
The University of Saskatchewan
Department of Computer Science

Technical Report #2014-02

 1

Towards Source Code Clone Search via
Information Retrieval

Iman Keivanloo, Chanchal K. Roy, and Juergen Rilling

Abstract—Finding both pattern and content similarities in source code constitutes the core of several research domains such
as plagiarism and clone detection. Recently, code clone search as a new research branch has emerged aiming to provide
similarity search functionality for code fragments. Scalability, short response time, and the ability to search for Type-1, 2 and 3
clones are some of the major challenges which have to be dealt with by the clone search community. We introduce a clone
search model, based on clone detection and information retrieval that not only provides scalability, short response times, and
Type-1, 2 and 3 detection, but also supports result ranking. Ranking of result sets is a key functionality, which has been widely
overlooked previously by the clone search community. For our approach, the ranking not only forms the basis for ordering result
sets based on their similarity to a given query but also introduces an important quality concept in clone search beyond
traditional precision and recall measures. Our model takes advantage of a non-positional multi-level indexing approach to
achieve a search that is scalable with a high recall. Result sets are ranked using two information retrieval ranking approaches:
Jaccard similarity coefficient and cosine similarity. Both ranking approaches exploit code patterns’ and not tokens to derive local
and global frequencies. We studied the performance of our search engine through 40 candidate search schemata for Type-1, 2,
and 3 clones on a dataset covering 25,000 projects. Through benchmarking and various measures, we observed that clone
search via information retrieval is capable to deliver scalability with high precision and recall in near real-time.

Index Terms— Source code clone search, source code similarity, information retrieval, clone detection, source code search

—————————— � ——————————

1 INTRODUCTION
he term clone (Greek word klōn) dates back to Her-
bert J. Webber’s [WEH03] work in 1903, referring to

the outcome of a derivation activity in the context of liv-
ing species. While in computer science, such autonomous
reproduction is limited, derivation is an unavoidable fact
of programming and is known as cloning. Derivation
during software development usually occurs as the result
of reuse [PER88] [DEE05]. The ease of reuse and the po-
tential harms caused by cloning in software development
became a major motivation for computer scientists to in-
vestigate this type of code duplications. Consequently, a
research discipline - clone detection – [BEL07] [ROS09]
[BAK92] has emerged in computer science, which focuses
on devising novel algorithms and heuristics for finding,
tracing, and managing [KOS08] code clones. Although the
input data for this type of similarity search is source code,
which is structured and well organized, the clone detec-
tion problem remains a non-trivial problem due to the
different types of similarities that can be distinguished
[BEL07]. At source code level, clones share two types of
similarity: (1) pattern and (2) content similarity. The chal-
lenge lies often in determining if two code fragments
(e.g., “int temp=0;” and “float f=2) are actually cloned, as
they can hold only negligible content (e.g., token names)
similarity.

More recently, clone search (e.g., [LER10]) has emerged
as a new research direction that exploits the fundamentals
of clone detection research to provide (similarity) search

functionality for code fragments (i.e., clones). In contrast
to traditional clone detection, clone search is only con-
cerned with locating similar code fragments for a given
code fragment at run-time. In the literature, several terms
have been introduced to emphasize the importance of
response time in clone search, e.g., just-in-time [BAR10],
real-time [KAW09], and instant [LER10] clone search.
Several similarity and search models (exploiting clone
detection fundamentals) have been proposed to address
the core requirements of clone search: scalability, short
response time, and being able to search for Type-1, 2 and
3 clones. Similar to other search domains (e.g., Web
search), clone search models are dealing with large search
spaces returning often hundreds of matches for each que-
ry [KLX11]. We therefore believe that ranking of results
sets in clone search, as it is already in other domains, has
to be considered a core requirement.

In this research, we introduce a clone search model
that covers ranking, scalability, fast response time, and
Type-1, 2, and 3 detection. This model is based on our
earlier work on clone search [KLX11] [KLZ11] and its
emerging applications such as code search (e.g., [KLX12]).
Our studies in [KLX11] have shown that a multi-level
indexing approach can achieve scalability, short response
time, and search capabilities for Type-1, 2 and 3 clones.
However, support for ranking was missing.

For this research, we extended our multi-level index-
ing approach by adopting the Jaccard similarity coeffi-
cient [JAC01] and cosine similarity [MAN08] to provide
ranking of the result sets. Thus clone search ranking ap-
proach exploits code patterns’ (not token) local and global
frequencies for assigning different weights to search re-

————————————————
x Iman Keivanloo, Queen’s University. E-mail: iman.keivanloo@queensu.ca.
x Chanchal K. Roy, University of Saskatchewan. E-mail: croy@cs.usask.ca.
x Juergen Rilling, Concordia University. E-mail: rilling@concordia.ca.

T

2

sults, depending on the popularity of the patterns. For
example, a domain specific pattern (e.g.,“EclipseEditor
foo=new EclipseEditor()”) can be assigned higher weights
compared to some general code patterns (e.g., “catch (Ex-
ception ex) {“). Moreover, the adaptation of Jaccard and
cosine similarity makes it possible to discard all positional
information during indexing and pattern matching. Dis-
carding such positional information improves the scala-
bility and performance in terms of memory consumption
for indexing and computational complexity of the pattern
matching.

We have studied the applicability of our similarity
search model using a representative dataset of 25,000
open source Java projects. We evaluated the performance
(scalability, response time, ability to detect Type-1, 2, and
3 clones as well as the ranking of result sets) of our search
model, using 40 different clone search configurations.

For the evaluation of the ranking, we compared these
schemata based on their ability to provide result sets in
which the correct and most relevant search results were
consistently placed in the top of these result sets. The
evaluation was performed on a large corpus containing
approximately 356 Million LOC, and a clone benchmark,
which includes 50 queries and 650 seeded Type-1, 2, and
3 clones. Our evaluation study also includes an extensive
manual relevance scoring for 117,000 results, which were
extracted from the top-60 hits of over 2000 experimental
queries. As part of this manual evaluation, we analyzed
the relevancy of 80,000 hits using a predefined scoring
guideline, comparing both their clone types and their
similarity with the search query.

We selected 5 measures from the IR literature, to eval-
uate different quality aspects of our clone search model
and to identify outperforming schemata. We observed
that our approach is scalable; there are certain configura-
tions of our model that are able to answer a given query
in real-time (~100 milliseconds). The identified configura-
tions also (1) detect all of the known Type-1, 2 and 3
clones (2) and successfully rank them at top of the result
set.

The remainder of the paper is organized as follows.
Section 2 outlines related work in clone detection, similar-
ity search and code search. Section 3 introduces our clone
SeClone search model. Section 4 discusses retrieval and
indexing steps of our search model in details, with the
different ranking schemata of our search model being
covered in Section 5. Section 6, provides a discussion on
the data characteristics of the corpus being search in our
domain of discourse. Section 7 introduces the measures
we adopted from other domains to support our qualita-
tive analysis of clone search results (e.g., information re-
trieval). Finally Sections 8, 9, 10 and 11 provide the
benchmark preparation, performance evaluation results,
followed by threats to validity and conclusions.

2 BACKGROUND AND RELATED WORK
In this section, we present a review of both early research
and the state of the art in (1) source code clone, (2) code
clone detection, and (3) code similarity.

2.1. Background
One of the earliest similarity detection approaches dates
back to the work by Ottenstein [OTT76] in 1976. Otten-
stein introduced a metric-based approach for the detec-
tion of plagiarism in student programming assignments.
His work also included a discussion on potential dissimi-
larity types that were supported by a plagiarism detection
algorithm, such as re-formatting, re-naming and re-
ordering of statements. Later on, Grier [GRI81] in 1981
extended Ottenstein’s work to Pascal code. The first actu-
al reference to the clone concept in the source code and
programming domain dates back to the work by Abrams
and Myrna [ABR79] in 1979. They used the term clone in
a Programming Language (APL) context describing it as
“… creates an output file and starts a "clone" of itself”.
The concept of a “clone” in source code was later used by
Jacobsen [JAC84] to describe a pre-defined command,
and by Caudill and Wirfs-Brock [CAU86] as a reproduc-
tion of executable files in Smalltalk. Tanenbaum [TAN87]
used clone to describe the variations of a software system.
During the 1980s, the term clone was further popularized
mostly through its use as a reference to computer hard-
ware, such as compatible computer (hardware), an IBM
compatible (or short IBMclone) computer [KEL83] or, in
[LOM83], as “…can’t tell what is on my disk without a
clone of my computer”. Among the first researchers who
actually used the term clone detection at the source code
level were Carter et al. in 1993 [CAR93]. They described
clone detection as the process of finding similar telecom-
munications systems using neural networks.

Over the last two decades, clone detection, the process
of finding code duplications in programming content
[ROS09], has matured as a research discipline in comput-
er science and resulted in a number of clone detection
techniques. Common to these traditional detection tech-
niques is that they perform a complete off-line search step
to find all possible clone pairs within a static source code
repository. At source code level, clones share two types of
similarity: (1) pattern and (2) content. Table 1 provides an
overview, including examples, of the three basic similari-
ty types related to syntactical clones.

Table 1. Examples for source code similarity types (i.e., clone types)

The input code sample
HashMap var=new HashMap (10);

Similarity
Type

Example

Type-1

HashMap var = new HashMap (10);

Additional Whitespace

Type-2

HashMap list1=new HashMap ();

Different variable name

Type-3

HashMap list1=new HashMap (list2.size());

Additional Code

These are clones (Table 1) with an observable similari-

ty in the source code. Type-1 clones are exact copies of
each other, except for possible differences in whitespaces

AUTHOR ET AL.: TITLE 3

and comments. Type-2 clones are parameterized copies,
where variable names and function calls have been re-
named and/or types have been changed. Changes (e.g.,
addition and deletion of statements) in a clone pair result
in type-3 clones. In cases where two fragments share simi-
lar functionality with different syntactical presentations,
they constitute a Type-4 clone pair.

2.2. Related work
While earlier work in code clone and similarity research
had mainly focused on detecting plagiarism in source
code, this focus started to shift in the 1990s with software
maintenance emerging as a new application for clone de-
tection. In 1992, Baker [BAK92] proposed Dup, a tool to
support software maintenance and bug fixing by detect-
ing duplicate code. The Dup tool also implemented a
clone detection solution, which exploited hash values and
inverted-indexes to facilitate the search process during
clone detection. Later approaches, such as metric-based in
Merlo et al. in 1996 [MAY96] and AST-based Baxter et al.
in 1998 [BAX98], supported the use additional facts ex-
tracted from source to further improve scalability, per-
formance, and efficiency of clone detection approaches.

Clone Detection. Most clone detection approaches
(e.g., CCFinder [KAM02]) are based on sequence compar-
ison. Data dependency and program dependency graph
(PDG) are also studied for clone detection as alternative
representations of computer program (e.g., Jia et al.
[JMM09] or Higo and Kusumoto [YHU11]). Recently,
novel search and retrieval models were introduced to
scale clone detection to larger corpora such as scalable
clone detection using suffix trees by Koschke [KOS12]
and Göde [GRK09], R ∗ tree by Jiang et al. [JIA07], sim-
hash by Uddin et al. [UDD11][UDD13] and Levenshtein
metric and Manhattan distance by Lavoie and Merlo
[LAV11][LAV12]. Similarity measures and ranking for
clone detection is also studied by Smith and Horwitz
[SMI09]. There is also a body of work on the other forms
of clones such as structural clones by Abdul Basit and
Jarzabek [ABJ10] and semantic clones by Kim et al.
[KKI11] and Gabel, Jiang, and Su [GJZ08]. Several appli-
cations for clone detection are discussed in the literature
such as maintenance improvement by pro-active clone
detection by Jablonski and Hou [JAH10].

While the existing research is focused on clone detec-
tion, it also forms the foundations for any research about
code similarity measurement and clone search. Our re-
search approach is similar to the one by Carter et al.
[CAR93] since both use cosine similarity. Our approach
also shares commonalities with the vector space models
used by DECKARD [JIA07] and Carter et al. [CAR93].
However, we create the vectors using code patterns in-
stead of metrics and predefined code fingerprints [JIA07]
[CAR93]. Also compared to the work in NiCad [ROS08]
and CCFinder [KAM02]), we deploy a non-positional
similarity search instead of a sequence matching ap-
proach. This approach provides us the possible of achiev-
ing scalability and real-time response time both together.

