miss (similar, but not exact
duplicate) clones will require fine grained modifications, such as, changes in
identifier names, method signatures and type declarations to reduce the textual
differences between clone pairs.

Besides these prominent refactoring patterns, other low level refactoring oper-
ations such as, identifier renaming, method parameter re-ordering, changes in type
declarations, splitting of loops, substitution of conditionals, loops, algorithms, and re-
location of method or field may be necessary to produce generalized blocks of code
from near-miss (similar, but not exact duplicate) clones [203]. Kerievsky [114] pro-
posed the chained constructor refactoring pattern'®, which can also eliminate dupli-
cated code from the constructors of the same class [153]. Other refactoring patterns
that can be found in the literature are some sort of variants or compositions of the
aforementioned object-oriented refactoring (OOR) patterns. Other than the OOR
patterns, Schulze et al. [178] proposed three aspect oriented patterns described as
extract feature into aspect, extract fragment into advice, and move method from class
to interface.

Tool Support for Refactoring Patterns: Though a variety of potential refac-
toring patterns have been identified for code clone refactoring, tool support for the
automated or semi-automated application of those refactoring operations has been
quite limited. A number of semi-automated analytical techniques have been pro-
posed for finding candidate clones that are easier and suitable for refactoring. Such
techniques are described in Section 4.9.2. In this section, we focus on the techniques
realized in tools for the modification of the candidate clones in actual refactoring
operations.

Limited support for the rename refactoring, extract method, extract superclass and
pull-up method refactoring can be available from IDEs like Eclipse, when the necessary
program element are manually identified by human efforts. To aid refactoring of
clones in object-oriented code written in C++, Fanta and Rajlich [56] developed tool
support for five high level restructuring features namely, function insertion, function
expulsion, function encapsulation, renaming, and argument reordering. However, the
implementation of those features are very limited in operational scope. For example,
the inserted function cannot be a member of any class, cannot be overloaded, cannot
be a template function, and cannot be called using pointer.

Wrangler [138] supports clone removal by folding expressions against a function
definition in Erlang programs. Folding searches the program for instances of the right-
hand side of the selected function clause, and under the user’s control, it replaces them

13Catalog of 27 refactoring patterns from J. Kerievsky’s book: http://industriallogic.com/
xp/refactoring/catalog.html

40

http://industriallogic.com/xp/refactoring/catalog.html
http://industriallogic.com/xp/refactoring/catalog.html

with applications of the function to the actual parameters. The folding operation
in functional languages is similar to the extract method refactoring in imperative
languages.

CloneDR provides facility to automatically or interactively perform extract method
refactoring by identifying identical blocks of code and producing a parameterized
function/method that generalizes the blocks. Recall that CloneDR has limitation in
detecting Type-3 clones [168], and the application of extract method refactoring may
be simpler for Type-1 and Type-2 clones, which is likely to be much more cumbersome
for Type-3 clones due to addition or deletion of statements at arbitrary locations of
the clone fragments.

4.9 Analysis and Identification of Clones for Refactoring

For the purpose of finding and characterizing code clones suitable for refactoring,
reengineering, or removal, in depth analysis of the various properties of the clones
and their context is required. Clone visualization has been proven to be effective in
aiding such analysis. Therefore, we first discuss the tools and techniques for code
clone visualization, and then we present the findings from analysis of code clones in
search for clone based reengineering opportunities.

4.9.1 Visualization of Distribution and Properties of Clones

A major challenge in identifying useful cloning information is to handle the large
volume of textual data returned by the clone detectors. To mitigate the problem, a
number of visualization techniques, filtering mechanisms and support environments
are proposed in the literature. Jiang et al. [94] categorized the proposed clone pre-
sentation techniques based on two dimensions. The first dimension refers to the level
at which the entities are visualized (such as at the code segment level or file level or
subsystem level). The second dimension refers to the type of clone relation addressed
by the presentation (whether clones are showed at the clone pair level or grouped
into clone classes or super clones).

Johnson [97] used the popular Hasse diagram to represent the textual similarity
between the files. Later, he also proposed hyper-linked web pages to explore the
files and clone classes [98]. Cordy et al. [41] used HTML for interactive presenta-
tion of clones where overview of the clone classes is presented in a web page with
hyperlinks and users can browse the details of each clone class by clicking on those
links. Although such representations offer quick navigation, they cannot reveal the
high level cloning relations. A set of polymetric views [162] were also proposed in
the literature that permit encoding of a number of code clone metrics to the visual
elements. Among various visualizations, scatter plot is the most popular and capable
of visualizing inter-system and intra-system cloning [40, 144]. However, the size of

41

the scatter plot depends on the size of input rather than the amount of cloning. Thus,
using a scatter plot for visualizing cloning relation of a large software system may
become challenging due to the large size of the plot. Moreover, non-contiguous sec-
tions that contain the same clone cannot be group together. To overcome this, Tairas
et al. [185, 186] proposed a graphical view of clones (also known as Visualizer view)
that represents each source file as a bar and clones within the files are represented
with stripes. Clones belong to the same class are encoded with the same color.

Jiang et al. [93] extended the idea of cohesion and coupling to code clones and
proposed a visualization that uses shape and color to encode the metric values. They
also developed a framework [93] for large scale clone analysis and proposed another
visualization, called a clone system hierarchical graph that shows the distribution
of clones in different parts of a system. Fukushima et al. [59] developed another
visualization using graph drawing technique to identify diffused (scattered) clones.
Here, nodes represent the clones. Those nodes that are located in the same file
are connected with edges to form a clone set cluster. Nodes that connect different
clone set clusters are called diffused clones (have cloning relation in different files
implementing different functions).

Gemini [192] is an example of a clone support environment that uses CCFinder
for clone detection and can visualize cloning relation using scatter plots and met-
ric graphs. Kapser and Godfrey developed CLICS [108, 111], another tool for clone
analysis. CLICS can categorize clones based on their previously developed clone tax-
onomy [107] and support query based filtering. However, it is limited to only C/C++
and Java source code. Tairas et al. [186] developed an Eclipse plug-in that works with
CloneDR, a clone detection tool and implements the visualizer view along with gen-
eral information and detected clones list views. Third in this group is the Clone
Visualizer [200], an eclipse plugin that works with Clone Miner, a clone detection
tool. In addition to supporting clone visualization through stacked bar chart and
line graph, it supports query based filtering. The recent addition to this group is
CYCLONE [72]. It supports single and multi-version program analysis and uses RCF
(Rich Clone Format) [72] file as an input. RCF is a data exchange format capable of
storing clone detection results. A separate viewer application named RCFVIEWER! is
also developed for the visualization of clone information stored in RCF format.

Table 6 summarizes the various clone visualization techniques realized in different
tools. As can be noted, all the visualization techniques focus on visualization of clone
pairs or clone-groups with respect to their dispersion in the file-system hierarchy.
However, from the perspective of clone removal or refactoring, the visualization of
the clones with respect to the inheritance hierarchy can offer useful insights, and
future work in clone visualization should address this possibility.

