
The University of Saskatchewan
Department of Computer Science

Technical Report #2013-01

Subjective Evaluation of Software Quality Using
Crowdsource Knowledge: An Exploratory Study

Mohammad Masudur Rahman Chanchal K. Roy
University of Saskatchewan, Canada
{mor543, ckr353}@mail.usask.ca

Iman Keivanloo
Concordia University, Canada

i_keiv@encs.concordia.ca

Abstract—While subjective judgments have been heavily used
in other areas of research including science, humanities, medical
studies, and even in human computer interaction, there has been
a marked lack on the use of such human factors in evaluating
the quality of a software system. In this paper, we explore
an idea of using subjective judgements in evaluating the code
quality of a software system by using the available crowdsource
knowledge of StackOverflow. We first introduce an algorithm
for classifying the StackOverflow content as either promoted
or discouraged programming solutions by exploiting available
quantitative information such as view counts, votes, comment
counts and so on. We then use the classified solutions as a
vehicle for studying the code quality of open source projects based
on the occurrences of promoted or discouraged solutions. Both
using a cross-validation step with machine learning classifiers
and a user study, we confirm that the proposed classifier is able
capture the technical merits as well as social acceptance (a.k.a.,
subjective human judgements) of the programming solutions. In
order to demonstrate the applicability of the proposed approach,
we then conduct a case study with 332,628 StackOverflow posts
for determining the subjective quality of 20 target open source
software systems. In order to further confirm of whether such
an approach makes sense we then also validate the findings with
a traditional code quality evaluation tool and two project review
sites. Our study shows that while such an ad-hoc nondeterministic
approach by no means replaces the state of the art code
quality measurements tools, it certainly has the potential to
complement the existing well-rounded objective evaluation tools
by incorporating a third dimension of subjective evaluation.

Index Terms—Subjective evaluation; open source soft-
ware;human factors;code quality; StackOverflow.

I. INTRODUCTION

Programming is an ever-challenging problem solving adven-
ture. Everyday, software developers deal with many program-
ming problems and they often need to learn new technologies
as a part of their work. To solve those programming problems
or to learn new things, they look into different sources for
helpful information [14]. It is a well-known educational psy-
chology that a working example of the solution to a problem
can be more effective for solving similar types of problems
rather than writing them from scratch [14]. Also, for learning
new things, working examples are more useful than any other
text-based description. So, developers often reuse working
code examples in their everyday problem solving and learning
activities. This practice helps them to reduce the workload and
makes the development process faster in one hand, but exposes
the project to the risk of having bad quality software code on
the other hand.

Code quality is a key factor to any software product [16].
It refers to testability, maintainability, portability, extensibil-
ity and localizability of the code [7]. Quality of software
product is a visual characteristic and can be easily perceived
and validated against the requirement specifications, but the
quality of code is hidden and may become visible long after
deployment of the product during maintenance phase [8]. The
higher quality of the code, the more maintainability of the
product throughout the life cycle.

Open source projects have gained much popularity nowa-
days and developers often reuse different modules or code
fragments from them in the commercial projects. However,
the quality or reliability of the open source projects need to
be studied before reuse [12].

Thus, researchers are interested about analyzing the code
quality issues of open source projects and making effective
recommendation for reuse by the developers [12]. Existing
research focuses on established code quality metrics [10],
comment density [6], number of developers [15], code quality
tools [12] etc. for overall quality evaluation of open source
projects. As yet, software quality in general, is largely depen-
dent on one’s point of view [11]. From a developer’s viewpoint
the ease of modifying and further developing the software
is clearly one of the most important quality dimensions.
Traditionally one would call this viewpoint to quality software
maintainability [13]. Unfortunately, there have been a marked
lack on the use of such subjective viewpoints in evaluating
software quality.

StackOverflow (SO) is a social programming Q & A site
which is used by more than one million registered users (up
to March, 2012) [14]. Here, users up-vote a post when they
find it useful or down-vote a post if they find it not helpful for
problem solving or it contains inefficient or buggy solutions.
Nasehi et al. [14] study the characteristics of accepted solu-
tions to programming questions in StackOverflow and argue
that accepted solutions are very likely to contain efficient
and concise code fragments accompanied by comprehensive
textual description. Their study also reveals that the low-
voted solutions from StackOverflow either do not contain
code fragments or contain low quality code fragments. Treude
et al. [17] study which type of answers are mostly accepted
in StackOverflow and find that the answers containing code
fragments (e.g., code review posts) are highly accepted (92%).
So, it is reasonable to consider that the code fragment plays
the major role behind the effectiveness of an answer post

Fig. 1. (a) StackOverflow question post, (b) The best answer, (c) Promoted code fragment, (d) Discouraged code fragment

addressing a programming problem. In this study, we ex-
ploit this interesting characteristic of StackOverflow posts and
then propose an algorithm to classify the code fragments
as promoted or discouraged programming solutions by using
available subjective judgements such as view counts, votes and
so on of its large user base in the associated posts. We then
use those classified code fragments as a vehicle in determining
the quality of open source projects based on their occurrences
in them. If a software system contains more promoted code
fragments than discouraged fragments we consider that system
as a healthy system, otherwise as a risky system.