Non-positional retrieval is explored earlier by Smith and
Horwitz [SMI09], Baker et al. [BAK98], and Uddin et al.
[UDD11][UDD13]. Our research focuses on the applica-
tion of Information Retrieval models for clone search. Our
approach not only detects the major clone types but also
is aiming to discriminate among Type-1, 2 and 3 clones.
Being able to differentiate between Type-1, 2, and 3 is
important if we want to rank the detected fragments
based on their similarity to the query.

In other research domains such as concept location, in-
formation retrieval has been explored for code similarity.
Marcus and Maletic [MAR01] used Latent Semantic In-
dexing (LSI) to extract semantics from source code facts
(e.g., identifier names) to guide the detection of code
fragments implementing similar features. LSI also has
been exploited by Tairas and Gray [TAI09] for clone re-
sult clustering. Kontogiannis [KON97] uses a basic IR
infrastructure and Mishne et al. [MIS04] introduced an
approach using Conceptual Graphs and structural infor-
mation to find similar code.

Clone Search. Although detecting code similarities
and patterns is a well-established research area in clone
detection, more recently “source code clone search”, a
research area also known as just-in-time [BAR10], real-
time [KAW09], or instant [LER10] clone search has
emerged. While clone search still shares its fundamentals
with traditional clone detection, both its objective and
requirements differ significantly. Traditional clone detec-
tion applications are based on a complete off-line search
step to find all possible clone pairs within a static source
code repository. In contrast, code clone search models can
be considered as specialized search engines that are de-
signed to find clones matching a single fragment (query)
within an often large corpus. Clone search approaches
index source code repositories as part of their off-line
processing and use input provided in the form of a code
fragment at run-time, to trigger and perform the search
process.

SHINOBI [KAW09] provides the search functionality
via a suffix array built on transformed tokens using
CCFinder’s rules [KAM02]. Hummel et al. [HUM10] use
inverted index for scalable Type-2 clone search. A multi-
dimensional token-level indexing approach is introduced
by Lee et al. [LER10] [LEM11] using an R ∗ tree on
DECKARD’s [JIA07] approximate vector matching. The
language elements (e.g., assignment) constitute the di-
mensions of the search space. Barbour et al. [BAR10] in-
troduce a result sampling approach that uses results ob-
tained from other clone detection tools to find candidate
clones. The collected candidates are indexed and then
compared by Knuth-Morris-Pratt string searching algo-
rithm [KNU77]. Zibran and Roy [ZIB12] introduced an
IDE-support for Type-3 clone search based on Rabin’s
fingerprinting algorithm and suffix trees. Bazrafshan and
Koschke [BAZ11] exploit Chang and Lawler’s search al-
gorithm, which was originally proposed for the bioinfor-
matics domain to find approximate source code patterns.

4

Ranking:

Retrieval:

Query Data
Code Fragment

List<String> files;
files=db.loadFiles(“/usr”);
for(String f : files))
{

String content=readFile(f);
System.our.println(content.size());

}

Optional: SearchSchema (preferences)

Normalization

Multi-level index

Open Source Java Projects

Tr
an

sf
or

m
at

io
n

(p
at

te
rn

 o
rie

nt
ed

)

Query

Result

Styled Code
 Fragments

List<String> files;
files=db.loadFiles(“/the_other_user”);
for(String f : files))
{

String content=readFile(f);
System.our.println(content.size());

}

file=db.loadFile(“/usr/uid”);
String content=readFile(f);
System.our.println(content);

List<String> files;
files=db.loadFiles(“/usr”);
ArrayList<String> contents=new ArrayList<String>();
for(String f : files))
{

String content=readFile(f);
contents.add(content);

}

Iterator<String> files;
files=db.loadFiles(“/usr”);
for(String f : files))
{

boolean status=deleteFile(f);
}

List<String> files;
files=db.loadFiles(“/usr”);
ArrayList<String> contents=new ArrayList<String>();
for(String f : files))
{

try{
String content=readFile(f);
contents.add(content);

catch(Exception ex){
System.our.println(f);

Top K (Ranked Result Set)
HIT# 1

HIT# 2

HIT# 3

HIT# 4

HIT# 5

Search Schemas Jaccard Cosine

Weighting Function

Content-oriented
Hash Values

Candidate Fragments
2nd set

Top K result set

Candidate Fragments
1st set

C
on

te
nt

-o
rie

nt
ed

 H
as

h
V

al
ue

sJava
Files

Crawler

1st Non-positional
inverted index

2nd Non-positional
inverted index

Preparation:
Query Processing (Normalization->Trans.->HashValueGen.)

Pattern-oriented
Hash Values

Tr
an

sf
or

m
at

io
n

(c
on

te
nt

 o
rie

nt
ed

)

P
at

te
rn

-o
rie

nt
ed

 H
as

h
V

al
ue

s

Offline Processes Online Processes

Figure 1. SeClone –clone search approach

In our earlier work on clone search [KLX11] [KLZ11],
we introduced a hash-based inverted indexing approach,
which uses multi-level indexing for Type-3 clone search.
Our research differs from earlier work (including ours) on
clone search since we are aiming to provide a clone search
model that includes not only support for Type-2 and 3
clones but also ranking of the result set. Moreover, we are
proposing adaptation of non-positional search space of
code patterns and information retrieval models for both
retrieval and ranking. To the best of our knowledge, Jac-
card coefficient and vector space model (combined with
local and global frequencies) via cosine similarity for a set
of vectors made of code patterns have not been studied
before for clone search.

3 A MODEL FOR CLONE SEARCH
In this section, we introduce our code clone search ap-
proach, SeClone, which supports up to Type-3 clone,
scalability, fast response time, and ranking of result sets.
Our model is based on existing models, including vector
space model (VSM), cosine similarity, and Jaccard similar-
ity coefficient (JSC) from information retrieval (IR). They
are frequently used by the IR community for similarity
search due to their scalability to large corpora [BRI98]
[MAN08].
We are motivated to adapt them in our research since
common to both models is low computational complexity
for Type-3 clone search process. The low complexity is
due to their non-positional approach. The non-positional
similarity search is different from the dominant matching
approach in clone detection that is positional (e.g., longest
common subsequent (LCS) [HUN77] and suffix tree).

3.1 Overview
SeClone combines multi-level indexing and information
retrieval ranking models. Our approach is able to find the
closest matches (hits) to a given query, and return these
hits as a ranked result set based on their similarity to the

input query. Figure 1 provides an overview of SeClone
and its major processing steps, which include: (1) prepro-
cessing, (2) indexing, (3) retrieval and (4) ranking. The
performance (off-line and online processing) of our search
model approach is configurable via its search schema,
which consists of nine parameters (Figure 2).

Preprocessing. SeClone is a line based detection ap-
proach that uses abstract syntax tree (AST) as its input for
the offline preprocessing step. SeClone parses the ASTs of
individual files to create a uniform representation, anno-
tated by token types. The preprocessing step also trans-
forms AST tokens using transformation rules, which are
specified through the search schema parameters 𝑡 and 𝑡௦.
These transformation rules generate an encoded code
patterns (𝑒𝑝) for each line of code.

The second index
config.

The first index
config.

Scoring schem
a

Size function

Local frequency

Global frequency

Frequency
norm

alization

Ranking Retrieval & Indexing

Figure 2. The SeClone search schema - configuration parameters

Indexing. Our approach uses multi-level indexing. By
default, it creates two1 inverted indices, denoted by p
(primary) and s (secondary). The 𝑒𝑝 datasets, generated
by the transformation rules 𝑡 and 𝑡௦, are indexed as hash
table-based indices. The hash values can be generated for
different granularities: 𝑔 and 𝑔௦ which are specified as
part of the search schema.

Retrieval. At run-time, SeClone creates two 𝑒𝑝 datasets
for the given query (i.e., code fragment). The hash values

1 Our multi-level indexing idea implies that the actual number of
indices should be at least two when both pattern and content simi-
larity are important (e.g., Type-3 clone search). However, depending
on the actual application context, additional indices can be added.

AUTHOR ET AL.: TITLE 5

are generated using the same configuration used by the
preprocessing and indexing steps. Finally, SeClone gen-
erates two vectors (𝑣௬ and 𝑣௦ௗ௬) for each query
𝑞 using hash values of the encoded code patterns:

𝐼𝑛𝑝𝑢𝑡 (𝑜𝑟𝑑𝑒𝑑𝑟𝑒𝑑 𝑏𝑎𝑔): 𝑞 (𝑙ଵ, … , 𝑙௬)
𝑣௬ < 𝑒𝑝ଵ

, 𝑒𝑝ଶ
, 𝑒𝑝ଷ

, … , 𝑒𝑝
 >

𝑣௦ௗ௬ < 𝑒𝑝ଵ௦, 𝑒𝑝ଶ௦, 𝑒𝑝ଷ௦, … , 𝑒𝑝௦ >
These vectors ignore the ordering of the elements similar
to our inverted indices. For each vector, a look up action
is performed on the corresponding index. The goal is to
retrieve all code fragments indexed in the corpus, which
share at least one hash value 𝑒𝑝௫

௬ with the query. The un-
ion of both candidate sets, from the primary and second-
ary indices, constitutes the complete set of hits, i.e., all
clone candidates.

Ranking. The retrieval step finds all possible answers
for a given query. However, all of them are not equally
similar to the query. In addition, in a comprehensive cor-
pus most of the candidates are false positives. The goal of
ranking step is to sort them based on their similarity de-
gree to the query (e.g., Figure 1). Without a proper rank-
ing, the end user has to iterate over thousands of matches
to find the true positives. Our ranking models are based
on VSM and JSC, which both can be configured within
our search schema (𝒂. 𝒃𝟏𝒃𝟐𝒃𝟑𝒃𝟒. 𝑡𝑔. 𝑡௦𝑔௦), with the rank-
ing parameters being highlighted in bold. Similarity
scores are calculated for each hit that is returned by the
retrieval step. SeClone generates the final ranked result
set (e.g., Figure 1) by sorting the hits over the calculated
similarity degree. Figure 3 summarizes the SeClone
search algorithm for both retrieval and ranking steps.

Figure 3. Algorithm overview for retrieval and ranking steps

3.2. Computational complexity
A summary of the computational complexity of our

approach for both run-time complexity and memory con-
sumption is shown in Table 2. For the analysis, we ex-
cluded style unification, transformations, and AST build
times, since they are negligible and linear to the size of
the input data set.

We separate our analysis in three major processing
steps: (1) off-line indexing for creating the hash table indi-
ces, (2) the actual search, which includes retrieval and
ranking, and (3) the corpus update. 𝑇 represents the in-
verted index size, which is 𝑂(𝑛) with 𝑛 being the size of

the corpus in terms of lines of code (LOC). The size of the
result set is represented by 𝑐, and the total number of up-
dated lines of code by 𝑙, with the expected lookup com-
plexity for the inverted index being 𝑂(1), since the index
is hash table-based. The resulting clone search time com-
plexity is 𝑂(𝑐 ∗ log 𝑐), since in order to create the ranked
result set all hits must be first sorted based on their rele-
vance scores. This low time complexity for both clone
search (including Type-3 clones) and repository prepara-
tion can be attributed to the use of non-positional index-
ing. Memory consumption for indices is also almost line-
ar. This cannot be further optimized without the use of
compression and other abstraction mechanisms.

Table 2. SeClone computational complexity

 Processing step Time com-
plexity

Memory com-
plexity

Repository preparation (Indexing) 𝑂(𝑛) 𝑂(𝑛)
Clone search 𝑂(𝑐 ∗ log 𝑐) 𝑂(𝑐)
Repository update (content
addition/deletion) 𝑂(𝑙) 𝑂(𝑙 + 𝑇)

4. SECLONE INDEXING MODEL
In this section, we describe the details of our indexing
approach. Our clone search model uses the concept of
encoded code pattern (𝑒𝑝) to construct its search space.
An encoded code pattern is a template that defines a cer-
tain degree of similarity. The idea of encoding code pat-
tern supports Type-2 detection following Baker’s p-strings
[BAK92]. However, instead of using these patterns direct-
ly, they are transformed to hash values. Hash values pro-
vide an efficient numeric representation of textual content
in terms of space consumption and retrieval (lookup)
times, with a lookup complexity of 𝑂(1). Both of these
properties are important for our model to ensure that it is
both scalable and efficient.