Ynttp://softwareclones.org/cyclone.php
http://www.softwareclones.org/

42

http://softwareclones.org/cyclone.php
http://www.softwareclones.org/

Table 6: Summary of clone visualization techniques (extended from Jiang et al. [94])

’ Visualization Technique \ Granularity \ Clone Relation ‘
Duplication Aggregation Tree Map [5, 6, 162] File, Subsystem Clone Group
Scatter /Dot Plot [5, 6, 73, 162, 192] File, Subsystem Clone Pair
System Model View [162] File, Subsystem Clone Pair
Clone System File, Clone Pair
Hierarchy Graph [93] Subsystem Clone Group
Hasse Diagram [97] File Clone group
Clone Group Family Enumeration [162] File Clone Group
Duplication Web [162] File Clone Pair
Dependency Graph [5, 6, 108] Subsystem Clone Pair
Clone Coupling and Cohesion [94] Subsystem Super Clone
Metric Graph [192] Code Segment Clone Group
Clone Cluster View [59] Code Segment Clone Group
Hyper-Linked Web Page [41, 98] Code Segment Clone Group
Clone Visualizer View [185, 186] Code Segment, File | Clone Group
Stacked Bar Chart [200] Code Segment, File | Clone Group
Line Graph [200] Code Segment, File | Clone Group

4.9.2 Analysis to Find Clone Based Reengineering Opportunity

Early works [10, 25] on exploiting code duplication, proposed macro extraction from
source code (C and C++). While those approaches pioneered the clone refactoring
research, they were focused on simple refactoring in procedural code and did not
tackle the issues that might raise in refactoring clones in object-oriented context.

Ducasse et al. [53] proposed to use clone detection tools for guiding the refactoring
of code clones. For the detection of code clones in SmallTalk code, they used DUPLOC,
a text-based clone detector that performs basic string matching over the lines of
source code. From the analysis of the identified duplicated code, they found two
cases where clone refactoring operations can be applied. Those two cases were simply
two variations of the well-known eztract method [58| refactoring pattern.

For the identification of code clones as suitable candidates for refactoring, Balazin-
ska et al. [15] proposed advanced clone analysis based on similarities and difference in
the code clones. They also suggested a number of measurements for context analysis,
which capture the relationships between a class and its member methods, between
a method and its member variables, as well as the caller-callee relationships among
the methods. Though their work focused on the refactoring of code clones in object-
oriented systems, they completely ignored the horizontal and vertical dependencies
due to the inheritance hierarchy. Based on a similar analysis, Zibran and Roy pro-
posed a code clone refactoring effort model [203], which takes into account all the

43

relationships including the inheritance hierarchy.

Ueda et al. developed Gemini [191, 192], a graphical tool to aid clone analysis
for corrective maintenance of code clones. Gemini works on top of the CCFinder
clone detector, and facilitates the visualization of clones using Scatter Plot. It also
computes a number of metrics (i.e., RAD, LEN, POP, DFL, RNR) to capture various
properties of the detected clones [77]. A metric-graph view enables the user to set
upper and lower bounds on each metric to filter out those clones that falls beyond the
boundaries, per se, the user’s interest [38, 76]. Since CCFinder cannot detect Type-
3 clones, the functionality of Gemini stayed limited in Type-1 and Type-2 clones
only. However, they demonstrated that the Scatter Plot of Gemini enabled the users’
subjective perception to visualize Type-3 (gapped) clones, without actually detecting
them automatically [193].

As CCFinder detects clones that can be any arbitrary lines of code in the code
base, those often lack the contextual cohesion necessary for effective refactoring.
To minimize this issue with Gemini, Higo et al. added to Gemini a feature called
CCShaper [76, 79] that applies a parser-based technique (using JavaCC) to extract
the block level clones from CCFinder’s clone detection result. The objective was to
extract block clones which might be easily merged by applying the extract method
refactoring pattern. A tool named ARIES [75] was also published, which combined the
metric view of Gemini and the clone filtering feature of CCShaper while introduced
two additional clone metrics (i.e., NRV and DCH) beyond those previously existed
in Gemini.

Method/function level code clones belonging to different clone-groups, at times,
may have dependency in terms of caller-callee or data sharing (reference or assign-
ment) relationship. Yoshida et al. [199] called such clones as “chained clones”, and
argued that all of such clones should be refactored at once. Thus, they extended
ARIES with a PDG based technique to identify such chained clones from the initially
detected clones. Indeed, due to the use of CCFinder as the backend clone detector,
their automated technique can handle only Type-1 and Type-2 clones, but not Type-3.

Tairas and Gray [184], through an empirical study on two open source Java sys-
tems (JBoss and ArgoUML), reported that in some cases clone refactoring was par-
tially performed on only part of the clones, and in most cases those refactored clones
were still further refactorable. However, they focused to investigate only the occur-
rences of refactorings composed of the extract method refactoring pattern. Indeed,
there are other types of refactorings including small modifications (e.g., identifier
renaming, addition/deletion of statement) in the code fragments, which might have
caused partial changes in the clones, as they found. Most importantly, they observed
changes by comparing clones between pairs of consecutive releases, and simply as-
sumed that those changes occurred due to refactoring. However, such an assumption
may not hold true, as those small changes may be caused by many reasons such as

44

corrective or adaptive maintenance, or to change functionalities of those code frag-
ments. Moreover, “it is unlikely that developers of JBoss and ArgoUML used a clone
detection tool to identify clones” [184], or used any tool support for clone refactoring.
This might be a plausible reason why there were small changes in the clones that still
remained refactorable from the perspective of clone removal. This rather emphasizes
the need for effective clone management tool support for software maintenance.
Higo et al. developed Libra [80], a tool on top of the CCFinder clone detector to
facilitate the detection of clones of only a given code fragment, instead of detecting
all clones from the entire given code base. They argued that such a clone detection
may be useful to find potential clones where simultaneous modifications can be ap-
plied. Libra was not integrated with any IDE. Moreover, since it internally invokes
CCFinder, it cannot handle Tyep-3 clones. Lee at al. [134] used an algorithm based
on feature-vector computation over AST and finds the £ most similar clones of a
given code segment. But, their tool was not reported to have integration with IDE.
Zibran and Roy [205] developed a similar tool which is integrated with the Eclipse
IDE, and can detect all the three types (Type-1, Type-2, and Type-3) of clones.

Clone Categorization Based On Reengineering Opportunity: Analysis of
diverse characteristics and properties of code clones in quest of reengineering op-
portinuties led to different taxonomies of code clones, and refactoring strategies for
different categories of code clones.

From a manual analysis of 800 function/method level clones over six different
open-source Java systems, Balazinska et al. [16] proposed a taxonomy of function
clones (Table 7) based on the differences and similarities in the program elements.

Taking into account the location of clones in the inheritance hierarchy, Koni-
N’Sapu [121] proposed a clone taxonomy (Table 8) and a set of object-oriented refac-
toring patterns for refactoring each categories of code clones.