We also evaluate the approach in two different ways: (1)
Evaluation of the classification algorithm itself, and (2) A
large case study with open source projects. In evaluating the
classification algorithm, we also use two different approaches.
First, we evaluate the classification algorithm by using the
well known machine learning classifiers such as J48, Naive
Bayes and Bayes Net, with an average classification accuracy
of 93%. Second, we also conduct a user study with 13 graduate
students and three professional software developers that partly
simulates StackOverflow behaviours and confirms that the
classification algorithm works well in terms of subjective
judgement and that the proposed idea of using StackOverflow
data makes sense. In the case study, we use the proposed
algorithm for classifying 332,628 StackOverflow posts for
determining the subjective quality of 20 open source software
systems of different varieties and domains. In order to further
validate whether the proposed approach indeed can determine
whether a software system is healthy or risky, we use both an
objective code quality evaluation tool, PMD [4] and two open
source project review websites, namely, ohloh.net and source-
forge.net. We experienced significant correlation between our
findings and the results returned by PMD. We also discovered
interesting facts from the code review sites on the subject

projects and noticed that those are consistent with our results.
Both in the user study and in the case study we also performed
extensive manual analysis in validating the findings and in
deriving meaningful insights.

Our case study along with the user study show that the
proposed approach can indeed aid in the subjective evaluation
of a software project by using the available crowdsource
knowledge of StackOverflow. Of course, such an ad-hoc
nondeterministic approach by no means replaces the state of
the art code quality measurements tools. However, it certainly
has the potential to complement the existing well-rounded
objective evaluation tools by incorporating a third dimension
of subjective evaluation.

The rest of this paper is structured as follows - Section II
shows a motivating example from SO. Section III reviews our
approach and the proposed metrics. Section IV reports our
corpus preparation and Section V evaluates the proposed clas-
sification algorithm. A case study with open source projects
is presented in Section VI. Section VII discusses the previous
work related to this research, whereas Section VIII presents
the threats to validity, and finally, Section IX concludes the
paper with our plan for future work.

II. THE MOTIVATING EXAMPLE

StackOverflow posts contain invaluable information about
programming problems, solutions etc. and that information
can be manipulated for software development or maintenance
activities. For example, Fig. 1(a) shows a StackOverflow
question post asking for help to get MD5 hash value from
a string using Java. The question scored 235, and 69 users
marked it as a favourite question; that means, it is a technically
important question and several users actually looked for the
same information. So far there are 20 answers of varying
qualities posted against the question [3]. Fig. 1(b) shows an

answer post which scored the highest among all answers and
this score reflects its wide acceptability. So, it is reasonable to
consider that the answer in Fig. 1(b) is the best answer for the
target question. Fig. 1(d) shows an answer post having one of
the lowest scores; that means, it is a potential representative of
low quality answer for the question. In this research, we are
interested to extract these topmost and lowest quality answers
from StackOverflow to develop a code fragment corpus which
we use for open source code quality prediction based on their
occurrences in them.

III. THE PROPOSED APPROACH

Fig. 2 shows a schematic diagram of our proposed subjective
quality detection approach. We see that the approach takes
both the StackOverflow posts and the target software system
as input. It then apply different filtering and preprocessing
of the posts having code examples before feeding them to the
classification algorithm. Once the programming code examples
of the question posts are classified as promoted or discouraged
code fragments, the approach then detects the occurrences of
these fragments in the target open source system. Depending
on whether the target system contains more promoted or
discouraged code fragments the approach returns whether the
target system is a healthy or risky system. We, however, are
more interested in finding the occurrences of discouraged code
fragments in the target systems for determining their relative
quality for the following reasons: (1) In StackOverflow, down-
votes come from relatively reputed users (i.e., only user with
reputation>125 is permitted to down-vote) than up-votes,
so, down-votes are associated with more careful judgments
and technical expertise, (2) Even a single discouraged (e.g.,
buggy, malicious, unsafe etc.) code fragment can turn off the
whole system, and (3) A discouraged code fragment has the
normalized rejection rate (RR) of 0.20 or above, that means
at least 20% of all voters discouraged the reuse of the code
fragment. According to Pareto Principle, this is a significant
portion of vote and it is assumed that 20% down-votes actually
can make the 80% up-votes questionable. In the following we
discuss each of the parts of the approach in details.

A. Identification of Promoted and Discouraged Code Frag-
ments from SO Posts

Extraction of suitable code fragments from StackOverflow
posts is our first contribution. In this section, we discuss about
different steps to perform that task.

1) StackOverflow Code Fragment Database Development:
The first step to identify encouraged and discouraged code
fragments from StackOverflow posts is to extract them from
the posts. Once extracted, we also perform automated and
manual filtration to discard unexpected contents.

Extraction of Code Fragments from Posts: As Stack-
Overflow facilitates the users to write the content in rich text
format, the body content of the post is in HTML. We consider
<code> tag and <pre> tag as the containers of source code
snippets and look for their presence in the body content. To

perform the tag checking, we use suitable regular expressions
and extract the tag content.

Automated & Manual Filtration: We perform manual
checking on the extracted tag content and find that those
tags generally contain the source code, but they may also
contain non-code elements like errors or exception messages,
configuration data, URL, file path, programming keywords
etc. We consider a list of heuristics to filter out the extracted
content containing non-code elements.

For automated filtration, the first feature we consider is
the importance of a line. We find the following lines are
insignificant and cannot be valid Java statements and there-
fore, discard them from extracted tag content- (1) Lines
start with <, ?,#, $, ./ characters, (2) Commented lines, (3)
Line containing less than 20 characters, (4) Blank lines, (5)
Declaration or access modifier statements e.g., line starts with
import, package Java keywords, and (6) URL/file location.
Once unimportant lines are filtered, we discard the unimportant
code fragments applying SO post score thresholds. The idea
is to select the high quality promoted and discouraged code
fragments. Once the automated filtration is done, we manually
investigate the filtered code and choose an optimal list of
fragments for the subsequent phase.

2) Proposed Classification Metrics: The basic de facto
metric for StackOverflow Post (SOP) classification is the score
of a post. In addition, we propose five other feature metrics
derived from the raw data about votes, vote types, page views
and comments. These features capture more practical insights
about the user feedback on the post content.