4.1. Encoded code pattern generation
Our encoded code patterns are based on line granularity.
Encoding the original code content “as is”, would consti-
tute the most restrictive 𝑒𝑝, and only allow to de-
tect/match exact (Type-1) clones during the search pro-
cess. Less restrictive encoding increases recall and sup-
ports Type-2 clone search however, at the cost of lower
precision. In our research, we defined a number of mod-
els for encoding code patterns to address the tradeoff be-
tween recall and precision. Each model is defined
through (1) a transformation function and (2) its encoding
granularity. The granularity (g) determines the number of
neighboring lines of code that will be considered for the
encoding. The transformation function 𝑡, on the other
hand, determines the parameterization rules.

Hash function. The hash function 𝐻 is used for gener-
ating hash values that represent the encoded code pat-
tern. The function uses four input parameters: the code
fragment 𝑐, offset 𝑜, granularity 𝑔, and the transformation
function 𝑡.

𝐻(𝑐, 𝑜, 𝑔, 𝑡) = 𝑣

Algorithm 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙_𝑎𝑛𝑑_𝑅𝑎𝑛𝑘𝑖𝑛𝑔(𝑞, 𝑖𝑥, 𝑖𝑥௦, 𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ. 𝑡𝑔. 𝑡௦𝑔௦)
Input q : query’s code fragment, ixy: primary and secondary indices
Output ℎ𝑖𝑡𝑠: ordered set of all candidate clone fragments based on their similarity
to the query

1. 𝑣௬[] ← 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒(𝑞, 𝑡, 𝑔) //𝑣௬: the un-ordered set of hash values
2. 𝑣௦ௗ௬[] ← 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒(𝑞, 𝑡௦, 𝑔௦)
3. for h in 𝑣௬ //find and add all fragments with at least one occurrence of h
4. ℎ𝑖𝑡𝑠௬[] ← 𝑖𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝(ℎ)
5. for h in 𝑣௦ௗ௬
6. ℎ𝑖𝑡𝑠௦ௗ௬[] ← 𝑖𝑥௦. 𝑙𝑜𝑜𝑘𝑢𝑝(ℎ) //this is an un-ordered set of all candidate

clones
7. ℎ𝑖𝑡𝑠[] ← ℎ𝑖𝑡𝑠௬ ∪ ℎ𝑖𝑡𝑠௦ௗ௬
8. for hit in ℎ𝑖𝑡𝑠
9. ℎ𝑖𝑡𝑠′[] ← 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑞, ℎ𝑖𝑡, 𝑎, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ)
10. sort(ℎ𝑖𝑡𝑠′ 𝑜𝑛 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒)
11. return hits

6

Figure 4. Example of SeClone’s hash and transformation function output

Since our approach is a line-based clone search, the
hash function also operates at line level granularity. Con-
sequently, the input code fragment has to be at least one
syntactically complete line of code. The offset refers to the
line of code that is used as a target line for the hash value
generation process. The generation of hash values for a
code fragment requires the function to be called several
times, by iterating over the target line parameter.

Granularity. The 𝐻 function generates hash values not
only based on the target line content, but also on its
neighboring content. While having a single line granulari-
ty can increase recall, such fine-granularity often decreas-
es precision, as the overall similarity depends not only on
the resemblance of the participating lines but also on their
order. Therefore, to improve search precision, code pat-
terns should also be encoded for higher granularity lev-
els. In our approach, can generate hash values for a target
line at both one and three-line granularities (Table 3).

Transformation functions. Table 4 reviews the trans-
formations (t) supported by our approach, including their
semantics, i.e., type of transformation being performed. A
key difference among these transformations is their em-
phasis on either content or pattern resemblance. While
content resemblance focuses on token name similarities,
pattern resemblance enforces the order of tokens regard-
less of the token names. For example, the transformation
function 𝑤 ignores the token ordering completely, while
m attempts to keep the balance between patterns and con-
tent resemblance.

Example. For line-based detection approaches, code
layout unification through formatting and normalization
is an essential processing step to increase recall of the re-
trieval algorithm [KAM02]. Layout unification requires
normalization of all source code extracted from the code
repository and the search queries. During the layout
normalization, information from the AST of each source
code file in the repository is used to extract tokens and
data types. The extracted information is the input to the
transformation functions. Furthermore, a combination of
transformation function and granularity parameters can
be used to specify a specific encoding model. For exam-
ple, 𝑚3 refers to the TLS granularity using the trans-
formed lines of code with only method name preserva-
tion. Figure 4 illustrates the complete process how our
hash function assigns an identical value to two different
code fragments by exploiting the 𝑚3 encoded pattern
model. In this case, the code fragments identified by the
target lines 53 (i.e., lines 52-54) and 84 (i.e., lines 83-85)
share the same pattern but their content resemblance is
low due to differing class and variable names (Figure 4).

Table 3. SeClone pre-defined granularities for hash function – 𝑔

 Granularity Description
FLS 1 Only the target line that is specified by the

offset parameter must be considered
TLS 3 The target line specified by the offset

parameter 𝑜 including 𝑜 − 1 and 𝑜 + 1 lines
must be considered - Three lines in total

Table 4. SeClone source code transformation functions – the 𝑡 parameter
Transform

ation function

D

escription

D
escription

Style unification

Preserve code ordering w
ithin line

Preserve m
ethod call nam

es e.g.,
toString()

Preserve class nam
es e.g., Stream

Preserve sym
bols e.g., ()

Preserve prim
itive types e.g., int

Preserve language keyw
ords

Preserve constants and literals

Preserve variable nam
es

exact
x Same as input except for

changes in style
x x x x x x x x x

loose (Type-1)
l Same content for all code

fragments which can be
considered as Type-1
clone

x x x x x x x - x

word set
w An unordered set of the

selected fingerprints
(only method and type
tokens)

x - x x - x - - -

transformed tokenized method fingerprints
m Preserves only method

names in method call
tokens and the overall
pattern, while the content
(i.e., names) of the other
tokens are ignored via
replacing them by a
single place holder (e.g.,
#).

x x x - x x x - -

transformed tokenized method and type fingerprints
c Similar behavior as m

except it preserves the
content of both method
and type tokens.

x x x x x x x - -

4.2. Non-positional multi-level indexing and
retrieval

In this section, we discuss the motivation behind our idea
for non-positional multi-level indexing. The encoded code
patterns represented by hash values support the detection

Transformed Lines
(using m function)

FLS Value
(m1 Hash Value)

TLS Value
(m3 Hash Value)

06: import java.io.File;
...
52: Set<AttributeEntity> remAttrributes; # #; -2342 -2342
53: Map<String, AttributeEntity> theAttributes; # #; -2342 -2342 370
54: for(AttributeEntity var : t.getAttributes()){ for(# #:#.getAttributes()){ 59378 59378
…
83: List<String> fieldNames; # #; -2342 -2342
84: for(JAttribute form : f.getAttributes()){ for(# #:#.getAttributes()){ 59378 -2342 370
85: List<String> formulaNames; # #; -2342 59378

Source Code
(c parameter) TLS Entity

TLS GroupsFormat unification
Transformation

Sort
Sort

1 Line Granularity 3 Lines Granularity

Sa
m

pl
e

Ta
rg

et
 L

in
es

H(c,53,3,m)=

H(c,84,3,m)=

AUTHOR ET AL.: TITLE 7

of two categories of similarities, pattern and content simi-
larity. Figure 4 provides an example of two cloned frag-
ments which are identified as similar using the 𝑚3 model.
Standard hash value-based indexing and retrieval ap-
proaches can identify these two code fragments as clones.
However, if a third fragment exists in the corpus that is
identical to the first fragment (line 52-54), a single index-
ing model using a single encoded code pattern will not be
capable of distinguishing potential differences in similari-
ty (e.g. content or pattern) among these three fragments.
Such differentiating however is required to be able to dis-
tinguish and rank hits in the result set. Using our multi-
level indexing and retrieval approach for the clone search
problem we deploys two (or more) indexes at the same
time, with each index capturing specific types of similari-
ty (i.e., content or pattern).

5. SECLONE RANKING MODEL
A contribution of our research is that it addresses the
ranking of clone search result sets using Information Re-
trieval (IR) models. The ranking model determines the
position of hits in the result set. The position is based on
their degree of similarity represented by the pair <
𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡 >.

5.1. Ranking approaches
As discussed earlier, the hash values of the encoded code
patterns constitute the basic entities within our search
space. For our ranking model, any code fragment that
shares at least one hash value with a given query will be
considered for the ranking. Our ranking approach is
based on two similarity models that have been widely
used in IR [MAN08]: (1) Jaccard similarity coefficient and
(2) the vector space model with cosine similarity.

5.1.1. Jaccard coefficient
The Jaccard similarity coefficient is a widely used set the-
ory function for content matching and measuring the se-
mantic similarities. We calculate the semantic resem-
blance of two blocks based on their shared content (e.g.,
lines), regardless of their order. Our ranking model
measures the content similarity of two code fragments
using the numerical output of the Jaccard coefficient. We
denote 𝑠ଵ and 𝑠ଶ as the sets which contain hash values
that belong to the search query fragment (𝑠ଵ) and the
matched fragment (𝑠ଶ). Both 𝑠ଵ and 𝑠ଶ neither contain du-
plicate instances nor do they preserve the ordering
among entities, due to our non-positional index approach.

𝐽(𝑠ଵ, 𝑠ଶ) =
|𝑠ଵ ∩ 𝑠ଶ|
|𝑠ଵ ∪ 𝑠ଶ|

5.1.2. Vector space model
In addition to the Jaccard coefficient, we also take ad-
vantage of the vector space model (VSM) for the ranking
of result sets. A key benefit of VSM is that it provides ad-
ditional flexibility during ranking compared to the Jac-
card coefficient. Using VSM, code fragments are repre-
sented as vectors of frequency values. Entity frequency
can be used to discriminate among entities’ contribution
by considering both their local and global popularity (oc-

currences). The relevance is expressed as the similari-
ty/distance between a pair of vectors (𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡). Simi-
larity is calculated using the cosine similarity function
that measures the angle between participating vectors.

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ) =
𝑠ଵ. 𝑠ଶ
|𝑠ଵ||𝑠ଶ|

5.1.3. Weighting factors
Our |𝑥| − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 search space consists of code
fragments presented as vectors, 𝑠పሬሬ⃗ = < ℎଵ, ℎଶ, ℎଷ, … , ℎ௫ >,
with ℎ௫ being the weight (frequency) of an encoded code
pattern 𝑥. While the local frequency captures the number
of occurrences of an encoded code pattern within a par-
ticular code fragment, the global frequency represents the
total number of code fragments with at least one occur-
rence of the pattern. Our approach support different
models to calculate these local and global frequencies and
weights of an entity 𝑥 within a code fragment 𝑖. For ex-
ample, a combination of 𝑙 local frequency (Table 5) and 𝑡
global frequency (Table 6) leads to the well-known IR tf-
idf model. Having several ranking options allows us to
configure the weights at run-time for different ranking
context and to study their effect on the overall clone
search performance.

Table 5. Weighting support for local frequency (𝑏ଵ parameter)

Function Name 𝒃𝟏 parameter
value

Formula

Boolean 𝑏
൝
1 𝑖𝑓 𝑙𝑓௫, > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Natural 𝑛 𝑙𝑓௫, = ห𝑙𝑜𝑐𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௫,ห
Logarithmic 𝑙 1 + 𝑙𝑜𝑔൫𝑙𝑓௫,൯

Table 6. Weighting support for global frequency (𝑏ଶ parameter)

Function Name 𝒃𝟐 parameter
value

Formula

No 𝑛 1
Simple 𝑠 𝑔𝑓௫ = |𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௫|
IR idf 𝑡 𝑙𝑜𝑔 ൬

𝑁
𝑔𝑓௫

൰

5.2. SeClone search schema
As previously discusses search schema (Figure 2) in Se-
Clone allows for the configuration of the model proper-
ties. The schema includes configuration for (1) the pre-
processing and creation of indices for the retrieval phase,
(2) the ranking approach, (3) local frequency function, (4)
global frequency function, and (5) additional information
such as normalization and size comparison functions.
The first parameter of our schema defines the overall
ranking approach (Table 7), which can be a variation of
cosine similarity, Jaccard similarity, or a combination of
both. Furthermore, 𝑏ଵ and 𝑏ଶ refer to the local and global
frequency functions being used (see Tables 5 and 6). If the
Jaccard coefficient is used, only the Boolean local frequen-
cy is applicable for 𝑏ଵ; and 𝑏ଶ, 𝑏ଷ and 𝑏ସ will not affect the
final result and are set to 𝑛 (none) to ensure conformance
with our schema template. Additionally, we consider the
size resemblance between the query and the matched
code fragment, which is denoted by 𝑏ସ. This option is on-
ly applicable for the VSM scoring model.