Schulze et al. [178] argued that aspect-oriented refactoring (AOR) can be more
appropriate than object-oriented refactoring (OOR) in certain scenarios. They pro-
posed a code clone classification scheme to support the decision whether to use OOR
or AOR for clone removal. The classification is based on two dimensions: type and
location. Type specifies the kind of statements (i.e., conditionals, loops, functions,
and other) that constitute the clones. The location dimension reflects the dispersion
of the clones in terms of their host source files in the file-system hierarchy. To capture
such regional information for a clone-group G = {C, Cy,Cs, ..., C,}, they proposed

45

Table 7: Balazinska et al. [16] Taxonomy: categories of function/method level clones
based on (dis)similarity caused by different types of differences

| # | Categories of clones Description of (dis)similarity among methods/functions
1 | Identical strictly identical functions/methods
2 | Superficial changes differences that do not cause difference in behaviour
3 | Called methods differences only in some method calls
4 | Global variables single-token differences corresponding to non-local variables
or constants
5 | Return types single-token difference corresponding to the return type
6 | Parameter types single-token differences corresponding to parameter types
7 | Local variables single-token differences corresponding to the types of local
variables
8 | Constants single-token differences correspond to constants hard-coded
in the methods
9 | Type usage single-token differences corresponding to types explicitly
manipulated in expressions line “instanceof” or “typecast”
10 | Interface changes single-token differences corresponding to called methods
and/or global variables and/or parameters types and/or re-
turn type
11 | Implementation changes single-token differences corresponding to types of local vari-
ables and/or constants used and/or types explicitly manip-
ulated
12 | interface and implementation | single- token differences corresponding to any difference used
changes in the definition of the previous categories
13 | One long difference long difference in one entity (e.g., expression, statement)
14 | Two long differences long differences in two entities (e.g., expression, statement)
15 | Several long differences long differences in three or more entities
16 | One long difference, interface, | combination of differences as of categories 12 and 13
and implementation
17 | Two long differences, inter- | combination of differences as of categories 12 and 14
face, and implementation
18 | Several long differences, inter- | combination of differences as of categories 12 and 15

face, and implementation

46

Table 8: Koni-N’Sapu [121] Taxonomy: applicability of different refactoring patterns
on different categories of clones

Refactoring patterns

Insert super call
Push-down method
Extract superclass

<<= || Parameterization

Pull-up method

In the Same Method
In the Same Class
With a Sibling Class
With the Superclass
With an Ancestor
With a First Cousin
In Common Hierarchy
In Unrelated Classes

<< Insert method call

<

<]]| Extract method
<=l

<<= ||| Form template method
<<

Categories of clones

a metric D1STg, which is computed as follows:

DIST; = scale X (Wyers X vGapg + Wher X hGape)
1
scale =

max{depth(Ci)}

vGapg = Cir%é;oe(G{vGap(Ci, C)}
hGapg = Cglc?gG{hGap(Cu Cj)}
UGCLp(Ci, C]) = |depth(C’l)depth(Cj)|, C;, Cj ed
hGap(C;, C;) = max{vGap(C;, Cr),vGap(C;,Cgr)}, C;,C;,Cre G

Here, depth(C;) refers to the nesting distance of the source file containing clone C;
from the root of the project’s root. Cg denotes the closest enclosing directory /file
that hosts both clones C; and Cj.

Based on the classification with respect to the two dimensions, Schulze et al [178§]
suggested feasibility of three OOR and three AOR operations as presented in Table 9.
However, any empirical evaluation of the effectiveness of their clone classification
scheme or the clone removal procedure is not available. A similar workflow for the

47

Table 9: Schulze et al. [178] Taxonomy: applicability of object-oriented (first three)

and aspect-oriented (last three) refactoring patterns to refactor categories of clones

Conditional /Loop Function
00 | <01 |<03]|<06]|<10]00]<01]<03]<06]<1.0

Extract
method ++ | ++ + — — + — — __ __
Pull-up/move
method — ++ + — —— __ 4+ + _ __
Form template
method —_— | — - —— - | ++ | ++ + + +
Extract feature
into aspect - - + ++ R (R —_— + 44 4+
Extract fragment
into advice —_— | —= + + + | = + + +
Move method from
class to interface | —— | —— + + + —_] —= + + +
Here, ++ means approved w/o constraints, + means approved with constraints
— means in exceptional cases, —— means not suitable/applicable

detection and refactoring of code clones was proposed by Kodhai et al. [119], the
implementation of which is not available, let alone any empirical evaluation.

Torres [189] argued that classification of concepts containing duplicated code can
provide hints about which refactoring can be suitable. The applied a concept-lattice
based data mining approach to derive four categories of concepts containing dupli-
cated code and suggested refactoring patterns suitable for refactoring clones in each
of those categories (Table 10).

Taking into account both the locations of clones in the file-system hierarchy and
(dis)similarities in the functionalities, Kapser and Godfrey [107] proposed a taxon-
omy (Figure 7), which is often considered as the most extensive clone taxonomy to
date [125]. Despite the number of proposed clone taxonomies for reengineering oppor-
tunities, the state of the art still demands more investigation in this regard suggesting
open questions [125], for instance, can other properties such as cost, benefit, risk of
refactoring be incorporated in a taxonomy?

4.10 Cost-benefit Analysis and Scheduling of Refactoring

Not much research has been done towards the cost-benefit analysis of code clone
refactoring and their scheduling. Bouktif et al. [30] first proposed a simple effort
model for the refactoring of code clones in procedural code base. Their model simply

48

Table 10: Torres [189] Taxonomy: clone categorization based on concept location

’ Cat. ‘ Description

‘ Refactoring Pattern ‘

1 | concepts which have all the similar parse-tree ex- | Extract method
pressions in different elements or methods, and be-
long to the same class

2 | concepts having similar methods, with the same | Pull-up method
name, belonging to different classes but in the same
hierarchy, and that does not exist in the respective
superclass

3 | concepts having similar methods, with the same | Extract class in hier-
name, belonging to different classes but in the same | archy
hierarchy, and the respective superclass contains a
method with the same signature

4 | concepts that have similar methods, but belong to | Extract crosscutting
two or more different hierarchies class

Initialization

Same/different

region

Same/different
file

clones

Finalization
clones

Function clone

Same/different

directory 5 I
artial
function clone

Function to
function clones

Code Clone

Clone blocks

{0
{aaog

Structure
clones

[s)
%
o,
X Macro clone
2
)
Heterogeneous
clone

Miscelleneous
clone

function body

Loop clones

Clones in switch

Conditional

clones

Multi-conditional

clones

Partial match
conditionals

clones

Unclassified

clones

Figure 7: Kapser and Godfrey [107] Taxonomy: clone categorization based on location
and functionality

49

estimates the effort needed to perform a refactoring operation by taking into account
the size of the clones in terms of lines of code, caller-callee relationship among the
functions, and the number of tokens to be modified. They formulated code clone
refactoring scheduling as a constrained Knapsack problem and applied a metaheuristic
genetic algorithm (GA) to obtain an optimal solution. Their formulation of the
problem had three objective functions: one for maximizing the lack of cohesion in
software modularity, another for minimizing coupling, and the other is for increased
satisfaction of priorities. However, they ignored all the constraints that might exist
among the clone-groups and the refactoring operations. Priorities were given to
refactoring of the the old Kernighan and Ritchie style code, of large functions, and
of functions with high cyclomatic complexity. The required refactoring effort must
not exceed the maximum amount of effort provided by the available resources for the
refactoring activities. The efforts needed to refactor near-miss clones were assumed
to be thrice the effort required to refactor exact (Type-1) clones. However, such an
assumption may not hold in practice, due to the fact that clone refactoring effort is
much dependent on the context, the number of members in the clone-group, their
dispersion in the code base, and so on.