Acceptance Rate (AR): It refers to the ratio of total number
of up-votes (UV) to the total number of votes (TV) a post gets.
So, it can be considered as the probability of acceptance for
a post. Different posts having same score, may not have the
same the acceptance rate.

AR =
UV

TV
, TV > 0 (1)

Rejection Rate (RR): It refers to the ratio of total number
of down-votes (DV) to the total number of votes (TV) a post
gets. This is an important metric for classification or ranking
and we can consider it as the probability of rejection for a
post as the answer. If two posts are having the same score but
different rejection rates, then the post with lower rejection rate
is considered more reliable than the other.

RR =
DV

TV
, TV > 0 (2)

Code Major Answer (CMA): The metric indicates whether
the code fragments within the post plays the major role behind
StackOverflow post’s score or not. Apparently, to determine
the rationale of code fragment in a post is a daunting task, but
we propose the following statistical estimation to capture the
idea.

CMA =

{
1 if SCavg >= STavg

0 if SCavg > STavg.
(3)

Fig. 2. A Schematic Diagram of the Proposed Subjective Quality Detection Approach

Here, SCavg represents the average score of all the posts
containing code fragments and answering a question, and
STavg represents the average score of the set of posts not
containing code fragments and answering the same question.
So, if SCavg > STavg , we consider that the corresponding
set of answers depend on code fragments heavily. This metric
plays an important role in SO code fragment classification.

View Count (VC): It refers to the number of times the
post is viewed. StackOverflow only tracks the page view of
the logged in registered users and the guest views are not
considered. It is also an important metric for classification
with the intuition- the more a post is viewed, the more likely
it is a good post.

Comment Count (CC): It refers to the number of com-
ments added against a StackOverflow post. We find a propor-
tional relationship between score and the average comment
count of StackOverflow posts; that means, a good post en-
courages more discussion and alternative solutions in terms of
comments rather than a low quality post does.

3) Proposed Classification Algorithm: The score of Stack-
Overflow post is a straightforward metric for classification into
good or bad (low quality), but it provides less information for
the classification or evaluation of the post. Thus, we use the
above feature metrics (Section III-A2) for classification and
break down the de facto two classes into six finer classes -
Highly Promoted (C1)-e.g., Fig. 1(b), Promoted (C2)-e.g., Fig.
1(c), Moderate (C3), Discouraged (C4), Highly Discouraged
(C5)-e.g., Fig. 1(d), and Unknown (C6).

We also use a few heuristics such as Rejection rate threshold
(RR0), Up-vote threshold (UV0), and Comment count thresh-
old (CC0) to classify the SO posts into different classes. In
case of selecting Rejection rate threshold, we use a popular
heuristic called Pareto Principle [20] assuming that, if there
are 20% down-votes out of all votes, then they can affect
the rest 80% up-votes. Therefore, a post having 20% or more
down-votes is considered as a Highly Discouraged (C5) post.
Moreover, we select up-vote count threshold, UV0 = 8 since
our study shows that average up-vote count for all posts having
post score>0 is eight. We also notice a proportional rela-
tionship between score and average comment count of posts
which infers that a good post encourages more discussions or

alternative solutions in terms of post comments. The average
comment count for all posts is two and we select comment
count threshold, CC0 = 2. Algorithm 1 shows our proposed
algorithm for StackOverflow Post (SOP) classification based
on proposed metrics.

To complement our metrics-based classification which con-
siders absolute values of selected metrics, we also take the
relative rank of SO posts into consideration which we call
range based approach for classification. This approach consid-
ers the following principles for classification and complements
Algorithm 1 – (1) Posts having lowest 10% scores and
containing code snippets are classified as Discouraged (C4)
posts. Existing studies [14, 17] suggest that code snippets are
very likely to contribute to the SO post scores. Thus, when
some posts get the lowest scores despite having code snippets,
then the posts as well as the code snippets necessarily emerge
as suitable candidates for discouraged ones, and (2) The posts
having top 30% scores are classified under C2. Due to the
dynamic nature of community based evaluation, the rank of
posts with high scores are likely to change, therefore, we
consider top 30% posts as promoted posts (C2) rather than
choosing only the topmost. This idea can provide more robust
classification for StackOverflow posts.

4) StackOverflow Code Fragment Classification: Existing
studies suggest that the evaluation (e.g., votes) of a StackOver-
flow post is greatly influenced by the presence and soundness
of the code fragments in it [14, 17]. Therefore, the user
provided evaluation of the post equally implies to the quality
of the code fragments as well. We classify the extracted
and filter StackOverflow code fragments using the proposed
metrics (III-A2) and the Algorithm 1 (Section III-A3). Thus,
we get a list of promoted and discouraged code fragments
from StackOverflow which we use for code quality evaluation
of open source projects.

B. SO Code Fragment Based OSS Code Quality Prediction

Once we get the promoted and discouraged code fragments
from StackOverflow posts, we use different available tools and
techniques to find their occurrence in open source projects.

In general, we note that code fragments are unlikely to
be found verbatim in the project source code except a few
common answers. We consider different possible use cases

Algorithm 1 : Metrics Based SO Post Classification
1: Input: RR, V C,CC,UV
2: Output: C
3:

4: if RR = RRmin and V C > V C0 then
5: if UV > UV0 then
6: C ← C1

7: else
8: C ← C2

9: end if
10: end if
11: if RR = RRmin and CC > CC0 then
12: if UV > UV0 then
13: C ← C1

14: else
15: C ← C2

16: end if
17: end if
18: if RR > RRmin and RR <= RR0 − 0.10 then
19: if V C > V C0 or CC > CC0 then
20: C ← C2

21: else
22: C ← C3

23: end if
24: end if
25: if RR > RR0 − 0.10 and RR <= RR0 then
26: if CC > CC0 then
27: C ← C3

28: else
29: C ← C4

30: end if
31: end if
32: if RR > RR0 then
33: if CC > CC0 then
34: C ← C4

35: else
36: C ← C5

37: end if
38: else
39: C ← C6

40: end if

of the code fragments and realize that expecting the whole
code fragment verbatim in the project codes is impractical and
partial matching is a possible way to deal with the problem,
although there is a risk of false positive results. We anticipate
that clone detection tools are most likely to satisfy this goal of
partial matching [18] between StackOverflow code fragments
and open source projects. Therefore, we use two code clone
detection tools (e.g., Nicad [9] and SimCad [18]) to find the
occurrence of the SO code fragments in open source projects.