8

Table 7. SeClone scoring schemata (𝑎 parameter)

Function Name a parameter
value

Formula

Jaccard coefficient 𝑗 𝐽(𝑠ଵ, 𝑠ଶ)
Cosine similarity 𝑤 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ)
Cosine Similarity
augmented with
Size similarity

𝑐 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ)
+ 𝑏ସ(𝑠ଵ, 𝑠ଶ)

Table 8. SeClone size functions (𝑏ସ parameter)

Function Name 𝒃𝟒 parameter
values

Formula

Jaccard
coefficient

𝑗 𝐽(𝑠ଵ, 𝑠ଶ)

Simple 𝑠 ห|𝑠ଵ| − |𝑠ଶ|ห 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑠 𝑎 𝑏𝑎𝑔
Naïve 𝑛

ቐ
1

|𝑠௧|
 𝑖𝑓 |𝑠௧| > 0

1 |𝑠௧| = 0

The size functions (boosters) supported in SeClone are

summarized in Table 8. Our search schema also supports
normalization of relevance scores, which is denoted by 𝑏ଷ.
Available normalization functions are 𝑛 (none) and 𝑐 (co-
sine):

𝑐𝑜𝑠𝑖𝑛𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
1

ට∑ ℎ௬
ଶ௫

௬ୀଵ

In summary, our search schema configures both the re-
trieval and ranking of SeClone. For example, the
 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 schema denotes that SeClone uses the cosine
similarity scoring schema which is augmented with the
Jaccard-based size function (the size booster in this con-
text) to create an IR like 𝑡𝑓 − 𝑖𝑑𝑓 weighting by using co-
sine normalization function. The indexing is based on
single line hash values of Type-1 clones and 3-line hash
values of encoded code patterns where only method
names have been preserved.

6. DATA CHARACTERISTICS STUDY
In the previous sections, we reviewed our clone search
model, SeClone. As we are approaching the actual per-
formance evaluation phase, several issues related to our
indexing heuristics can threaten the success of our re-
search. In this section, we conduct a set of preliminary
studies to acquire the required insight for the final large-
scale performance evaluation phase.

These threats include: (1) the ability to perform clone
search with near real-time response time (latency time
≈100 milliseconds or less), given outliers, retrieval granu-
larity, and index growth rate of the data, and (2) the abil-
ity to maintain reasonable precision of the search result
due to potential collisions in our hash function values. For
us to evaluate these threats, we conducted a study on the
characteristics of data being searched. Such study re-
quires a representative dataset which reflects real data
and is large enough to reduce any potential bias within
the dataset. For our preliminary study we adopted the
UCI dataset [UCI10], which covers over 18,000 Java open
source projects extracted from online repositories on the
Internet.

6.1. Effect of search granularity on clone search
latency times

In the first part of our data characteristic study, we ana-
lyze the effect of different search granularities on re-
sponse times to (1) determine if fine-grained granularities
(e.g., single line) are actually practical for real-time clone
search over large amounts of data, and (2) estimate the
increase in the response time by reducing the granularity.
We address these questions by first analyzing the number
of retrieved entities (matches) for each element of a query.
This analysis provides us with some insight on upper and
lower response time boundaries. We observe and com-
pare the worst-case scenarios with respect to the number
of matches for both of our two predefined index granular-
ity levels (single and three-line granularity). We first
group source code fragments within the dataset in chunks
of three lines, with each Third Level Similarity (TLS)
group denoting a set of potentially similar three-line code
fragments (code clone) where all fragments match the
same encoded code pattern. We then repeat the same
study for the First Level Similarity (FLS) based on pattern
similarity at a single-line granularity.

For creating the dataset, we extract ~300 MLOC of
non-distinct source code lines, which provides us with a
sufficiently large dataset to reduce any potential bias in
the data. From this dataset, we then generate 30 million
unique TLS groups, covering 71 million distinct lines of
source code within method blocks. In our index, each TLS
group refers to all occurrences of the same three-line code
fragment in the whole repository.

Figure 5. Occurrence frequency distribution for the 3-line (TLS) encoded

code patterns

Table 9. TLS and FLS characteristics

Property
Value

TLS FLS
Number of encoded code patterns 30,232,018 7,606,433
Total number of distinct lines 71,911,376 71,911,376
Number of single-member encoded code
patterns (one occurrence) 22,824,697 4,770,010

Largest group size (the pattern with most
occurrences/members) 1,048,575 2,937,700

Average occurrence frequency 2.37 9.45
Standard Deviation occurrence frequency 293.23 1898.75

Evaluating the index granularity allows us to observe

the number of occurrences (including average, min and
max) for each encoded code pattern captured by a TLS
group. This is of interest, since fewer occurrences will
result in a shorter response time. The first observation
from this study (Figure 5 and Table 9) is that almost all
TLS groups contain less than 2,000 occurrences (instances)

1.00E+00
1.00E+02
1.00E+04
1.00E+06
1.00E+08

1 88 17
5

26
2

34
9

43
6

52
3

61
0

69
7

78
4

87
1

95
8

10
45

11
32

12
19

13
06

13
93

14
80

15
67

16
54

17
41

18
28

19
15N
um

be
r o

f T
LS

Number of occurences

AUTHOR ET AL.: TITLE 9

and only a few outlier patterns, 1,220 out of the 30M
(0.004%) patterns had more than 2,000 occurrences. Our
study shows that the three-line granularity tends to pro-
duce large numbers of small groups and very small num-
bers of large groups. On average, each TLS group (code
pattern) has 2.37 occurrences. However, if we exclude
patterns with only one occurrence and outliers (with
more than 2000 matches), this average would go up to
5.25. From our analysis, we were able to conclude that
three-line granularity is practical for real-time clone
search, as long as outlier patterns are handled, since it is
only for these few outliers that the response time will de-
grade considerably. Our analysis shows that using TLS,
patterns typically occur in small-size groups (on average
around 5 members). This is an important observation for
our real-time search context since given the small group
sizes and our hash-based indexing approach, queries will
only be compared against a small number of candidates
at run-time.

In addition, similar to our three line similarity (TLS)
index experiment, we also studied the distribution of pat-
terns using a single-line level granularity (FLS) index.
This experiment actually showed some unexpected dif-
ferences between the two granularities. For the FLS, the
number of outliers (patterns with more 2,000 occurrences)
is considerably larger than for the TLS’s. This observation
is further supported by data in Table 9, which shows that
TLS distributes the candidates into 3.9 times more groups,
while its group size can be 6 times smaller than the FLS’s
group size. Moreover, outliers in the FLS index tend to be
much larger when compared to the TLS index. Given that
the ranking at the group level has a computation com-
plexity of 𝑂(𝑛𝑙𝑜𝑔𝑛), where n corresponds to the group
size, n has a direct effect on the response time. Our study
also reveals that while both TLS and FLS are applicable
for real-time search, TLS can outperform FLS granularity
by a factor of 6.

6.2. The outlier patterns
Outliers often introduce threats to the quality and non-
functional performance of search approaches. For exam-
ple, in text retrieval research, outliers known as stop
words are typically eliminated as part of a pre-processing
step. As our previous study already showed, while we
might only deal with a very small number of outlier pat-
terns (patterns with more than 2000 occurrences) in our
dataset, these outliers can have a significant effect on the
overall performance of our clone search approach. In or-
der to be able to mitigate this potential threat, it is neces-
sary to identify and study these outlier code clones in
more detail. For example our study showed that there
exists a three-line pattern with more than one million oc-
currences (Table 9). If an outlier pattern occurs in the
search result set, the ranking algorithm will have to eval-
uate and rank all occurrences, potentially slowing down
the search by a factor of 1000 compared to non-outlier
searches (Table 9). For this reason, we further analyze the
source code matching these outlier patterns to observe
what kinds of programming tasks are associated to the
outliers. When analyzing the TLS patterns, we observed

that only 1,220 out of 30 million TLS groups (three-line
code patterns) contain more than 2,000 pattern occurrenc-
es.
Examples of top 10 outlier patterns are shown in Table
10). Some of the observations from our study are: (1)
members of outlier pattern #3 belong to one of the largest
open source projects in the dataset (gov.nih.ncgc), which
is related to genomics and contains very large files con-
taining these pattern instances. (2) Code fragments in the
outlier #6 belong to classes related to the initialization of
Graphical User Interfaces. (3) Outlier pattern #8 occur-
rences can typically be found within extraordinarily large
java classes (larger than 10K LOC). The examples in Table
10 illustrate that, similar to the other search domains, out-
liers in clone search can be also discarded because they
are not associated with vital programming problems.
Nevertheless, we do not exclude them in our further per-
formance evaluation studies (in this paper) to ensure un-
biased and repeatable results.

Table 10. The outlier code patterns

Rank Number of
Occurrence Pattern Title Sample Code

1 1304840 Local getter method() {return variable;;}

2 636846 General Setter method(type arg) {
 this.variable = arg;;}

3 445552 Unknown
s.addToWellOneBased(… new
WellComponent(…
l.getCompound(…), …));;

4 246082 General getter method() {
return variabale.property;;}

5 239604 Local setter method(type arg) {
variable = arg;;}

6 124836 Consecutive
new

jEdtTest = new JEditorPane();;
lblToken = new JLabel();;

7 124693 Variable&null type var1 = null;;
type var2 = null;;

8 115230 Consecutive
case

case 'value':
case 'value'::

9 100900 Case&return
return "Mountain";;
case TYPE_GAS:
return "Gas";;

10 72842 Throw&new method(…) {
throw (new type());;}

6.3. Index size growth rate
Retrieval systems such as [BRI98] keep their indices in
main memory, rather than swapped to a disk, in order to
reduce latency times when accessing them. In most text
retrieval systems [BRI98], the approximate index size is
known in advance, as it is directly related to the data
characteristics in the domain of discourse (e.g., natural
languages). However, for the clone search problem, data
characteristics have not yet been fully studied, and no
data exists on potential index sizes and growth rates as
new patterns and occurrences will be indexed. Without
this prior knowledge it is very difficult to determine and
allocate in advance appropriate memory resources for
creating and storing indices. As we need to know such
information for a proper large-scale performance evalua-
tion, we study them as part of our preliminary analysis.

10

Figure 6. Analysis of the increase rate of new hash values (TLS hashes) per file. Patterns are categorized based on total # of occurrences per hash value.

For a hash table-based indexing system, total memory
consumption can be estimated based on: (1) the number
of distinct hash values being indexed and (2) the number
of pointers required for the repeated hash values. Given
that no prior information is available on potential growth
rates, we studied the effect of repository size on the index
growth rate. We in particular study how different pattern
categories (and their indices) evolve as the repository size
increases.

For this analysis, we incrementally increase our dataset
by adding chunks of 50,000 source code files to the reposi-
tory. We evaluate the index increase rate for each pattern
group, which is summarized in Figure 6. The analysis
shows that for popular code patterns (with at least 2 oc-
currences), the growth decreases over time. This was ex-
pected, as the code base being indexed, the likelihood that
the same code fragment has already been indexed in-
creases. However, our studies also show that the growth
rate for uncommon/unique code patterns remains stable.
That is, each chunk of 50K files will introduce a similar
number of code patterns that are not cloned and remain
therefore unique.

Our study provided us with insights on index growth
rate. Finally, using the increase rate table in Figure 6, we
can now estimate the index growth via the number of
distinct hash values and possible pointers (duplicated
patterns), to estimate the feasibility and scalability of our
search approach and allocate proper memory resources.