Liu et al. [141] used a heuristic algorithm to schedule refactoring of code bad smells
in general. Their work took into account the conflict and sequential dependencies
among the refactoring activities, but missed the constraints of mutual inclusion and
refactoring efforts. The objective of their scheduler was to maximize a number of
code quality attributes while satisfying the constraints. For quality assessment, they
used the QMOOD [18] design quality metric suite. However, they did not take care
of the priorities that can be pertinent to the refactoring operations in hand, and the
refactoring efforts were also disregarded.

Lee et al. [135] applied ordering messy GA (OmeGA) to schedule refactoring of
code clones. In formulating the refactoring scheduler, they took into account the prob-
able sequential dependencies among the refactoring activities. However, they did not
consider priorities, required efforts, and other types of constraints that may affect the
scheduling process. The objective of their approach was to compute a schedule that
maximized code quality while maintaining the ordering dependency. For estimating
the code quality before and after refactoring, they also used the QMOOD [18] design
quality metric suite. In the evaluation of their approach they applied CCFinder clone
detector and further processed the result to extract only the method/function level
clones. However, since CCFinder cannot detect Type-3 clones, their work was mainly
based on Type-1 and Type-2 clones only.

Zibran and Roy [202, 203] formulated scheduling of code clone refactoring as
a constraint satisfaction optimization problem and applied constraint programming
(CP) technique to compute an optimal solution of the problem. They discovered and
took into account a wide range of hard and soft constraints (in terms of dependencies

50

and priorities) that can raise in a pragmatic situation for code clone refactoring
scheduling. For the assessment of expected gain from the refactoring, they also used
the QMOOD [18] design quality metric suite. Moreover, for the estimation of the
effort needed to perform different refactoring operations, they proposed the first effort
model for code clone refactoring in object-oriented code. Their effort model is an
extensive one, which tries to capture the context and various aspects that can affect
refactoring efforts. In the evaluation of their effort model and scheduling approach,
they carried out case studies using NiCad as a code clone detector. Thus, their work
took into account not only the Type-1 and Type-2 clones, they also dealt with Type-3
clones.

Table 11: Comparison of Code Clone Refactoring Schedulers
Bouktif Lee Liu Zibran and
et al. [30] | et al. [135] | et al. [141] | Roy [203]
Approach GA OmeGa Heuristic Cp

Refactoring J
effort

Quality gain

Sequential
dependency
Mutual
exclusion
Mutual
inclusion
Priorities
satisfaction

L <

Table 11 summarizes the different techniques and types of constraints taken care
of in the approaches described above. With regards to the scheduling techniques, the
evolutionary algorithms such as GA as well as the artificial intelligence (Al) tech-
niques such as heuristic based approaches may suffer from local optima, and do not
guarantee optimality. O’Keeffe et al. [158] conducted an empirical comparison of sim-
ulated annealing (SA), GA and multiple ascent hill-climbing techniques in scheduling
refactoring activities in five software systems written in Java. They reported that
among those Al techniques, the hill-climbing approach performed the best. CP is
a relatively recent technique that combines the strengths of both AI and OR tech-
niques [20], and thus can be expected to perform better. Nonetheless, an empirical
comparison of CP with Al and evolutionary algorithms in optimizing the scheduling
of code clone refactoring can be an interesting study.

51

4.11 Verification of Clone Modification/Refactoring

Human effort in source code modification can be error prone. For example, while
renaming identifiers in a copied code, the programmer may mistakenly leave a name
unchanged. The work of Jablonski and Hou can be considered a contribution in the
verification of clone modification. Their tool CReN [86] can check for any inconsisten-
cies in the renaming of identifiers within a code fragment and suggest modifications
for making the renaming consistent. JSync [154] also offers a similar facility. While
CRen supports this validation right in the editor inside Eclipse IDE, JSync performs
the check at the server side, when the code is checked-in to the central repository.
Any identified inconsistency in the renaming of identifiers are reported back to the
developer with suggestions for attaining consistency.

By definition, refactoring should only alter the structure of the program without
changing its behaviour. Therefore, the automatic or semi-automatic refactoring of
code clones should be followed by verification to ensure that the refactoring did not
change the program behaviour [204]. Automated test case generation and automated
adaptation of test cases to the refactored code (clones) may help in this regard.
However, to the best of our knowledge, no significant attempt is made towards this
possibility.

5 Industrial Adoption of Clone Management

Despite the active research on software clones and their impact on the development
and maintenance of software system, management of code clones is still far from wide
industrial adoption. A reason to this could be the unavailability of integrated tool
support for versatile clone management. Typically, the organizations in the software
industry operate on a limited budget and often in tight schedule, when the major
objective becomes to be able to deliver the product to the client in time. Cloning
becomes an advantage in such scenarios; the immediate effect of code cloning is
rewarding, since cloning offers a reuse mechanism for low risk faster development
process.

The possible negative impacts of code clones are generally deferred at later stage
in the maintenance phase, for instance, until a fault in the system is discovered,
which might have been caused due to inconsistent changes in the cloned code, or
when it becomes difficult to manage the code base due its very large size. Many
software organizations have separate business agreement with the client to provide
maintenance support for their product over a defined period of time, for which the
client makes additional payments.

Thus, from the business perspective, a software organization may have two phases
of business: business on product delivery and product maintenance. Indeed, code

52

cloning is beneficial at the first phase, though at the second phase there remains
a possibility of increase in necessary maintenance effort due to code clones. Since,
the software company may consider the maintenance phase a separate cash-inflow
business, they might become apathetic in clone management, specially during the
active development process. Therefore, the adoption of clone management in the
industry largely depends on their realization in the fact that some initial effort in
proactive clone management may significantly save later maintenance efforts. There
is a saying, “a stitch in time saves nine”.

6 Conclusion

Software clone research has gained quite some maturity over the last decade, though
the majority of the work focused on the detection and analysis of code clones. Com-
pared to those, clone management has earned recent interest due to its pragmatic
importance. Notably three surveys [125, 159, 163], none of which focused on clone
management, and thus a survey on clone management was a timely necessity. This
paper presents a comprehensive survey on clone management and pin-points research
achievements and scopes for further work towards a versatile clone management sys-
tem.

At the fundamental level, the vagueness in the definition of clones at times causes
difficulties in formalization, generalization, creation of benchmark data-set, as well as
comparison of techniques and tools. A set of task oriented definitions or taxonomies
can address these issues. Most of the integrated tools have limitations in detecting
Type-3 clones. Moreover, most of the research on software clones so far emphasized
clone analysis at different level of granularity. A variety of techniques for the visual-
ization of clones and the evolution have been proposed. Surprisingly, while the clone
analysis points to the importance of considering inheritance hierarchy for extract-
ing clone reengineering candidates, there is still not enough visualization support to
analysis clones with respect to their existence in the inheritance hierarchy.

Research on clone management beyond detection has mostly been limited to de-
vising techniques to identify clones that are easier to deal with. In ideal case, simple
things should be made easy, while difficult things possible. The state of the art de-
mands more research in semi-automated tool support for clone refactoring and the
cost-benefit analysis of clone removal/refactoring. For the integrated tool support
for clone management, JSync [154] offers a relatively wider set of features compared
to others. But, we see a lot more to be done towards a versatile clone management
system. Perhaps, due to the unavailability of such tools, there is not much developer-
centric ethnographic studies on the patterns of clone management in practice, as
well as on the usability and effectiveness of tool support. This survey exposes such
potential avenues for further research to create a better impact in the community:.