IV. SO CODE FRAGMENT CORPUS PREPARATION

In this section, we outline the details of our SO code
fragment corpus preparation.

Extracting StackOverflow Data: The first step of our
experiment is collecting the data dump from StackOverflow
site. We collected the most recent data (e.g., up to March,
2012) under creative common license [1]. The dumped data
are a large zip file containing data of six categories - badges,
posts, users, votes, post history and comments where each
category has its own xml file. We worked with posts.xml
and votes.xml file. While parsing posts.xml file, we found
that there exist 4.5 million post entries with different tags,
and we only considered the entries annotated with Java. We
extracted 332,628 post entries containing 86,970 question
posts and 245,658 answer posts. We also parsed the votes.xml
to collect necessary information about user votes on the posts.

TABLE I
CLASSIFIED STACKOVERFLOW POSTS STATISTICS

Post Class # Posts Post Class # Posts
Highly Promoted(C1) 3278 Discouraged(C4) 8024

Promoted(C2) 44993 Highly Discouraged(C5) 12419
Moderate(C3) 263914 Unknown(C6) 0

All information extracted was saved in a database for the
manipulation in the subsequent phases.

Performing StackOverflow Post (SOP) Classification:
In this phase, we used Algorithm 1 to classify the selected
posts from the previous step into different classes and Table
I shows the classification data. Here, we can see that 476
posts are classified as highly promoted (C1) whereas 740 posts
as highly discouraged (C5). Table II shows the classification
details of 10 StackOverflow posts along with the metrics. For
example, posts with Post ID 1605332 and 331407 have the
highest view counts with 100% acceptance rate. According to
Algorithm 1, they are classified as highly promoted (C1) posts.
To verify the classification, we manually checked those posts
in StackOverflow site and found that they are highly scored
posts and marked as favourite post by more than 50 users.

After metrics based classification, we performed range
based classification (Section III-A3) on StackOverflow answer
posts. We found 3773 posts having top 30% scores and con-
sidered them as promoted (C2) posts. We also got a collection
of 2541 discouraged (C4) answer posts containing lowest
10% scores for different questions. Finally, all classified posts
constitute our corpus for further analysis and experiments.

Performing SO Code Fragment Classification: Once
StackOverflow posts are classified, we used them to identify
promoted and discouraged code fragments (Section III-A4). It
is important to note that during code fragment classification,
the metric code major answer plays an important role.

We extracted about 8,000 code fragments from the classified
posts and performed filtration to discard unexpected non-code
elements (Section III-A1). After automated and manual filtra-
tion, we got a list 2,455 SO code fragments which were likely
to be selected for classification. However, to remove false
positives, we manually inspected each of the code fragment
and finally, got an optimal list of 1,921 code fragments. Then,
we applied the proposed metrics (Section III-A2) and the
algorithm (Section III-A3) to classify the code fragments into
promoted and discouraged classes. Table III shows the detail
statistics of promoted and discouraged SO code fragments
which we used for the case study with open source projects.

V. EVALUATION OF THE CLASSIFICATION ALGORITHM

One of the contributions of this research is to identify the
promoted and discouraged code fragments from SO posts, and
that is performed by our proposed classification algorithm. In
this section, we present two evaluation procedures to validate
the accuracy, sanity and applicability of the classification
algorithm (Section III-A3).

TABLE II
CLASSIFICATION OF STACKOVERFLOW POSTS

PID UV DV AR RR CC VC Class
1605332 12 0 1.00 0.00 3 5144 C1

331407 11 0 1.00 0.00 3 3707 C1

77213 14 0 1.00 0.00 0 2286 C2

299555 16 2 0.89 0.11 6 0 C3

25596 26 1 0.96 0.04 0 0 C3

65185 45 2 0.95 0.05 0 0 C3

1486124 2 4 0.33 0.67 10 0 C4

343491 4 5 0.44 0.56 3 218 C4

3772173 0 3 0.00 1.00 4 119 C4

3315554 0 3 0.00 1.00 10 202 C5

3616265 0 2 0.00 1.00 1 436 C5

TABLE III
CLASSIFIED CODE FRAGMENTS (EXTRACTED FROM SO POSTS)

Fragment Class # Fragments
Highly promoted(C1) 70

Promoted(C2) 841
Moderate(C3) 138

Discouraged(C4) 138
Highly discouraged(C5) 596

Unknown(C6) 106

A. Comparison with Machine Learning Algorithms

We started our classification with a small sized gold dataset
containing labeled posts from StackOverflow using three ma-
chine learning classifiers such as J48, Naive Bayes and Bayes
net. We used Weka and performed associative rule mining
among the evaluation metrics and anticipated that an ad-
hoc approach that could exploit certain rules was likely to
perform better and therefore, we continued with the ad-hoc
classification approach benefited from those machine learning
algorithms. However, to validate our approach for consistency,
we compared against those three state of the art machine
learning classifiers with complete data and found that they
can reproduce our classification results up to 93% accuracy
on average. We selected three independent samples of Stack-
Overflow posts (Table IV) and considered the proposed feature
metrics of each posts for the classification. We also used a 10-
fold cross validation to generalize the classification accuracy.