6.4. Hash value strength
Hash table based indexing relies on its ability to maintain
indices in the main memory to ensure consistent and fast
access times. One approach to reduce the memory foot-
print is by reducing the length of hash codes, as this will
directly affect the memory consumption. However, re-
ducing the length of hash codes can potentially lead to the
collision (duplication) of indices. In our approach, we
opted to use a 32-bit hash code, which is in contrast to
other existing work such as Hummel et al. [HUM10], who
used 128-bit code for their clone search approach. The use
of smaller hash code (32 versus 128 bits) will not only
provide (1) a 75% lower memory requirements for the
indices, but can also (2) reduce the latency times due to
hardware design.

We conducted an experiment to evaluate whether the
use of a 32-bit hash value might potentially introduce a
threat to the index quality in terms of collisions. For our

evaluation we created 32-bit hash keys for all single trans-
formed source code lines, using our default transfor-
mation function and the Java standard hash method for
strings. We extracted more than 4 million distinct trans-
formed lines of code and analyzed the possibility of hav-
ing an ambiguous key that might be used for more than
two distinct lines. The result of our analysis showed that
for our 32-bit hash function, the error (collision) rate is
small, i.e., 0.002%. Given this low error rate and the re-
sulting tradeoff between precision and memory con-
sumption, we can conclude that the 32-bit hash keys can
be considered strong enough for indexing source code. In
particularly since for our clone search context, scalability
and response times are key requirements.

6.5. Summary
The studies in this section provide valuable insights on
data characteristics, such as index growth rates and outli-
ers in a real world, large scale data. Contrary to other re-
search domains, these aspects had not yet previously
studied for the clone search problem. We presented the
results of our analysis for various data characteristics of
the UCI dataset [UCI10]. The insights of our studies bene-
fit the prediction of latency times, index sizes, and overall
quality of clone search approaches. Furthermore, our ob-
servations also support that our proposed approach using
a multi-level indexing and retrieval approach should be
capable of providing a real-time and scalable clone
search.

7. PERFORMANCE EVALUATION MEASURES
With traditional clone detection techniques putting little
emphasize on ranking of result sets [WAL03], ranking
quality is typically not part of the performance evalua-
tion. This is in contrast to clone search research, which
shares many features with the information retrieval do-
main, including the need for supporting ranking of result
sets. We therefore also consider ranking of clone search
results as a quality measure and adopt existing quality
and performance criteria commonly used by the IR search
community for assessing ranked result sets.

7.1. Requirements
Among the main quality criterion used in IR for evaluat-
ing the quality of search engines is the result relevancy
from a user expectation. That is, a search is considered to

AUTHOR ET AL.: TITLE 11

be successful if it locates documents that are not only re-
lated to the query, but also meet the end-user expecta-
tions [MAN08]. Therefore, only hits (results) that are rele-
vant from an end-user perspective are considered to be
true positives. For example, a result returned by the que-
ry “Java”, might only be relevant when one considers the
user’s expectation, which might be referring either to the
coffee concept or the programming language concept.
Such relevancy can be measured on a binary scale (rele-
vant vs. non-relevant) or by using a more refined scale,
using different degrees of relevancy (e.g., highly relevant,
relevant, marginal, and non-relevant).

Benchmarks are required to measure the quality of re-
sult sets reflecting the feedback of either users or experts.
They constitute the “gold standard” or “ground truth”. A
benchmark or test suite includes three major parts: (1) the
input data, (2) some queries, and (3) the pre-tagged da-
taset of relevant items. The dataset also typically contains
relevance scores for each query and its input data, with
these scores being subjective to the human experts creat-
ing the benchmark. In cases when no benchmarks are
available, user studies might be performed.

7.2. The measure suite
For the evaluation of ranked result sets in search applica-
tions no single measure has been considered to be suffi-
cient (e.g., [LEM11], [KLX12]). For our research, we iden-
tified therefore different categories of ranked result set
measures to evaluate clone search models. Most of these
measures are based on the definitions provided by Man-
ning et al. [MAN08].
Traditional measures. Recall or precision are typically
used by the clone detection and search community to
evaluate the quality of any unranked result (sets). These
measures are widely accepted or used (search communi-
ty), since they are easy to calculate and interpret. Howev-
er, they are not capable of assessing accurately the quality
of ranked result sets.
IR measures for ranked results. Most IR systems return
result sets that contain some true positives (TP) and false
positives (FP) within an ordered list. These IR measures
evaluate the true positives and their rank (position) in the
result set. Furthermore, relevancy degree is exploited by a
subset of measures in this category when all true posi-
tives are not equal in quality.
Non-functional performance measures. In our research
context, non-functional measures need to be considered
when evaluating user satisfaction. We are in particular
interested in measures scalability and on assessing the
ability to provide near real-time services for other appli-
cations.

7.3. Measures for ranked result sets
With many traditional measures like precision or recall
being designed to evaluate unranked lists (e.g., unor-
dered sets), the IR community has emphasized special
measures for assessing the quality of ranked sets. In this
section, we introduce measures mostly adapted from the
IR [MAN08] community to assess ranked result sets re-
turned by our clone search models.

7.3.1. First False Positive measure
A commonly used evaluation criteria for search engines
in the IR domain are the top displayed items (hits) in a
result set. Studies in IR have shown that end-users tend to
browse only top items in a displayed result set [MAN08].
Furthermore, since search engines typically do not pro-
duce 100% precise results (some non-relevant hits might
be displayed), search engines are expected to place as
many true positives as possible in the highest ranked po-
sition of their result set (e.g., top-10). Therefore, the place
of the first false positive (FFP) in the displayed result list
can be used as a fair measure for evaluating the perfor-
mance of search engines. For example, given two order
result sets R1 and R2, with both result sets containing 10
hits (R1 = 〈ℎଵ, 𝒇𝒑, ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ, ℎ, ℎ଼, ℎଽ〉 and R2 =
〈ℎଵ, ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ, ℎ, ℎ଼, 𝒇𝒑, ℎଽ 〉), of which nine results
are correct hits and one is a false positive (𝑓𝑝). While the
precision for both results sets is 90% (9 out of 10 hits are
correct), the user satisfaction for R2 would be considered
higher, since the FFP occurs later in the ranked result set
(position 9 in R2 versus position 2 in R1).

Discussion. In clone search, one typically deals with a
corpus that contains a significant amount of noise (irrele-
vant code fragments). For example, in one of our case
studies we observed that for some queries only 6 out of
~1.7 million code fragments in the corpus were relevant.
Therefore, from a code/clone search perspective, a search
approach has to deal with two major challenges: (1) being
able to detect the few relevant fragments, and (2) assign-
ing these true positive results a higher priority than the
false positives in the result sets. The First False Positive
idea provides an easy to use and interpret measure to
assess some quality aspects of an ordered result set.
Weakness. Given that the FFP is highly dependent on the
data and query characteristics, its applicability to evaluate
system performance is often limited. For example, if a
corpus contains a skewed dataset with only 𝑋 true posi-
tives for a given query, the best achievable result using
this measure is 𝑋 + 1. This becomes an issue particularly
in cases where the number 𝑋 (true positives) varies con-
siderably for different queries. Consequently, the FFP
measure cannot be generalized since it cannot be aver-
aged across different queries.
7.3.2. “Precision at k” measure
Precision at 𝐾 (P@K) is a measure that reports the number
of true positives within the hit list (top K), where 𝐾 can be
any positive number to reflect the window size for the
assessment. However, window sizes of 10, 20, and 30 are
typically used for 𝐾𝑠. The value of 𝐾 is derived by the
general rule of thumb from search engine GUI design,
where the first page usually shows only the top 10 hits.
The measure captures closely the end-users quality per-
ception, since users tend to consider only results on the
first result page to be important and consequently are less
likely to browse subsequent result pages.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

 𝑤ℎ𝑒𝑟𝑒 𝑡𝑝 𝑎𝑛𝑑 𝑓𝑝 𝑎𝑟𝑒 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑜𝑝 𝐾 ℎ𝑖𝑡𝑠
This measure is in particular applicable when (1) the

total number of relevant results is unknown and therefore

12

no recall can be computed, and (2) the number of re-
turned items is too large to be fully validated, making the
calculation of standard precision measures impossible.

Weakness. While this measure is a good candidate for
evaluating search engines, especially when no very strict
evaluations (e.g., “first false negative” measure) are re-
quired, its major drawback is its dependency on the que-
ry. For example, in order to provide a fair evaluation us-
ing “Precision at 10” measure, at least 10 actual relevant
items must exist in the corpus for all executed queries.
Furthermore, similar to the FFP measure, results from this
measure cannot be generalized (averaged) across queries.

7.3.3. Normalized Discounted Cumulative Gain
measure

The Normalized Discounted Cumulative Gain (NDCG)
measure assesses the quality of search engines and their
ranking algorithms in terms of being able to assign higher
ranks to more relevant true positive answers. NDCG
takes into consideration not only the relevance of hits but
also the order of the results. Therefore, the measure al-
lows comparing result sets for queries using an existing
oracle. These oracles are typically manually created result
sets (for each query) which include a list of all possible
answers. Moreover, each answer in the oracle must be
assigned a relevance score that presents its relevancy to a
the query. The oracle captures the best overall achievable
result set (including the order of answers), independent
of local configurations, search algorithm, and search
schema. The measure result is a number which allows
comparing different search and ranking configurations.

Details. DCG calculates the discounted cumulative
gain achieved using a given search schema for query 𝑞
when compared to the oracle with its manually assigned
relevance scores for the top 𝑛 hits. The output of DCG
depends on the query and available data within the cor-
pus (𝐷𝐶𝐺 ∈ [0,∞]). It is not possible to compare directly
DCG results of different queries with each other since the
number of positive hits is dependent on the data charac-
teristics of corpus. To overcome this limitation and to be
able to compare results, we use NDCG, which is a nor-
malized value of DCG. We first calculate the Ideal DCG
(IDCG), which is the highest achievable DCG given the
available relevance scores in the oracle. Using DCG and
IDCG, we can then calculate the final NDCG value. The
function 𝑟(𝑞, 𝑖) returns the relevancy score based on a
given query and a corresponding hit from the oracle.

𝐷𝐶𝐺 (𝑞, 𝑛) = 𝑟(𝑞, 1) +
𝑟(𝑞, 𝑖)
𝑙𝑜𝑔ଶ(𝑖)

ୀଶ

 𝐚𝐧𝐝 𝑁𝐷𝐶𝐺(𝑞, 𝑛) =
𝐷𝐶𝐺(𝑞, 𝑛)
𝐼𝐷𝐶𝐺(𝑞, 𝑛)

Discussion. Since the output of the NDCG function is
normalized, it can now be used for both (1) query com-
parison and (2) as an overall indicator for the performance of
a search engine. The ability to average the measure results
provides a concrete single output value for performance
comparison purposes. For example, in our studies we use
this single output value to compare the performance of
different search configurations. The value for the NDCG
function ranges from 1.0, for a result set that exactly

matches the oracle, and a minimum of 0.0 for a result sets
with no true positive.

Weakness. The measure allows for a fine-grained
evaluation of the quality and ordering of result sets, by
providing a single value assessment that allows the com-
parison among different options or configurations of a
system. However, the measure is only applicable when
fine-grained ordering is important, otherwise measures
such as Precision at K are preferred. Applying NDCG is
also expensive, since not only all possible answers for
each query have to be evaluated manually, but also a sim-
ilarity score for each answer is to be provided. Neverthe-
less, NDCG is still considered as one of the state of the art
search engine measures in the IR domain.

7.3.4. Mean Average Precision measure
Mean Average Precision (MAP), is a single value measure
that has been commonly used to compare different rank-
ing systems. For a single query experiment, the measure
will compute the average of all precision at 𝐾𝑠, where 𝐾𝑠
refers to the position of all relevant retrieved items in the
result set. For experiments involving more than one que-
ry, the output is the average of all queries.

𝐴𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
|𝑅|

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑘
 ∈ ோ

𝑤ℎ𝑒𝑟𝑒 𝑹 𝑖𝑠 𝑡ℎ𝑒 𝒔𝒆𝒕 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑀𝐴𝑃 =
1
|𝑄|

 𝐴𝑃
 ∈ ொ

 𝑤ℎ𝑒𝑟𝑒 𝑸 𝑖𝑠 𝑡ℎ𝑒 𝒔𝒆𝒕 𝑜𝑓 𝑎𝑙𝑙 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

Weakness. MAP is an essential and low cost measure
that does not require the creation of relevance scores (un-
like NDCG) and only considers the positions of true posi-
tives. However, since MAP does not include relevance
scores, it lacks the ability to compare true positives from
relevancy aspect. Moreover, it is generally only suitable
for queries where a reasonable number of true positives
are available; otherwise its output might be biased.