93

References

[1]

[18]
[19]
[20]
[21]
[22]

23]

E. Adar. GUESS: a language and interface for graph exploration. In CHI, pages 791-800.
ACM, 2006.

E. Adar and M. Kim. SoftGUESS: Visualization and exploration of code clones in context.
In ICSE, pages 762 —766, 2007.

G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones evolution through time
series. In ICSM, page 273, 2001.

G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Analyzing cloning evolution in the linux
kernel. Information and Software Technology, 44(13):755 — 765, 2002.

M. Asaduzzaman. Visualization and analysis of software clones. M.Sc. thesis, University of
Saskatchewan, Canada, 2011.

M. Asaduzzaman, C. Roy, and K. Schneider. VisCad: flexible code clone analysis support for
NiCad. In IWSC, pages 77-78. ACM, 2011.

L. Aversano, L. Cerulo, and M. Di Penta. How clones are maintained: An empirical study.
In CSMR, pages 81 90, 2007.

M. Bahtiyar. JClone : Syntax tree based clone detection for java. Master’s thesis, Linnaeus
University, 2010.

J. Bailey and E. Burd. Evaluating clone detection tools for use during preventative mainte-
nance. In SCAM, pages 36 — 43, 2002.

B. Baker. A program for identifying duplicated code. Computing Science and Statistics,
24:49-57, 1992.

B. Baker. On finding duplication and near-duplication in large software systems. In WCRE,
pages 86 —95, 1995.

B. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer
and System Sciences, 52(1):28 — 42, 1996.

B. Baker and U. Manber. Deducing similarities in java sources from bytecodes. In USENIX
ATEC, pages 15-15, Berkeley, CA, USA, 1998. USENIX Association.

T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software evolution. In ICSM, pages
24-33, 2007.

M. Balazinska, E. Merlo, M. Dagenais, and K. Kontogiannis. Advanced clone-analysis to
support object-oriented system refactoring. In WCRE, pages 98-107. IEEE Computer Society
Press, 2000.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring clone based
reengineering opportunities. In METRICS, pages 292 —303, 1999.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Partial redesign of
java software systems based on clone analysis. In WCRE, pages 326-336. IEEE Computer
Society, 1999.

J. Bansiya and C. Davis. A hierarchical model for object-oriented design quality assessment.
IEEE Trans. on Softw. Engg., 28(1):4-17, 2002.

L. Barbour, F. Khomh, and Y. Zou. Late propagation in software clones. In ICSM, pages 273
—282, 2011.

R. Bartdk. Constraint programming: In pursuit of the holy grail. In WDS (invited lecture),
pages 1-10, 1999.

H. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs. SIGSOFT
Softw. Eng. Notes, 30:156-165, 2005.

H. Basit and S. Jarzabek. Towards Structural Clones: Analysis and semi-automated detection
of design-level similarities in software. VDM Verlag Dr. Miiller, 2010.

H. Basit, S. Puglisi, W. Smyth, A. Turpin, and S. Jarzabek. Efficient token based clone

54

detection with flexible tokenization. In ESEC-FSE companion, pages 513-516. ACM, 2007.
H. Basit, D. Rajapakse, and S. Jarzabek. An empirical study on limits of clone unification
using generics. In SEKFE, pages 109-114, 2005.

I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In ICSM, page 368, 1998.

M. Beard. Extending bug localization using information retrieval and code clone location
techniques. In WCRE, pages 425 —428, 2011.

S. Bellon. Vergleich von techniken zur erkennung duplizierten quellcodes. Diploma thesis,
Universitat Stuttgart, 2002.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of
clone detection tools. IEEE Trans. on Softw. Engg., 33(9):577-591, 2007.

N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan. An empirical study
on inconsistent changes to code clones at release level. Science of Computer Programming,
page 17, 2010.

S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A novel approach to optimize clone
refactoring activity. In GECCO, pages 1885—1892, 2006.

R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. Language-independent clone
detection applied to plagiarism detection. In SCAM, pages 77 —86, 2010.

M. Bruntink. Aspect mining using clone class metrics. In WARE, 2004.

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe. On the use of clone detection
for identifying crosscutting concern code. IEEE Trans. Softw. Eng., 31:804-818, 2005.

D. Bruschi, L. Martignoni, and M. Monga. Code normalization for self-mutating malware.
IEEE Security and Privacy, 5:46-54, 2007.

P. Bulychev and M. Minea. An evaluation of duplicate code detection using anti-unification.
In IWSC, 20009.

D. Chatterji, J. Carver, B. Massengil, J. Oslin, and N. Kraft. Measuring the efficacy of code
clone information in a bug localization task: An empirical study. In ESEM, pages 20-29.
IEEE Computer Society, 2011.

A. Chiu and D. Hirtle. Beyond clone detection. CS846 Course Project Report, University of
Waterloo, 2007.

E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano. Extracting code clones for refactoring
using combinations of clone metrics. In IWSC, pages 7-13. ACM, 2011.

J. Cordy. Comprehending reality: Practical barriers to industrial adoption of software main-
tenance automation. In IWPC, pages 196-206. IEEE Computer Society, 2003.

J. Cordy. Live scatterplots. In ITWSC, pages 79-80. ACM, 2011.

J. Cordy, T. Dean, and N. Synytskyy. Practical language-independent detection of near-miss
clones. In CASCON, pages 1-12. IBM Press, 2004.

N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The development of a software clone
detector. International Journal of Applied Software Technology, 1(3/4):219 — 236, 1995.

1. Davis and M. Godfrey. Clone detection by exploiting assembler. In TWSC, pages 77-78.
ACM, 2010.

I. Davis and M. Godfrey. From whence it came: Detecting source code clones by analyzing
assembler. In WCRE, pages 242 —246, 2010.

M. de Wit. Managing Clones Using Dynamic Change Tracking and Resolution. M.Sc. thesis,
Delft University of Technology, 2008.

F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz. Model clone detection
in practice. In IWSC, pages 57-64. ACM, 2010.

F. Deissenboeck, B. Hummel, E. Jiirgens, B. Schétz, S. Wagner, J. Girard, and S. Teuchert.
Clone detection in automotive model-based development. In ICSE, pages 603-612. ACM,

95

[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]

2008.

G. Di Lucca, M. Di Penta, and A. Fasolino. An approach to identify duplicated web pages.
In COMPSAC, pages 481 — 486, 2002.

E. Duala-Ekoko and M. Robillard. Tracking code clones in evolving software. In ICSFE, pages
158-167, 2007.

E. Duala-Ekoko and M. Robillard. CloneTracker: tool support for code clone management.
In ICSE, pages 843-846, 2008.

E. Duala-Ekoko and M. Robillard. Clone region descriptors: Representing and tracking du-
plication in source code. ACM Trans. Softw. Eng. Methodol., 20:3:1-3:31, 2010.

S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In ICSM, pages 109 —118, 1999.