Table IV shows the results of our experiment. Here, we
can see that Naive Bayes performs almost the same (e.g.,
accuracy 87%) for all 3 sample sets, whereas the classification
accuracy increases consistently for Bayes net and J48 with
the addition of new samples. However, it is interesting to note
that these two algorithms reproduce nearly same results like
our proposed algorithm, which validates that our approach is
consistent with state of the art machine learning classifiers in
one hand and it performs better than any single classifier under
study on the other hand.

B. Validation by User Study

In the previous section, we validated the proposed classifi-
cation approach using machine learning algorithms. However,
in order to further confirm the applicability of the approach for
the identification of promoted and discouraged code fragments,

TABLE IV
MACHINE LEARNING CLASSIFICATION OF SO POSTS

#Sample Classifier #Classified #Misclassified Accuracy

6500

Proposed 6500 0 100%
Naive Bayes 5728 772 88.12%
Bayes Net 6025 475 92.69%

J48 6099 401 93.83%

13000

Proposed 13000 0 100%
Naive Bayes 11337 1663 87.21%
Bayes Net 12268 732 94.37%

J48 12231 769 94.08%

18030

Proposed 18030 0 100%
Naive Bayes 15747 2283 87.33%
Bayes Net 17121 909 94.96%

J48 16994 1036 94.25%

TABLE V
CODE FRAGMENT EVALUATION BY USER STUDY

PCCA1

Promoted Discouraged Moderate

SCUS2

Promoted 3 0 0
Discouraged 1 7 1

Moderate 1 3 4
1 Proposed class by our classification algorithm for code examples
2 Suggested class from user study for code examples

we conducted a user study. We chose 16 prospective partic-
ipants (13 Graduate research students and three professional
software developers) for the study. We selected five interesting
programming questions and four answers (containing code
fragments) for each question from StackOverflow. It should be
noted that any type of StackOverflow evaluation such as score,
comment, favourite count, view count etc. were hidden from
the participants. The idea is to validate whether the feedback
provided by our selected users matches against the decisions
made by our classification algorithm or StackOverflow eval-
uations. At this stage, we considered three broad classes out
of six finer classes shown in Table III for effective decision
making about the code fragments.

Table V shows the findings of our conducted user study. In
this study, each participant reviewed 20 answers under five
questions and provided ratings, comments and suggestions
about the answers and most importantly about the code ex-
amples contained by them. From Table V, we can see that
the user study suggests 3 code fragments as promoted, 9 code
fragments as discouraged and 8 code fragments as moderate.
Interestingly, our classification algorithm works fairly well and
can identify 3 promoted, 7 discouraged and 4 moderate code
fragments respectively from the corresponding results returned
by the user study. Thus, the proposed algorithm can classify
14 fragments out of 20 fragments correctly with an agreement
of 70% which is a satisfactory result against the ad-hoc or
subjective evaluation performed by the users. It should be
mentioned that for the case study and further analysis, we
used only the promoted and discouraged code fragments, and
the proposed approach can identify 10 code fragments out of
11 promoted and discouraged ones which gives an agreement
of 91% against the user study decisions. Thus, the finding
validates the applicability of our approach to identify promoted

The code snippet below shows how to display n digits. The
trick is to set variable pp to 1 followed by n zeros.
In the example below, variable pp value has 5 zeros,
so 5 digits will be displayed.

double pp = 10000;
double myVal = 22.268699999999967;
String needVal = "22.2687";
double i = (5.0/pp);
String format = "%10.4f";
String getVal = String.format(format,(Math.round((myVal +i)

*pp)/pp)-i).trim();

Listing 1. The discouraged code example

TABLE VI
GRAPHICS AND IMAGE MANIPULATION PROJECTS

Project # Source Files Project # Source Files
FidoCadj 75 Im4java 87

JavaNotelab 216 Javapeg 200
Jhotdraw7 689 JID2 53

JIU 212 JKiwi 48
Tess4j 14 TreeView 230

TABLE VII
MISCELLANEOUS OPEN SOURCE PROJECTS

Project # Source Files Project # Source Files
Ant-Contrib 186 Carol 367

DNSJava 182 Jabref 305
JFreeChart 1060 DSpace 1304

JLine 30 JSch 134
Jtds 119 Jxplorer 204

or discouraged code fragments.
Regarding the 30% disagreement of our classification ap-

proach against the user study, we manually looked into Stack-
Overflow and found that the users were not always successful
to identify the correct class. For example, Listing 1 is an
answer to the question How to round a number to n decimal
places in Java which was suggested as moderate by the user
study and our proposed approach marked it as discouraged.
Analyzing StackOverflow, we also found that it is a highly
discouraged code fragment containing inefficient solution that
lacks generalization and consistency; but the user study failed
to identify that. When we analyzed the comments from the
user study, we noticed that most of them rated it as moderate
because of its simplicity in the code.

VI. A CASE STUDY WITH OPEN SOURCE PROJECTS

In this section, we reported a case study with 1921 highly
promoted and discouraged code fragments (Table III) from
StackOverflow posts using 20 open source projects. Here, the
idea is to detect the occurrences of those code fragments in
the open source projects and provide useful insights such as
relative subjective quality of the projects.

A. The Case Study Configuration

1) Open Source Projects: We selected 20 open source Java
projects from sourceforge.net of varying sizes and types to
conduct the study. Table VI shows 10 related open source
projects for graphics and image manipulation whereas Table
VII contains 10 different projects from different domains

such as utility, networking, database management and digital
repository management.

2) Occurrence Detection: As noted for detecting the occur-
rences of the SO code fragments in the open source projects
we used SimCad and NiCad clone detection tools. Once the
code fragments were detected from the open source projects
for the given SO fragments, we investigated the results from
each tool to filter out the possible false positives and then we
merged the results.