7.4. Measures for highly positive ranked results
Sometime, no or only a few 𝑓𝑝 are included in the hit list
(e.g., top 10). While all hits might be true positives, end-
users often rank some true positives higher than others.
Assessing this type of ranking requires more precise
measures that take also into account the exact order of 𝑡𝑝𝑠
in a ranked result set and compare them against the ora-
cle. Such measures are different from earlier measures
introduced in this section (e.g., NDCG), as they evaluate
the relative or exact position of all items within the or-
dered list. Several measures have been introduced to as-
sess this type of ranking performance.

7.4.1. Normalized Kendall’s 𝝉 distance
Kendall’s 𝜏 measures the dissimilarity of the items’ order
against the ideal order [LAP06]. Suppose 𝜋 and 𝜎 denote
the ordering of two item sets containing the same items,
with 𝑁. 𝑆(𝜋, 𝜎) being the minimum number of switches
required between adjacent items to make the first ordered
list identical to the second ordered list.

𝜏 = 1 −
2 × 𝑆(𝜋, 𝜎)
𝑁(𝑁 − 1) 2⁄

AUTHOR ET AL.: TITLE 13

7.4.2. Spearman’s rank correlation coefficient
This measure compares the rank of each shared retrieved
item among two subject ranked lists, which are denoted
by 𝜋 and 𝜎 with the number of items being equal to 𝑁.

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 1 −
6∑ (𝜋(𝑖) − 𝜎(𝑖))ଶே

ୀଵ

𝑁(𝑁ଶ − 1)

𝝅(𝒊) 𝑎𝑛𝑑 𝝈(𝒊) 𝑎𝑟𝑒 𝑟𝑒𝑓𝑒𝑟𝑟𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑖𝑡𝑒𝑚 𝒊 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 ℎ𝑖𝑡 𝑙𝑖𝑠𝑡
Discussion. As Lapata [LAP06] pointed out, the main

difference between Spearman’s and Kendall’s measures is
that Spearman’s measure focuses on the pure rank values,
whereas Kendall’s measure emphasizes more the relative
order of items.

7.5. Non-functional performance measures
For our evaluation of the quality of result sets we also
consider non-functional measures that can potentially
effect user satisfaction (e.g. the ability to provide real-time
services for other applications). We consider for clone
search engines are: (1) indexing time, (2) querying latency
time, and (3) corpus size. These measures are easy to cal-
culate (automatically) and interpret.

7.6. Summary
Assessing the quality of clone search (models) differs
from traditional clone detection. While traditional clone
detection approaches deal with unranked result sets
where measures like recall and precision matter, they do
not consider the order of the results being displayed. This
is in contrast to clone search, where, as in other search
approaches, the ranking of results (ranked hits) becomes a
key quality criterion. While evaluation measures de-
signed for unranked result sets are useful (e.g., precision
and recall), other evaluation measures which are devel-
oped for ranked result sets must be adopted to provide a
more comprehensive evaluation of a clone search model.
As part of our research, we selected and summarized sev-
eral ranked result set quality measures, originally used by
the IR community [MAN08], and highlighted their ap-
plicability in our clone search context.

8. PREPARATION FOR EVALUATION STUDY
While our preliminary results from the data characteristic
study (Section 6) support the feasibility of our solution
(run-time behavior), a more detailed performance evalua-
tion study is required. In this section, we discuss details
of our evaluation, which takes advantage of the insight
from our initial data characteristic study. For the perfor-
mance study, we deploy a concrete instance (SeClone) of
our clone search model and apply it to our source code
corpus, which contains source code facts from over 25,000
open source Java projects [KLF12]. The key objectives of
this evaluation are (1) to confirm that our model can meet
the scalability and fast response time requirements and
(2) to compare different search schemata (configurations)
available in SeClone. Benchmarks are commonly used
approaches to evaluate the quality of search engines. For
us to be able to assess different features of our model (Se-
Clone), including both retrieval and ranking, we require a
benchmark that meets a set of minimum requirements,
including: the corpus (1) should be large enough to re-

duce the effect of individual outliers, (2) contains a set of
representative queries (code fragments) to be used as
search criteria, (3) includes a sufficient number of relevant
Type-1, 2, and 3 clones, and (4) includes fine-grained rel-
evance scores for clones. To the best of our knowledge,
there exists no clone search benchmark that satisfies all
these requirements. Therefore, prior to our evaluation, we
had to create such a clone search benchmark. As part of
the benchmark creation, we took advantage of an existing
mutation generation framework [ROY09], which we used
to automatically generate Type-1, 2, and 3 clones from 50
randomly selected code fragments (query inputs). 50 que-
ries can be considered an acceptable number for a
benchmark [MAN08]. For these 50 code fragments, we
generated a total of 650 related Type-1, 2, and 3 clones.
For the benchmark preparation, we injected not only
these 650 clones generated by the mutation framework
into our repository (which contains 356M LOC), but also
performed an extensive manual inspection of ~80K code
fragments for assigning their corresponding relevance
scores. We then use this benchmark to assess SeClone’s
search performance using the five measures introduced in
the previous section, while analyzing over 40 different
SeClone configurations (search schemata). This evalua-
tion involve 2000 queries (code fragments) for which a
clone search was performed, resulting in 117,000 search
results (hits). The following sections describe in more de-
tail our evaluation approach, its outcomes, and summa-
rize of our findings.

8.1. Candidate search schemata
SeClone supports hundreds of different configurations
through its search schemata. These configurations allow
users to specify different search models, indexing granu-
larities, and content transformation functions. From an
end-user perspective, selecting an appropriate configura-
tion is the key to meet specific application or end-user
needs. In our study, we conduct a detailed analysis of 40
candidate configurations to determine their effect on the
quality of the result sets and to provide guidance for end-
users when selecting a search schema. In sections 3, 4, and
5 we already introduced in detail SeClone’s search sche-
ma and its configuration options: (1) parameters (
𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ) related to the ranking and (2) parameters (
𝑡𝑔. 𝑡௦𝑔௦) related to the processing of data for indexing
and clone analysis. For our experiments, we selected five
ranking configurations and eight indexing (analysis) con-
figurations, which provided us with a total of 40 distinct
configurations (Table 11).

8.2. Corpus and environment configurations
For the deployment of SeClone, we used a Linux-based
system with a 3.07 GHz CPU (Intel I7) and 24 GB of RAM.
During our run-time evaluation, a configuration was exe-
cuted as single process, except for the Java virtual ma-
chine processes such as garbage collection. In order to
evaluate the scalability, response time, and ranking, and
to observe the handling of outliers (noise), a reasonably
large corpus was required. For the evaluation we created
the IJaDataset, a large multipurpose source code data set.

14

Table 11. Selected SeClone search schemata for the evaluation phase
(𝑆𝑒𝐶𝑙𝑜𝑛𝑒 𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑐ℎ𝑒𝑚𝑎: 𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ. 𝑡𝑔. 𝑡௦𝑔௦)

The first parameter group (ranking)
𝒂. 𝒃𝟏𝒃𝟐𝒃𝟑𝒃𝟒

×

The second
parameter

group
(indexing)
𝒕𝒑𝒈𝒑. 𝒕𝒔𝒈𝒔

=40 search schem
ata

(A) c.ltcj
(Cosine similarity augmented with Jacacrd
size similarity using tf-idf like frequency)

c1.m1 (1)
c1.m3 (2)
l1.m1 (3)
l1.m3 (4)
w1.m1 (5)
w1.m3 (6)
x1.m1 (7)
x1.m3 (8)

(B) c.nscs
(Cosine similarity augmented with Simple
size similarity + natural frequency)

(C) j.bnn
(Jaccard coefficient similarity approach)

(D) w.ltcn
(Cosine similarity using tf-idf like freq.)

(E) w.nscn
(Cosine similarity using natural frequency)

Total 5 Total 8

The dataset contains Java source code data crawled
and downloaded from major open source code reposito-
ries (e.g. Sourceforge) [KLF12]. We performed several
data cleaning steps, such as: (1) removal of all non-Java
source code and duplicate Java files, (2) using a Java par-
ser, we detected and removed all unparsable files, and (3)
we identified and excluded Java interfaces, since these
Java interfaces do not contain any significant code.

The most recent version of the IJaDataset (Version 2.0)
has been updated with data crawled in 2012 and covers
approximately 25,000 projects and includes Java classes
without package specification (default package) [KLF12].
The dataset is based on source code files that were down-
loaded from SVN, Git, and CVS repositories from Source-
Forge and Google Code. To remove high-level duplica-
tions in the dataset, only one Java File is selected for each
available class name identified by its fully qualified name
(FQN). During the filtering of duplications, we were bi-
ased toward files that appeared in the "trunk" directory.
The crawled data (with duplicated files) initially included
12 million files, but were reduced (through the filters) to 3
million files (2.7M regular Java class source code files and
140K files with default package). We then successfully
indexed all 356M LOC in the IJaDataset (Version 2.0) with
SeClone to create a single, searchable corpus. To the best
of our knowledge, this represents the largest inter-project
Java data set (based on real source code) that has been
used for clone search. The IJaDataset dataset is publicly
available for download and reuse (http://secold.org).

8.3. The benchmark
A high-quality benchmark for clone search should not
only include queries and their correct answers, but also a
variety of clone types (specifically Type-3 clones) for each
query. Having such a rich benchmark provides not only
the basis for evaluating our core SeClone search engine,
but also for evaluating its ability to rank result sets and
detect Type-3 clones. Using the mutation framework in-
troduced in [ROY09], we created our initial benchmark
using 50 code fragments (queries) and their mutants,
which correspond to Type-1, 2, and 3 clones. We selected
a mutation framework configuration that automatically

generates 13 clones (4 Type-1s, 3 Type-2s, and 6 Type-3s)
for each query. Table 12 summarizes the clones. In case of
code insertion when generating Type-3 clones, the muta-
tion framework uses random code snippets available in
its corpus. The generated clones were then included and
indexed as part of our SeClone corpus. Using this muta-
tion approach provides us with a known minimum num-
ber of true positives. Therefore, we are able to (partially)
measure the recall in addition to the other precision-like
measures. It should be pointed out that since the corpus
contains millions of indexed lines of code, SeClone will
not only detect and retrieve the seeded clones, but also
may include other (positive) clones in the search results.

8.4. Assignment of relevance scores
When evaluating the performance of search engines, sole-
ly measuring true positives is not sufficient. In addition
one has also to consider the relevance (score) of the re-
turned search results (hits) with regard to a given search
query. For our evaluation we therefore assigned scores (in
the range of 0 to 5) to indicate the relevancy of a hit and
its search query. A score of 0 reflects no relevancy (false
positive), and scores between 1 and 5 denoting that a hit
has some degree of similarity (true positive 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉
clone pair). Increasing scores indicate higher levels of
similarity, with a score of 5 being an exact (Type-1)
match. As part of creating our benchmark we have initial-
ly assigned such relevance scores to the 650 cloned frag-
ments that were generated by the mutation framework
and the corresponding search queries for retrieving them.

Given the size of our corpus (25,000 projects and 356
MLOC), there is a good chance that other true positives
might be reported during the evaluation process. The
relevancy of detected and reported clone pairs therefore
not only depends on the returned injected clones but also
on the non-seeded and reported clones, which have to be
considered as part of an overall evaluation. We therefore
in addition (to the seed clones) (1) manually evaluated all
reported hits to determine if they are actual true or false
positives and (2) assigned the proper relevance scores
using a predefined guideline (Table 13).

Since it is both impossible and unnecessary to consider
all potential hits retrieved for each query in the bench-
mark (a query might return thousands of hits), we decid-
ed to consider only the top K hits. While it is common
best practice in the IR and search community to consider
the top 10 hits, we decided to increase the evaluation
scope by including the top 60 hits. This extended evalua-
tion is motivated by the characteristic of our corpus, con-
sidering the fact that we have generated and included at
least 13 controlled, true positives (clones generated by the
mutation framework) for each of the 50 queries.