S. Ducasse, M. Rieger, G. Golomingi, and B. Bym. Tool support for refactoring duplicated
OO code. In ECOOP Workshop Reader, number 1743 in LNCS, pages 2—-6. Springer-Verlag,
1999.

W. Evans, C. Fraser, and F. Ma. Clone detection via structural abstraction. In WCRE, pages
150-159. IEEE Computer Society, 2007.

R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone detection using syntax
suffix trees. Empirical Softw. Engg., 13:601-643, 2008.

R. Fanta and V. Rajlich. Removing clones from the code. Journal of Software Maintenance:
Research and Practice, 11(4):223-243, 1999.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst., 9:319-349, 1987.

M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison Wesley Professional, 1999.

Y. Fukushima, R. Kula, S. Kawaguchi, K. Fushida, M. Nagura, and H. Iida. Code clone graph
metrics for detecting diffused code clones. In APSEC, pages 373 —380, 2009.

M. Funaro, D. Braga, A. Campi, and C. Ghezzi. Combining syntactic and textual approach
in clone detection. In IWSC, 2010.

M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In ICSE, pages 321-330.
ACM, 2008.

S. Giesecke. Generic modelling of code clones. In DRSS, pages 1-23, 2007.

S. Giesecke. Dupman - eclipse duplication management framework,
http://sourceforge.net /projects/dupman/, last access: Dec 2011.

N. Gode. Incremental clone detection. Diploma thesis, University of Bremen, 2008.

N. Gode. Evolution of type-1 clones. In SCAM, pages 77-86, 2009.

N. Gode and J. Harder. Clone stability. In CSMR, pages 65 —74, 2011.

N. Géde and R. Koschke. Incremental clone detection. In CSMR, pages 219-228, 2009.

N. Gode and R. Koschke. Studying clone evolution using incremental clone detection. Journal
of Software Maintenance and Fvolution: Research and Practice, pages 1-28, 2010.

N. Gode and R. Koschke. Frequency and risks of changes to clones. In ICSFE, pages 311-320.
ACM, 2011.

J. Harder and N. Géde. Modeling clone evolution. In IWSC, pages 17-21, 2009.

J. Harder and N. Gode. Quo vadis, clone management? In IWSC| pages 85-86. ACM, 2010.
J. Harder and N. Gode. Efficiently handling clone data: Recf and cyclone. In IWSC, pages
81-82. ACM, 2011.

J. Helfman. Dotplot patterns: a literal look at pattern languages. Theor. Pract. Object Syst.,
2:31-41, 1996.

A. Hemel, K. Kalleberg, R. Vermaas, and E. Dolstra. Finding software license violations
through binary code clone detection. In MSR, pages 63-72. ACM, 2011.

o6

[75]
176]
[77]
78]
79]
80]
81]

[82]

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring support environment
based on code clone analysis. In IASTED-SEA, pages 222-229. ACTA Press, 2004.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring support based on code clone
analysis. PROFES, (LNCS 3009):220-233, 2004.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and implementation for investigating
code clones in a software system. Inf. Softw. Technol., 49:985-998, 2007.

Y. Higo and S. Kusumoto. Enhancing quality of code clone detection with program dependency
graph. In WCRE, pages 315 —316, 2009.

Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On software maintenance process
improvement based on code clone analysis. In PROFES, pages 185-197. Springer-Verlag, 2002.
Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous modification support based on
code clone analysis. In APSEC, pages 262-269. IEEE Computer Society, 2007.

Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental code clone detection: A
PDG-based approach. In WCRE, pages 3 12, 2011.

K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more frequently modified
than non-duplicate code in software evolution?: an empirical study on open source software.
In IWPSE-EVOL, pages 73-82. ACM, 2010.

D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for the proactive manage-
ment of copy-and-paste programming. In ICPC; pages 238-242, 2009.

D. Hou, F. Jacob, and P. Jablonski. Exploring the design space of proactive tool support for
copy-and-paste programming. In CASCON, pages 188-202. ACM, 2009.

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection:
incremental, distributed, scalable. In ICSM, pages 1 -9, 2010.

P. Jablonski and D. Hou. CReN: a tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the IDE. In ETX, pages 16-20, 2007.

P. Jablonski and D. Hou. Renaming parts of identifiers consistently within code clones. In
ICPC, pages 38-39. IEEE Computer Society, 2010.

F. Jacob, D. Hou, and P. Jablonski. Actively comparing clones inside the code editor. In
IWSC, pages 9-16. ACM, 2010.

K. Jalbert and J. Bradbury. Using clone detection to identify bugs in concurrent software. In
ICSM, pages 1 -5, 2010.

S. Jarzabek and S. Li. Unifying clones with a generative programming technique: a case study.
Journal of Software Maintenance and Evolution: Research and Practice, 18(4):267-292, 2006.
L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate tree-based
detection of code clones. In ICSE, pages 96-105, 2007.

L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs. In ESEC-FSE,
pages 55—64. ACM, 2007.

7. Jiang and A. Hassan. A framework for studying clones in large software systems. In SCAM,
pages 203 —212, 2007.

Z. Jiang, A. Hassan, and R. Holt. Visualizing clone cohesion and coupling. In APSEC, pages
467 —476, 2006.

J. Johnson. Identifying redundancy in source code using fingerprints. In CASCON, pages
171-183. IBM Press, 1993.

J. Johnson. Substring matching for clone detection and change tracking. In ICSM, pages 120
-126, 1994.

J. Johnson. Visualizing textual redundancy in legacy source. In CASCON, pages 32-41. IBM
Press, 1994.

J. Johnson. Navigating the textual redundancy web in legacy source. In CASCON, pages
16-25. IBM Press, 1996.

o7

[99]

[100]

[101]

[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]

[112]

[113]

[116]
[117]
[118]

[119]

[120]

E. Juergens. Research in cloning beyond code: a first roadmap. In ITWSC| pages 67-68. ACM,
2011.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C. Domann,
and J. Streit. Can clone detection support quality assessments of requirements specifications?
In ICSE, volume 2, pages 79 —88, 2010.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C. Domann,
and J. Streit. Can clone detection support quality assessments of requirements specifications?
In ICSE, pages 79 —88, 2010.

E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective - a workbench for clone de-
tection research. In ICSE, pages 603—606, 2009.

E. Juergens, B. Hummel, F. Deissenboeck, and M. Feilkas. Static bug detection through
analysis of inconsistent clones. In TESO, pages 443-446, 2008.

N. Juillerat and B. Hirsbrunner. An algorithm for detecting and removing clones in java code.
In SeTra, pages 63-74, 2006.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. Softw. Eng., 28(7):654—670, 2002.
C. Kapser. Toward an Understanding of Software Code Cloning as a Development Practice.
PhD thesis, University of Waterloo, Canada, 2009.

C. Kapser and M. Godfrey. Aiding comprehension of cloning through categorization. In
IWPSE, pages 85-94. IEEE Computer Society, 2004.

C. Kapser and M. Godfrey. Improved tool support for the investigation of duplication in
software. In ICSM, pages 305-314. IEEE Computer Society, 2005.

C. Kapser and M. Godfrey. “Cloning considered harmful” considered harmful. In WCRE,
pages 19-28, 2006.

C. Kapser and M. Godfrey. Cloning considered harmful” considered harmful: patterns of
cloning in software. Empirical Software Engineering, 13:645-692, 2008.