B. Case Study Results and Interpretation - Project Code
Quality Insights

Table X and Table XI show the statistics of the occurrence of
StackOverflow fragments of Table III in different open source
projects and their classification. Our target is to provide the
relative subjective code quality of open source projects using
that classification information and the occurred StackOverflow
code fragments in the projects.

1) Result Interpretation: As noted our target is to help
the developers by providing important insights into the code
quality (e.g., relative quality) for a list of related open source
projects so that they can take wise decision before reuse
for customized or professional development. For example, let
us consider two open source projects- A and B. Project A
contains a few code fragments which are highly discouraged
(e.g., low-voted, buggy, malicious, or fragments that do not
follow standard practices) by the large crowd of StackOverflow
whereas project B does not contain such occurrences. Our idea
of this research is to mark project A as risky for development
and maintenance, therefore discouraged and project B as
healthy for the developer reuse.

From Table X, we can see that all projects except Fido-
Cadj(P1) and Tess4j(P9) contain at least four discouraged
code fragments each. As we know that discouraged code
fragments contain inefficient, buggy, out of date programming
solutions and therefore should be avoided, their occurrence
in the projects demonstrates a potential threat to the over
all project code quality. We note that JHotdraw7, JIU and
TreeView contain the maximum number of discouraged code
fragments and therefore, they are risky for developer reuse.
On the other hand, our proposed approach for relative code
quality evaluation marks FidoCadj and Tess4j as healthy for
developer reuse. The basic idea is to exploit the programming
community view and their subjective evaluation in the case
open source project recommendation.

We further attempted to find out how generally this concept
can be applied to other domains. Table XI shows the code
fragments found in 10 cross-domain projects. Here, we can
see that no project is free of the discouraged code; every
project contains a combination of promoted and discouraged
code fragments. However, Ant-Contrib(P11), DNSJava(P13)
and Jxplorer(P20) contain the lowest number of discouraged
code fragments. So, they can be considered possibly less risky
whereas DSpace (P16) and JFreechart(P15) hold higher risk
than any other projects in the list and therefore, they are not
recommended for developer reuse.

TABLE VIII
PROJECT SOURCE CODE EVALUATION BY PMD

Project # TEW1 # ERH2 # ER3 # PMDD4 PAD5

FidoCadj 3347 28 60 Promoted Promoted
JHotdraw7 16547 301 201 Discouraged Discouraged
JIU 5111 144 189 Discouraged Discouraged
Java Notelab 4983 334 162 Discouraged Discouraged
TreeView 7688 314 185 Discouraged Discouraged
Ant-Contrib 3347 70 110 Promoted Promoted
JLine 758 32 26 Promoted Promoted
Jxplorer 9340 322 428 Discouraged Promoted
JFreeChart 29347 240 421 Discouraged Discouraged
DSpace 31433 1144 660 Discouraged Discouraged
1 Total no. of error and warning messages
2 No. of errors (high priority)
3 No. of errors
4 Decision by PMD based on relative quality
5 Decision by Our Proposed approach based on relative quality

2) Summary: Fig. 3 visualizes the comparison between
the occurrence of promoted and discouraged code fragments
in 10 open source projects from graphics domain. We can
observe that JHotDraw7 (P5) contains the maximum number
of discouraged code fragments, whereas FidoCadj (P1) and
Tess4j (P9) contain no discouraged fragments. Basically, each
of the rest projects is having discouraged code fragments and
notably more than the promoted code fragments occurred.
However, we did not try to discover a correlation between
promoted and discouraged occurrence counts, but according
to our proposed community view of project idea, most of
the projects enlisted in Fig. 3 are not recommended for the
developer reuse.

Fig. 4 shows the percentage of source files affected by dis-
couraged code fragments for those 10 Java graphics projects.
Here, the idea is to demonstrate the dispersion of discouraged
code fragments in the project. we can see that discouraged
code fragments are more distributed in JIU (P7) and JKiwi
(P8) than rest of the projects and therefore, they are costly for
maintenance. In summary, our study shows that StackOverflow
can be successfully applied for OSS code quality evaluation to
(1) spot faulty or discouraged code fragments, and (2) assess
the relative code quality among different projects.

C. Case Study Results Validation by PMD

We used a standard source code quality evaluation tool,
PMD [4] for conducting an objective evaluation of the subject
systems with the aim of validating our subjective evaluation
for the same systems. PMD is a source code analyzer that
analyzes the project code and detects possible bugs, dead code,
suboptimal code, overcomplicated exceptions, duplicated code
etc. We chose 10 projects from Table VI and VII and analyzed
with the PMD tool. PMD produces five types of evaluation
data about a project under analysis based on the well accepted
rule set - (1) error (high priority), (2) error, (3) warning (high
priority), (4) warning, and (5) information. For this evaluation
task, we considered no. of error (high priority), no. of error
and total no. of error and warning messages for a project.
Table VIII shows the results of our conducted evaluation.

Table VIII contains five projects from graphics domain in

the first five rows. Here, we can see that FidoCadj contains
only 28 high priority errors whereas JHotdraw7, Java Notelab
and TreeView contain 301, 334 and 314 high priority er-
rors respectively such as AvoidThrowingNullPointerException,
AvoidUsingShortType, ConstructorCallOverridableMethod etc
which are detected by PMD. Now, if we consider the total
number of errors and warning messages for each project,
we also get the similar concept about the quality of the
project. Thus, in this case, PMD based evaluation denotes
that FidoCadj is relatively less risky for maintenance as it
contains less number of errors and alarming programming
constructs compared to others. Interestingly, similar type of
conclusions were drawn by our case study (Section VI-B)
regarding FidoCadj and others projects.