As part of our evaluation, SeClone reported for the
2000 executed queries a total of 117K hits (clone results)
when considering the top 60 criterion. We used some
basic heuristics (e.g., hit size and keywords) to automati-
cally identify some of the false positives and eliminate
them from the manual analysis process. Using these heu-
ristics, we were able to eliminate 37K false positives that
no longer required a manual inspection and scoring. We

AUTHOR ET AL.: TITLE 15

then manually assigned relevance scores to the remaining
80K results (32K distinct 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉 pairs). Table 14
summarizes the details of this manual assignment of rele-
vance scores for which considered both syntactical and
semantic similarities. The manual relevance score as-
signment has been done in 3 months by the first author.

Table 12. Available clones for each query in the benchmark

ID Description
(changes comparing to the que-

ry)

Clone
type

Our relevance
score

1 no change Typ-1 5
2 changes in whitespace Typ-1 5
3 changes in comments Typ-1 5
4 changes in formatting Typ-1 5
5 semantic renaming of identifiers Typ-2 4
6 arbitrary renaming of identifiers Typ-2 4
7 arbitrary change of an literal Typ-2 4
8 replacement of identifiers Typ-3 3
9 small insertion within a line Typ-3 3
10 small deletion within a line Typ-3 3
11 insertion of one or more line Typ-3 2
12 deletion of one or more line Typ-3 2
13 modification of entire line Typ-3 3

Table 13. Guidelines for assigning relevance scores

The assigned score Scoring guideline
0 Non-relevant
1 Relevant (partial similar under Type-3)
2 Relevant (Type-3 with modification of few

lines)
3 Relevant (Type-3 with one line different)
4 Highly Relevant (Type-2)
5 Highly Relevant (Type-1 / exact)

Table 14. The evaluation steps and hits manual investigation details

Property Value
Total search schemata 40
Total benchmark queries 50
Total querying experiments 2000
Result set limit Top 60
Total retrieved hits 117K
Total number of hits which are
automatically ignored using heuristics

7.7K (size heuristic)
28K (keyword heuristic)

Total number of hits which are tagged
manually

81K (32K distinct 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉
pairs)

Breakdown
Score #hits

0 34K
1 14.9K
2 3.6K
3 15K
4 4.9K
5 8.8K

9. PERFORMANCE EVALUATION
In this section, we present the results of our performance
evaluation study. We conduct this study to answer two
major concerns with regard to the applicability of Se-
Clone:

G1. We study if SeClone can be used for interactive
search scenarios with large-scale corpus. 100 milliseconds is
the de facto response time for interactive search [BAS13].
Therefore, as the first step, we study scalability and re-
sponse time of SeClone for the candidate search schemata
(Table 11).

G2. The second goal of our study is to evaluate the
performance of SeClone in terms of ranking. We study
whether SeClone can successfully place the known posi-
tive answers, from the benchmark, at the top of the
ranked lists before the other less similar answers (e.g.,
false positives). To evaluate the ranking performance of
SeClone, we use five applicable measures from the meas-
ure suite introduced in Section 7. We present the results
for G1 and G2 in Sections 9.1. and 9.2. consecutively.

9.1. Scalability and response time
One of the key requirements for SeClone, being a special-
ized search engine, is the need to be scalable and to pro-
vide search results in near real-time (i.e., 100 milliseconds
[BAS13]). In what follows, we discuss SeClone’s run-time
and scalability performance based on the execution of our
benchmark queries. For the analysis, we consider clone
lookup times, ranking, and sorting as the total response
time, which is reported in milliseconds.

It should be noted that to deploy the SeClone server
application and its indices, SeClone requires 10 minutes
for the incremental indexing of the encoded code patterns
covering the 356M LOC (3 million Java files).

Figure 7 summarizes the response times that we ob-
served for the 50 queries executed for each of the 40
schemata (Table 11). The schemata are identified by their
short names that are highlighted in bold in Table 11. For
example A1 denotes 𝑐. 𝑙𝑡𝑐𝑗. 𝑐1.𝑚1 schema. In this study,
we found five different configurations (out of forty can-
didates) that are both scalable and real-time, i.e., ~100 𝑚𝑠,
even for our ultra-large scale corpora. Users can use these
configurations for clone search and get scalability and
near real-time response time experience, e.g., A4
(𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3) and C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) that are tagged in
Figure 7.

Next, we examine the results to find the reason behind
the success or failure of some of the schemata. We ob-
serve that all of the successful schemata use 𝑙1.𝑚3 as the
indexing configuration. Therefore, first, we analyze the
role of indexing configuration on response time. As we
discussed in Section 6, a successful combination of index
granularity and transformation function can achieve real-
time response time only if it distributes well the indexed
entities across the index. Our analysis confirms our earlier
discussion. Both index granularity and transformation func-
tion can significantly affect response times. Mann-
Whitney U test (a non-parametric test) shows that a statis-
tically significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) improvement could
be obtained where l1.m3 is used as the primary and sec-
ondary indices. Similarly, we compared the response
times of the two major ranking models, i.e., Jaccard and
VSM. We observe that the choice of ranking model does
not affect response time significantly in the context of
clone search.

Finding. Indexing configuration (i.e., granularity
and transformation function) affects significantly
the response time in our research context.

16

9.2. Result set quality
In this section, we study the performance of SeClone from
the quality point of view. This study addresses the second
goal of our performance evaluation analysis (G2). In gen-
eral, we are interested to observe whether SeClone (1)
identifies the known true positives in our benchmark, and
(2) places the true positive answers at the top of the result
sets. These two questions can be mapped naively to the
traditional recall and precision concerns respectively.
First, we provide a brief summary of SeClone perfor-
mance in the context of traditional recall and precision in
Section 9.2.1. However, as discussed earlier, the concrete
evaluation approach should be based on the concept of
ranking. Therefore, we report the details of our actual
evaluation study on SeClone ranking in details after the
brief summary in Section 9.2.1.

9.2.1. Can SeClone detect the true positive answers?
In this section, we provide a naïve summary of SeClone
performance as we were concerned whether SeClone can
detect any of the known true positive clones. We are in-
terested to observe whether the SeClone retrieval model
can really achieve high recall.
We observe that there are 27 schemata of SeClone, out of
40 tested schemata in Table 11, that detect all of the 13
known positive answers (Table 12) from the benchmark,
including the Type-3 clones. From a benchmark-based
evaluation point of view [BEL07], SeClone achieves 100%
recall. Our initial analysis also shows that for 96% of que-
ries, some of the schemata with high recall also achieve
100% precision for top K hits within the result sets, with K
being equal to the number of expected positive answers
from the benchmark. These results are promising, specifi-
cally (1) on a noisy ultra large corpus (2) with an ap-
proach that is not aware of the positional information of
source code. However, these numbers should be inter-
preted carefully due to our benchmark-based evaluation
approach, as discussed by Bellon et al. [BEL07]. We report
the details of our observation in the next sections.

9.2.2. First False Positive
In the previous section we reported that SeClone

achieves high precision and recall. However, it does not
mean SeClone is the perfect clone search model. In the
following, we report the details of our analysis and the
observations that we made showing both pluses and defi-
ciencies of SeClone. Our major concern is to observe
whether the fast schemata, that are shown to perform in
real-time in Section 9.1, are amongst those producing
high quality ranked result sets. In other words, is there
any configuration of SeClone that performs well from

both quality and response time points of view? In the fol-
lowing, we refer to the certain schemata of SeClone that
achieve both scalability and near real-time response time
(Section 9.1) as target schemata, e.g., A4 (𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3) and
C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3).

Figure 8 provides a summary of the result for the First
False Positive (FFP) measure. The observation is based on
the FFP values for all queries across all 40 search configu-
rations (schemata). The results show that the first false
positive appears on average at the 25th position for most
schemata. Among the 40 schemata, two of them consider-
ably outperform the others by having first false positive
at position 30 on average, whereas 9 of the 40 schemata
perform poorly. 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1. 𝑚3 (A4) and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3 (C4)
outperform the other schemata, even the other target
schemata, i.e., 𝑤. 𝑙𝑡𝑐𝑛. 𝑙1. 𝑚3 (D4) and 𝑤. 𝑛𝑠𝑐𝑛. 𝑙1.𝑚3 (E4).
Therefore, regarding the earlier question, there is no
schema better than SeClone real-time schemata from FFP
point of view. We consider A4 and C4 as the surviving
target schemata in our further analysis. Note, both schema-
ta detect all of the 13 known positive answers from the
benchmark. Our observation also shows that SeClone
finds and ranks further positive answers beside the
benchmark’s 13 positive answers at the top of the result
set, achieving 30 (average) for FFP, e.g., using A4 schema.

9.2.3. Precision at K
In the FFP section, we studied the position of the first
false positive answer. FFP is a conservative measure. To
provide a higher level overview of SeClone performance,
we consider Precision at K measure (P@K). We study 7
different scenarios: K = 10, 15, 20, 30, and 60. The motiva-
tion for evaluating these different K values was to pro-
vide an analysis of SeClone’s performance as K increases.
We limited the K value to a maximum of 60, since we on-
ly tagged the top 60 hits during our relevance score as-
signment step. We observe that for precision at 10 and 15,
SeClone achieves 100% precision (for 48 out of 50 queries)
for both K ranges. As expected, the precision values drop
as the K values increase to 60 (Figure 9). The major reason
for this drop in precision is mainly related to data scarci-
ty. This is partly caused by our benchmark, since we gen-
erated through the mutation framework (and seeded af-
terwards) only 13 confirmed clones for each query. As a
result, the precision at K values higher than 13 depends
on the actual data availability in our corpus, which is
non-deterministic, in particular given the size of the cor-
pus and the differences among queries.

An interesting observation can be made for schemata
such as 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1. 𝑚1, when the second index uses the m
transformation function at the single line granularity level
(i.e., m1). These search schemata actually achieve the
highest median value, which can be explained by the fact
that for such a fine-grained index, the engine was able to
detect a large number of true positives to achieve higher
recall. However, the improvement is not statistically sig-
nificant comparing to our surviving target schemata from
the FFP study (i.e., A4 and C4).

Finding. Ranking model (i.e., Jaccard or VSM) does
not affect significantly the response time.

Finding. G1. SeClone achieves both scalability and
near real-time response time by certain schemata.

AUTHOR ET AL.: TITLE 17

Figure 7. SeClone response time using a 356M LOC corpus

Figure 8. First False Positive result across all configurations using a 356M LOC corpus

Figure 9. Precision at 60 result across all configurations using a 356M LOC corpus

18

9.2.4. MAP
Our first two studies (i.e., FFP and P@K) evaluate the per-
formance of SeClone from the precision point of view. We
observe that for a reasonable K value (i.e., 15) with regard
to our benchmark characteristics, SeClone achieves com-
plete precision for P@K. However, as K increases the pre-
cision value decreases. Our initial observation highlights
that the drop is due to data scarcity. However to answer
this concern concretely, we further study the Mean Aver-
age Precision (MAP) measure. MAP is a single value
measure typically used in the IR community to evaluate
ranking systems. For a single query experiment, the
measure will simply compute the average of all Precision
at 𝐾𝑠 where 𝐾𝑠 refers to the position of all retrieved rele-
vant items in the result set. MAP is useful when the de-
gree of similarity (relevance score) of true positives is not
of importance. We observe that both of our surviving tar-
get schemata (i.e., 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) achieve
almost complete MAP value, i.e., 0.98. Achieving a MAP
close to 1 means that if there is a positive answer within
our benchmark, SeClone has placed the TP almost at the
top in most of the cases. This supports the idea that the
drop in P@K for large Ks, is due to data scarcity, not Se-
Clone malfunctioning. Note, we also observe that there is
also no other schema that significantly achieves a higher
MAP value than our surviving target schemata.