Cory J. Kapser and Michael W. Godfrey. Supporting the analysis of clones in software systems:
A case study. J. Softw. Maint. Fvol., 18:61-82, 2006.

S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and H. Ilida.
SHINOBI: A tool for automatic code clone detection in the IDE. In WCRE, pages 313-314,
2009.

A. Kellens, K. Mens, and P. Tonella. In A. Rashid and M. Aksit, editors, Transactions on
aspect-oriented software development IV, chapter A survey of automated code-level aspect
mining techniques, pages 143-162. Springer-Verlag, 2007.

J. Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect oriented programming. In FCOOP, volume 1241, pages 220-242. Springer-Verlag,
1997.

H. Kim, Y. Jung, S. Kim, and K. Yi. Mecc: memory comparison-based clone detector. In
ICSE, pages 301-310. ACM, 2011.

M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting
evolution of code clones. In MSR, pages 1-5. ACM, 2005.

M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealogies.
SIGSOFT Softw. Eng. Notes, 30(5):187-196, 2005.

E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B. Kanagaraj. Method level
detection and removal of code clones in C and Java programs using refactoring. In IJJCET,
pages 93-95. Gopalax Publications & TCET, 2010.

R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In SAS,
pages 40-56. Springer-Verlag, 2001.

o8

[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]

[144]

G. Koni-N’Sapu. A scenario based approach for refactoring duplicated code in object oriented
systems. Diploma thesis, University of Bern, 2001.

K. Kontogiannis. Evaluation experiments on the detection of programming patterns using
software metrics. In WCRE, pages 44 —54, 1997.

K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo. Pattern matching for
design concept localization. In WCRE, pages 96 —103, 1995.

K. Kontogiannis, R. Mori, E. Merlo, M. Galler, and M. Bernstein. Pattern matching for clone
and concept detection. Autom. Softw. Eng., 3(1/2):77-108, 1996.

R. Koschke. Survey of research on software clones. In DRSS, pages 1-24, 2006.

R. Koschke. Frontiers of software clone management. In FoSM, pages 119 —128, 2008.

R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In
WCRE, pages 253-262, 2006.

J. Krinke. Identifying similar code with program dependence graphs. In WCRE, pages 301
-309, 2001.

J. Krinke. A study of consistent and inconsistent changes to code clones. In WCRE, pages
170 —178, 2007.

J. Krinke. Is cloned code more stable than non-cloned code? SCAM, 0:57-66, 2008.

Jens Krinke. Is cloned code older than non-cloned code? In IWSC, pages 28-33. ACM, 2011.
B. Lague, D. Proulx, J. Mayrand, E. Merlo, and J. Hudepohl. Assessing the benefits of
incorporating function clone detection in a development process. In ICSM, pages 314-321.
IEEE Computer Society, 1997.

F. Lanubile and T. Mallardo. Finding function clones in web applications. In CSMR, pages
379-286. IEEE Computer Society, 2003.

M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code clone search. In FSE, pages 167-176,
2010.

S. Lee, G. Bae, H. Chae, D. Bae, and Y. Kwon. Automated scheduling for clone-based
refactoring using a competent ga. Softw. Pract. Ezxper., 41(5):521-550, 2010.

S. Lee and I. Jeong. SDD: high performance code clone detection system for large scale source
code. In OOPSLA, pages 140-141, 2005.

A. Leitao. Detection of redundant code using r2d2. Software Quality Control, 12:361-382,
2004.

H. Li and S. Thompson. Similar code detection and elimination for Erlang programs. Practical
Aspects of Declarative Languages, 5937:104-118, 2010.

H. Li and S. Thompson. Incremental clone detection and elimination for erlang programs. In
FASE/ETAPS, pages 356-370. Springer-Verlag, 2011.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: finding copy-paste and related bugs in
large-scale software code. Software Engineering, IEEE Transactions on, 32(3):176 — 192, 2006.
H. Liu, G. Li, Z. Ma, , and W. Shao. Conflict-aware schedule of software refactorings. IET
Software, 2(5):446-460, 2008.

H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting duplications in sequence diagrams based
on suffix trees. In APSEC, pages 269 —276, 2006.

S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis of the linux kernel evolution using
code clone coverage. In MSR, page 22, 2007.

S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis and
visualization of open source programs using distributed ccfinder: D-ccfinder. In ICSFE, pages
106-115, 2007.

A. Lozano and M. Wermelinger. Tracking clones’ imprint. In ITWSC, 2010.

A. Marcus and J. Maletic. Identification of high-level concept clones in source code. In ASE,
pages 107 — 114, 2001.

99

[147]
[148]
[149]
[150]

[151]

[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]

[170]

J. Mayrand, B. Lague, and J. Hudepohl. Evaluating the benefits of clone detection in the
software maintenance activities in large scale systems. In WESS, 1996.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function
clones in a software system using metrics. In ICSM, pages 244 —253, 1996.

R. Miller. Lightweight Structured Text Processing. PhD thesis, Carnegie Mellon University,
2001.

R. Miller and B. Myers. Interactive simultaneous editing of multiple text regions. In USENIX,
pages 161-174. USENIX Association, 2001.

M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, and K. Schneider. Comparative stability
of cloned and non-cloned code: An empirical study. In ACM-SAC (SE Track), pages 1-8,
2012 (to appear).

E. Murphy-Hill, P. Quitslund, and A. Black. Removing duplication from java.io: a case study
using traits. In OOPSLA, pages 282-291. ACM, 2005.

S. Nasehi, G. Sotudeh, and M. Gomrokchi. Source code enhancement using reduction of
duplicated code. In TASTED, pages 192-197. ACTA Press, 2007.

H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone management for
evolving software. IEEE Trans. on Softw. Engg., 1(1):1-19, 2011.

T. Nguyen, H. Nguyen, J. Al-Kofahi, N. Pham, and T. Nguyen. Scalable and incremental
clone detection for evolving software. In ICSM, pages 491 —494, 2009.

T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Cleman: Comprehensive
clone group evolution management. In ASFE, pages 451-454, 2008.

T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone-aware configuration
management. In ASE, pages 123-134, 2009.

M. O’Keeffe and M. O Cinnéide. Search-based refactoring: an empirical study. J. Softw.
Maint. Evol.: Res. Pract., 20:345-364, 2008.

J. Pate, R. Tairas, and N. Kraft. Clone evolution: a systematic review. Journal of Software
Maintenance and Evolution: Research and Practice, pages 1-23, 2011.

N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen. Complete and accurate clone
detection in graph-based models. In ICSE, pages 276-286. IEEE Computer Society, 2009.
M. Rieger. Effective Clone Detection Without Language Barriers. Phd thesis, Institut fuf
Informatik und angewandte Mathematik, Germany, 2005.

M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code duplication. In WCRE,
pages 100-109, 2004.

C. Roy and J. Cordy. A survey on software clone detection research. Tech Report TR 2007-541,
School of Computing, Queens University, Canada, 2007.

C. Roy and J. Cordy. NICAD: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In ICPC, pages 172-181, 2008.

C. Roy and J. Cordy. Scenario-based comparison of clone detection techniques. In ICPC,
pages 153-162, 2008.

C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating code
clone detection tools. In ICSTW, pages 157-166, 2009.