The last five rows of Table VIII show the PMD values of
five cross-domain projects. Here, we can see Ant-Contrib and
JLine contain less number of errors and warnings detected
by PMD compared to other projects. JFreeChart and DSpace
contain the maximum number of high priority errors which
makes them not recommended for developer reuse. However,
we found that the recommendation of our proposed approach
did not match with PMD based evaluation for Jxplorer project.
It contains 322 high priority errors which is relatively higher
compared to the promoted projects and therefore, it is marked
as discouraged for developer reuse. We thus attempted to find
this answer during the evaluation with project review sites in
Section VI-D below.

D. Case Study Results Validation by Project Review Sites

In this section, we chose two open source project review
sites, namely, ohloh.net, sourceforge.net and collected evalu-
ation information about the subject systems under study. The
idea is to consider the project developers’ activities and the
feedback provided the users of those projects to perform an
overall evaluation of the project. For ohloh.net, we found quite
a few interesting metrics such as Y-O-Y commit status and
percentage of comment lines of total source code which can be
considered as the ad-hoc indicators of the source code quality
of the project. Ohloh determines Y-O-Y commit status by
comparing the total number of commits made by all developers
during the most recent twelve months with the same figure for
the previous twelve months. From sourceforge.net, we found
weekly downloads count and number of recommendations
made by the project users, which can be considered as the
metrics for project quality evaluation. Table IX shows our case
study validation results using project review sites.

From the table, we see that three projects -FidoCadj, Ant
Contrib and Jxplorer are recommended and rest two projects
are discouraged. Here, Y-O-Y metric reflects the current state
of maintenance or development of the project, and weekly
downloads is an indicator of a project’s popularity. We note
that projects having decreased Y-O-Y are also having less
downloads, which denotes that without regular maintenance,
the code quality or project quality degrades and thus popularity
falls down (e.g., less weekly downloads). However, we note
an exception in case of Jxplorer which has more downloads

TABLE IX
PROJECT EVALUATION BY REVIEW SITES

Project Y-O-Y1 POC2 #WD3 # RC4 OPR5

FidoCadj increasing 32% 678 51 Promoted
JHotdraw7 decreasing 48% 81 17 Discouraged
Java Notelab decreasing 32% 97 16 Discouraged
Ant-Contrib stable 32% 1199 50 Promoted
Jxplorer decreasing 32% 2794 142 Promoted
1 Y-O-Y commit status of the project
2 Percentage of comments of the total source lines (32% is standard)
3 Weekly downloads
4 Total no. of recommendation by software users.
5 Overall project recommendation

despite decreasing Y-O-Y commit status. To find a suitable
explanation we looked into another metric- rating of the
project and found that it was 66%. For Jxplorer, we found
that 142 users recommended the projects whereas 73 users
discouraged it. That means, the project obviously contains
some issues which need to be fixed and therefore, the project
is not a recommendable one.

VII. RELATED WORK

Code quality is an important and critical health indica-
tor of software projects [8]. Software quality is a visual
characteristic which can be verified against the customer’s
requirement specification; whereas, quality of code is a hidden
attribute of software which can be perceived long after the
product is delivered [8]. So, the consequences of bad quality
software code are more serious and costlier in maintenance
phase. Several studies try to analyze code quality issues
from different perspectives. While some studies focus on
identifying code quality metrics like cyclomatic complexity,
line of code, function point, program dependency or control
flow measure (e.g., fain-in and fan-out) [2, 7, 15, 16], others
focus on developing different static code analysis tools [8, 19].
However, developer’s opinion about software code quality is
not recognized yet by any existing studies. In this research, we
considered the opinions of a large programming community
about a source code snippet and used them for code quality
evaluation as a subjective measure of software quality.

Social learning site like StackOverflow plays an important
role in solving programming problems and promoting good
coding practices [14]. This site has social incentives such as
vote, reputation, badge etc. to encourage good questions and
answers. Our work is influenced by few existing researches on
StackOverflow. Nasehi et al. [14] study the characteristics of
a good code example and argue that highly scored answer
posts are very likely to contain concise and efficient code
examples. van Emden and Moonen [19] investigate which type
of questions are frequently answered and discover that code-
review questions are mostly answered and accepted. From
these two studies, we deduce the idea that code fragment plays
a major role behind the score of a post and the evaluation of
StackOverflow post necessarily applies to its code fragments.
Anderson et al. [5] study how the dynamics of community
activities can shape the set of answer posts for a StackOverflow

TABLE X
FRAGMENTS CLASSIFICATION IN JAVA GRAPHICS PROJECTS

Project C1 C2 C3 C4 C5 C6

FidoCadj (P1) 2 1 4 0 0 0
Im4java (P2) 1 5 3 3 3 0

JavaNotelab (P3) 1 2 0 3 3 0
Javapeg (P4) 1 4 3 3 2 0

JHotDraw7 (P5) 1 6 5 5 4 0
JID2 (P6) 3 1 2 2 2 0
JIU (P7) 1 3 3 4 3 0

JKiwi (P8) 1 1 2 2 2 0
Tess4j (P1) 1 0 0 0 0 0

TreeView (P10) 3 4 2 4 3 0

question over time. We also consider the dynamic nature of
post evaluation by the crowd over time; therefore, we use score
range based post classification besides the metrics based post
classification.