C. Roy and J. Cordy. Near-miss function clones in open source software: an empirical study.
J. of Softw. Maintenance and Evolution: Research and Practice, 22(3):165-189, 2010.

C. Roy, J. Cordy, and R. Koschke. Comparison and evaluation of code clone detection tech-
niques and tools: A qualitative approach. Sci. Comput. Program., 74:470-495, 2009.

V. Rysselberghe and S. Demeyer. Evaluating clone detection techniques from a refactoring
perspective. In ASE, pages 336 — 339, 2004.

A. Szbjgrnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code clones in binary
executables. In ISSTA, pages 117-128. ACM, 2009.

60

[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
187]
[188]
[189]
[190]
[191]

[192]

193]

[194]

R. Saha. Detection and analysis of near-miss clone genealogies. M.Sc. thesis, University of
Saskatchewan, 2011.

R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and K. Schneider. Evaluating code clone
genealogies at release level: An empirical study. In SCAM, pages 87-96, 2010.

R. Saha, C. Roy, and K. Schneider. An automatic framework for extracting and classifying
near-miss clone genealogies. In ICSM, pages 293 —302, 2011.

R. Saha, C. Roy, and K. Schneider. Visualizing the evolution of code clones. In IWSC, pages
71-72. ACM, 2011.

A. Santone. Clone detection through process algebras and java bytecode. In IWSC, pages
73-74. ACM, 2011.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behaviour.
In ECOOP, volume 2743 of LNCS, pages 327-339. Springer Berlin / Heidelberg, 2003.

S. Schulze and M. Kuhlemann. Advanced analysis for code clone removal. In WSR, pages
1-2, 2009.

S. Schulze, M. Kuhlemann, and M. Rosenmiiller. Towards a refactoring guideline using code
clone classification. In WRT, pages 6:1-6:4. ACM, 2008.

G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, and Y. Zou. Studying the impact of
clones on software defects. In WCRE, pages 13 —21, 2010.

H. Storrle. Towards clone detection in UML domain models. In ECSA, pages 285-293. ACM,
2010.

R. Tairas. Code clones literature, http://students.cis.uab.edu/tairasr/clones/literature/, last
access: Feb 2012.

R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees. In ACM-SE, pages
679-684, 2006.

R. Tairas and J. Gray. Get to know your clones with CeDAR. In OOPSLA, pages 817818,
2009.

R. Tairas and J. Gray. Sub-clone refactoring in open source software artifacts. In SAC, pages
2373-2374. ACM, 2010.

R. Tairas, J. Gray, and I. Baxter. Visualization of clone detection results. In OOPSLA-ETX,
pages 50-54. ACM, 2006.

R. Tairas, J. Gray, and 1. Baxter. Visualizing clone detection results. In ASE, pages 549-550.
ACM, 2007.

S Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empirical study on the
maintenance of source code clones. Empirical Software Engineering, 15:1-34, 2010.

M. Toomim, A. Begel, and S. Graham. Managing duplicated code with linked editing. In
VLHCC, pages 173-180. IEEE Computer Society, 2004.

R. Torres. Source code mining for code duplication refactorings with formal concept analysis.
M.Sc. thesis, Vrije Universiteit Brussel, Belgium, 2004.

M. Uddin, C. Roy, K. Schneider, and A. Hindle. On the effectiveness of simhash for detecting
near-miss clones in large scale software systems. In WCRE, pages 13 —22, 2011.

Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Code clone analysis tool.
In ISESE, volume 2, pages 31-32, 2002.

Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance support environment
based on code clone analysis. In METRICS, pages 67-76. IEEE Computer Society Press,
2002.

Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones using
gap locations. In APSEC, pages 327 — 336, 2002.

V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by frequent
itemset techniques. In SCAM, pages 128 —135, 2004.

61

[195]
[196]
[197]
[198]
[199]
[200]
[201]
202]
[203]
204]
[205]

206]

A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-relevant
clone detection reference data. In WCRE, pages 285-294. IEEE Computer Society, 2003.

A. Walenstein and A. Lakhotia. The software similarity problem in malware analysis. In
DRSS, pages 1-10, 2006.

V. Weckerle. CPC: an eclipse framework for automated clone life cycle tracking and update
anomaly detection. Master’s thesis, Freie Universitat Berlin, Germany, 2008.

W. Yang. Identifying syntactic differences between two programs. Softw. Pract. Ezxper.,
21:739-755, 1991.

N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refactoring support based
on code clone dependency relation. In METRICS, pages 16-25. IEEE Computer Society, 2005.
Y. Zhang, H. Basit, S. Jarzabek, D Anh, and M. Low. Query-based filtering and graphical
view generation for clone analysis. In ICSM, pages 376 —385, 2008.

M. Zibran. Analysis and management of code clones. In ICSM (doctoral symposium), pages
1-4, 2011.

M. Zibran and C. Roy. Conflict-aware optimal scheduling of code clone refactoring: A con-
straint programming approach. In ICPC, pages 266 — 269, 2011.

M. Zibran and C. Roy. A constraint programming approach to conflict-aware optimal schedul-
ing of prioritized code clone refactoring. In SCAM, pages 105-114, 2011.

M. Zibran and C. Roy. Towards flexible code clone detection, management, and refactoring
in IDE. In IWSC, pages 75-76, 2011.

M. Zibran and C. Roy. IDE-based real-time focused search for near-miss clones. In ACM-SAC
(SE Track), pages 1-8, 2012 (to appear).

M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy. Analyzing and forecasting near-miss clones
in evolving software: An empirical study. In ICECCS, pages 295-304, 2011.

62

	Introduction and Motivation
	A Systematic Review on Clone Literature
	Threat to Validity

	Code Clone
	Clones beyond Source Code
	Clone Relationship
	Clone Granularity
	Which Level of Granularity Is Appropriate?

	Intentional and Accidental Clones
	Clone Detection Techniques
	Strengths and Weaknesses of Clone Detection Techniques
	Challenges in the Empirical Evaluation of Clone Detection Tools

	Clone Evolution
	Clone Genealogy
	Genealogy Extraction:

	Clone Change Patterns
	Need for Improvements
	Visualization of Clone Evolution

	Clone Management
	Clone Management Strategies
	Design Space for a Clone Management System
	Architectural Centrality
	Triggering of Clone Management Activity
	Scope of Clone Management Activity

	Clone Management Activities
	Integrated Clone Detection
	Clone Documentation
	Clone Tracking
	Incremental Clone Detection

	Clone Annotation
	Techniques for Reengineering/Refactoring of Clones
	Generics and Templates
	Design Level Approaches
	Design Patterns:
	Traits:
	Aspects:

	Synchronized Modification
	Consistent Renaming
	Refactoring Patterns
	Tool Support for Refactoring Patterns:

	Analysis and Identification of Clones for Refactoring
	Visualization of Distribution and Properties of Clones
	Analysis to Find Clone Based Reengineering Opportunity
	Clone Categorization Based On Reengineering Opportunity:

	Cost-benefit Analysis and Scheduling of Refactoring
	Verification of Clone Modification/Refactoring

	Industrial Adoption of Clone Management
	Conclusion
	Bibliography