Recently, open source projects are getting enormous im-
portance against the proprietary software, but, as they are
developed with a flexible and ad-hoc management style, their
quality and reliability need to be studied [10]. Several studies
about the quality of open source code are reported which are
also of great interest to us. Gyimothy et al. [10] propose a
fault prediction model for open source code using object-
oriented metrics. They analyze the source code of Mozilla
against the metrics to determine the fault-proneness of the
code. In our research, we also propose a list of metrics related
to StackOverflow post evaluation by a large programming
community to get the insights into open source project code
quality. Lavazza et al. [12] focus on the trustworthiness of
the open source code and they propose an approach to find
a quantitative relationship between the perceived quality of
source code and the set of quality metrics. Our approach infers
the quality and reliability of open source code based on the
occurrence of promoted and discouraged code fragments from
StackOverflow posts which reflects the subjective judgments
in measuring software quality.

VIII. LIMITATIONS AND THREATS TO VALIDITY

As code fragments from StackOverflow are used in a
modified form in the original project, we used clone detection
technology to find the occurrence of the code fragments in
the project though partial matching. We considered 70% -
100% similarity of project codes to StackOverflow fragment as
acceptable, but the accuracy of the fragment detection largely
depends on the performance of the clone detection tools.
However, we used two state of the art clone detectors that
give very high precision and recall [9] [18]. Furthermore, we
performed manual investigation in removing false positives.

The scores and evaluations of StackOverflow posts are
dynamic in nature, therefore, the classification of posts is likely
to change over time. While the proposed approach can always
be rerun with new data as time goes, we also attempted to
address the issue during classification of SO posts using the
relative rank-based classification (Section III-C).

TABLE XI
FRAGMENTS CLASSIFICATION IN MISCELLANEOUS PROJECTS

Project C1 C2 C3 C4 C5 C6

Ant-Contrib (P11) 1 1 2 0 3 0
Carol (P12) 1 4 3 2 2 0

DNSJava (P13) 1 3 3 3 0 0
Jabref (P14) 2 3 4 4 4 0

JFreechart (P15) 1 2 4 3 7 0
DSpace (P16) 1 6 4 5 8 0
JLine (P17) 1 2 2 0 2 0
JSch (P18) 2 1 3 3 3 0
Jdts (P19) 2 4 6 1 3 0

Jxplorer (P20) 1 3 3 1 2 0

Fig. 3. Promoted and Discouraged Code Fragments in Graphics Projects

Fig. 4. Ratio of Files Containing Discouraged Code Fragments

IX. CONCLUSION AND FUTURE WORK

To summarize, in this research, we proposed an approach
for SO-based OSS code quality evaluation which essentially
reflects the subjective evaluation of the software projects
by a large developer crowd. We evaluated the classification
algorithm using well known machine learning classifiers, a
user study involving 16 prospective participants and manual
analysis. We then demonstrated the applicability of the ap-
proach with an example case study with 20 software sys-
tems using ∼2000 classified code fragments from SO. Our
approach detected a number of discouraged and promoted
code fragments in each system and evaluated the project code
quality. In order to further confirm whether such subjective
evaluation indeed has any values, we also validated the results
of the case study using an objective code quality evaluation
tool, PMD and two code review sites and experienced strong
agreements between them and our results. Our study shows
that the proposed approach, while not being a replacement of
existing objective quality measurement tools, can indeed aid in
the subjective evaluation of software systems and can be used
as a third dimension to the existing tools. As an immediate

future work we plan to build an Eclipse plug-in following the
proposed approach.

REFERENCES

[1] Stackoverflow data dump. URL http://blog.stackoverflow.
com/category/cc-wiki-dump/.

[2] Code smell metrics. URL http://c2.com/cgi/wiki?
CodeSmellMetrics.

[3] Stackoverflow q & a post. URL http://stackoverflow.com/
questions/415953/generate-md5-hash-in-java.

[4] Pmd. URL http://pmd.sourceforge.net/.
[5] A. Anderson, D. Huttenlocher, J. Kleinberg, and

J. Leskovec. Discovering value from community activity
on focused question answering sites: a case study of stack
overflow. In KDD, pages 850–858, 2012.

[6] O. Arafat and D. Riehle. The comment density of open
source software code. In ICSE, pages 195–198, 2009.

[7] M. Bolton. What are the useful metrics for code qual-
ity? URL http://www.linkedin.com/answers/technology/
software-development/TCH_SFT/77088-3083818.

[8] Y. Bugayenko. Quality of code can be planned and
automatically controlled. In VALID, pages 92 –97, 2009.

[9] J. R. Cordy and C. K. Roy. The nicad clone detector. In
ICPC, pages 219–220, 2011.

[10] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for
fault prediction. TSE, pages 897 – 910, 2005.

[11] B. Kitchenham and S. L. Pfleeger. Software quality: The
elusive target. IEEE Software, 13(1):12–21, 1996.

[12] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi. Predicting
oss trustworthiness on the basis of elementary code
assessment. In ESEM, pages 36:1–36:4, 2010.

[13] M. Mäntylä and C. Lassenius. Subjective evaluation of
software evolvability using code smells: An empirical
study. Emp. Soft. Engg., 11(3):395–431, 2006.

[14] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example -a study of programming q
and a in stackoverflow. In ICSM, pages 25 –35.

[15] B. Norick, J. Krohn, E. Howard, B. Welna, and C. Izuri-
eta. Effects of the number of developers on code quality
in open source software: a case study. In ESEM, pages
62:1–62:1, 2010.

[16] R. PloÌĹsch, H. Gruber, C. KoÌĹrner, and M. Saft. A
method for continuous code quality management using
static analysis. In QUATIC, pages 370 –375, 2010.

[17] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web? (nier
track). In ICSE, pages 804–807, 2011.

[18] M. Uddin, C. Roy, K. Schneider, and A. Hindle. On the
effectiveness of simhash for detecting near-miss clones
in large scale software systems. In WCRE, pages 13 –22,
2011.

[19] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. In WCRE, pages 97 – 106, 2002.

[20] H. Zhang. On the distribution of software faults. TSE,
pages 301 –302, 2008.