9.2.5. Normalized Discounted Cumulative Gain
In the our previous studies, we observed that there are
two schemata of SeClone that not only provide real-time
clone search but also find the true positive answers and
place them at the top of the ranked result set. However,
there are further performance factors to be considered for
a successful clone search model. Similar to the other
search domains, all true positive answers in clone search
are not equally relevant to the query. In our benchmark
(Tables 12 and 13), we define the relevance degree of an-
swers to the query based on clone type and the degree of
dissimilarity. To evaluate SeClone ranking for applications
where the relevance score of true positives is emphasized,
we used the Normalized Discounted Cumulative Gain
(NDCG). We observe that x1.m3 index configuration (e.g.,
A8 schema) achieves the best NDCG in our study. How-
ever, the improvement is not statistically significant com-
paring to our surviving target schemata. Our NDCG study
supports and confirms that both of our target real-time
schemata (i.e., 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) perform
well by achieving 0.9 out of 1 NDCG in the worst case.

9.2.6. Normalized Kendall’s 𝝉 distance
In the NDCG study, we observed that SeClone can pro-
duce high quality ranking in terms of relevancy. Howev-
er, it does not mean that SeClone is a perfect clone search
model for ranking clones. In this section, we discuss the
limitations of SeClone in ranking clones using Normal-
ized Kendall’s 𝛕 distance. We use the Kendall tau meas-
ure, since it provides a fine-grained comparison of highly
positive result sets based on their relative order.

Since SeClone search schemata rank result sets based
on their content similarity, Type-1 and Type-2 clones

(similarities) are consistently placed in the correct relative
order and position within the result sets. However, for
Type-3 clones, the relative position (compared to Type-1
and 2 clones), depends on the dissimilarity between the
clones and the query fragment. Using Kendall’s 𝛕, we
study how close our ranking approaches can match an
optimum ranking (e.g., Table 12), in the exact order. The
outcome value for Kendall’s 𝛕 can be between -1 and 1.
The evaluation of our recommended schemata
(𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) shows that SeClone is
neither poor (i.e., -1) nor perfect (i.e., 1) in this context.
However, SeClone is closer to 1 than -1. Figure 10 shows
the summary of the observation. Although the median
values for both schemata are close, the Jaccard coefficient
search schema C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) outperforms the VSM-
based schema by providing consistent (better) ranking
results. Nevertheless, the difference between the two con-
figurations is not statistically significant.

In summary, in this study we showed the promising
achievements of SeClone using FFP, P@K, MAP, and
NDCG measures. However, we observed that SeClone is
not the perfect clone search model using the Kendall’s 𝛕
observation and can be improved, if an exact ranking as
Table 12 is expected.

Figure 10. Kendall’s 𝛕 distance study on the two surviving schemata

9.3. Discussion
We observe that all of the 9 schemata belong to the B se-
ries underperform the others significantly. Common to all
of the schemata belong to B series is the simple size similar-
ity booster. This function simply assigns higher rank to
hits that are having the same size (i.e., unique patterns) as
the query. We have been selected this function for our
study based on its success in our earlier preliminary stud-
ies. In our preliminary studies on single-project datasets,
the function performance was acceptable due to the char-
acteristics of small-size datasets (e.g., fewer pitfalls). In-

Finding. G2. SeClone detects positive answers and
ranks them at the top of the result set before the
other irrelevant answers with an acceptable per-
formance, i.e., 0.9 NDCG.

AUTHOR ET AL.: TITLE 19

terestingly, as we observe in this study, the function fails
significantly for clone search on a noisy corpus. This ob-
servation is interesting as it highlights the challenges of
clone detection and search on ultra-large noisy datasets,
i.e., a heuristic that works well for small-size dataset, is
not necessarily suitable for large-scale clone search and
detection.

10. THREATS TO VALIDITY AND LIMITATIONS
The clone search model proposed in this research can be
adapted for different application contexts which require
scalability, fast response time, ranking, and Type-1, 2, and
3 detection (e.g., [LEM11]). This section summarizes some
ongoing concerns that must be taken into consideration
before adopting our clone search model.

Data characteristics study. Our data characteristics
studies provide essential insights on the data used in our
research and application domain (e.g., corpus growth
rate, data outliers, and the strength of the hash function).
However, the observations reported from our studies
depend on three major factors: (1) the corpus being
searched, (2) the data granularity used for the study, and
(3) the selected encoded code patterns. Although we tried
to consider a representative dataset for our studies, all
conclusions drawn from our case studies remain highly
dependent on the corpus. For example, when using a da-
taset from industrial or closed code systems, the conclu-
sions will most likely differ, since the characteristics of the
code might differ. Furthermore, our studies are limited to
Java source code. For the granularities, our results are
limited to line-level clone detection, and the conclusions
are not generalizable for other granularity levels. Finally,
we have selected encoded code patterns that will result in
high recall. Achieving high recall helped us to study the
worst-case scenarios for our retrieval and ranking steps,
as it resulted in a large number of candidates to be
ranked. Therefore, the observations are not generalizable,
as is, to the other encoded code patterns that emphasize
on other requirements.

Performance evaluation study. Considering our eval-
uation approach, the quality of our benchmark plays an
important role, since it has a direct impact on the outcome
of the performance evaluation. Therefore, the following
issues must be taken into consideration. Since no other
benchmark was available for the evaluation of clone
search results and ranking performance, we created our
own benchmark using a mutation framework to generate
an oracle of known clones. A key challenge, as with any
benchmark is, how closely such a benchmark reflects real
world data. We address some of these threats by creating
a dataset that we believe is representative enough in size
(containing 25,000 different open source projects and ap-
proximately 356 MLOC). Furthermore, the mutation
framework output (our oracle) is injected to our corpus to
ensure that a minimum number of clone instances existed
for each query and to allow recall calculations. We also
identified other possible positive answers from the origi-
nal corpus beside the injected clones similar to Bellon et
al. approach [BEL07]. In an attempt to reduce the subjec-

tivity during the manual scoring process, the scoring pro-
cess was made as transparent and objective as possible
similar to Bellon et al. approach [BEL07]. We also fol-
lowed predefined guidelines provided by the mutation
framework to setup the scores.

Implementation. We have implemented our clone
search models and all of its processing components in
Java. While we performed extensive testing of our im-
plementation, we did not consider a formal validation of
either the design nor of the implementation (including the
programming heuristics).

Limitations. Our study focuses on a clone search mod-
el for Java source code. However, support for other pro-
gramming languages would require typically the substi-
tution of the language parser. While our model can be
applied to the other programming languages such as C,
its performance might differ significantly. This is due to
the fact that our encoded code pattern generation rules
have been designed and optimized based on characteris-
tics of Java source code available on the Internet, after a
detailed experimental of existing code search query logs
analysis (see Appendix).

11. CONCLUSIONS
In this research, we study the potentials of Information
Retrieval models for code clone search. Our research pre-
sents a clone search model which not only supports
scalability (i.e., Internet-scale), short response times (i.e.,
real-time), and Type-1, 2 and 3 detection, but also empha-
sizes the ranking of result sets as a key functionality. This
ranking is used to place highly similar fragments (hits)
higher than other hits within the result set. Our clone
search model (SeClone) takes advantage of a multi-level
indexing (non-positional) approach to achieve a scalable
and fast retrieval with high recall. Result sets are ranked
using two Information Retrieval ranking approaches: Jac-
card similarity coefficient and cosine similarity via the
vector space model. We combined these ranking models
with code patterns’ (not token) local and global frequen-
cies functions, which can be used to customize the search
schemata to specific application requirements.

For the evaluation we created a large corpus (365M
LOC). The corpus in combination with 50 sample queries
and a total of 650 seeded Type-1, 2, and 3 clones formed
our benchmark. This benchmark, including an extensive
manual tagging of relevance scores of over 117,000 hits.
The benchmark is used to evaluate SeClone retrieval and
ranking quality. We selected five quality measures to
evaluate and identify schemata, which can consistently
outperform others. The analysis showed that SeClone not
only scales to very large datasets but also can produce
high quality results in near real-time using the identified
schemata (𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3).

As part of our future work we plan to extend and
evaluate our clone search model to token-level similarity
search granularity using non-positional indexing. We are
also planning to release SeClone as an online clone search
engine.

20

REFERENCES
[ABR79] P. S. Abrams and J. W. Myrna, “Automatic control of execution: An
overview,” International Conference on APL (APL 'ʹ79), 9(4): 141-147, 1979.
[ABJ10] H. Abdul Basit and S. Jarzabek, “Towards structural clones - analysis
and semi-automated detection of design-level similarities in software,” VDM, 1-
153, 2010.
 [BAK92] B. S. Baker, “A program for identifying duplicated code,” Computing
Science and Statistics, 24:49-57, 1992.
[BAR10] L. Barbour, H. Yuan, and Y. Zou, “A technique for just-in-time clone
detection in large scale systems,” International Conference on Program Compre-‐‑
hension (ICPC), 76-79, 2010.
[BAS13] H. Bast and M. Celikik, “Efficient fuzzy search in large text collections,”
ACM Transactions on Information Systems, 31(2), 2013.
[BAX98] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,”, International Conference on Software
Maintenance, 368-377, 1998.
[BEL07] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compari-‐‑
son and evaluation of clone detection tools,” IEEE Transactions on Software Engi-‐‑
neering, 33(9): 577-591, 2007.
[BAZ11] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate code search in
program histories,” Working Conference on Reverse Engineering (WCRE), 109-
118, 2011.
[BRA10] J. Brandt, M. Dontcheva, M. Weskamp, S. R. Klemmer, “Example-
centric programming: integrating web search into the development environment,”
SIGCHI Conference on Human Factors in Computing Systems, 513-522, 2010.
[BRI98] S. Brin, L. Page, “The anatomy of a large-scale hypertextual Web search
engine,” Computer Networks and ISDN Systems, 30(1):107-117, 1998.
[CAR93] S. Carter, R. J. Frank, and D. S. W. Tansley, “Clone detection in tele-‐‑
communications software systems: A neural net approach,” International Work-‐‑
shop on Applications of Neural Networks to Telecommunications, 273-287, 1993.
[CAU86] P. J. Caudill and A. Wirfs-Brock, “A third generation Smalltalk-80
implementation,” Conference on Object-oriented Programming Systems, Lan-
guages and Applications(OOPLSA '86), 21(11): 119-130, 1986.
[DEE05] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software, 74(2):173-194,
2005.
[GJZ08] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
International Conference on Software Engineering (ICSE), 321-330, 2008.
[GRI81] S. Grier, “A tool that detects plagiarism in Pascal programs,” SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ‘81), 13(1):15-20,
1981.
[GRK09] N. Göde and R. Koschke, “Incremental clone detection,” European
Conference on Software Maintenance and Reengineering (CSMR), 219-228, 2009.
[HUM10] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-
based code clone detection: incremental, distributed, scalable,” International Con-‐‑
ference on Software Maintenance (ICSM), 1-9, 2010.
[HUN77] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing
longest common subsequences,” Communications of the ACM, 20(5), 350-353,
1977.
[JAC84] J. Jacobsen, “An automated management system for applications
software,” ACM SIGUCCS Conference on User services (SIGUCCS 'ʹ84), 173-175,
1984.
[JAC01] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des Alpes et des Jura,” Bulletin de la Societe Vaudoise des Sciences Na-‐‑
turelles, 37:547-579, 1901.
[JAH10] P. Jablonski and D. Hou, “Aiding software maintenance with copy-
and-paste clone-awareness,” International Conference on Program Comprehen-
sion (ICPC), 170-179, 2010.
[JIA07] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” International Conference on Software

Engineering (ICSE '07), 96-105, 2007.
[JMM09] Y. Jia, D. Binkley, M. Harman, J. Krinke and M. Matsushita, “KClone: a
proposed approach to fast precise code clone detection,” International Workshop
on Software Clones (IWSC), 2009.
[KAM02] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,” IEEE Trans-‐‑
actions on Software Engineering, 28(7): 654-670, 2002.
[KAW09] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M.
Nagura, and H. Iida, “SHINOBI: A tool for automatic code clone detection in the
IDE,” Working Conference on Reverse Engineering (WCRE), 313-314, 2009.
[KEL83] M. I. Kellner, “Ten years of software maintenance: progress or promis-‐‑
es?,” Conference on Software Maintenance (ICSM), 406-408 ,1993.
[KKI11] H. Kim, Y. Jung, S. Kim, K. Yi, “MeCC: memory comparison-based
clone detector,” International Conference on Software Engineering (ICSE), 301-310,
2011.
[KLX11] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” Working Conference on Reverse Engineer-
ing (WCRE), 23-27, 2011.
[KLZ11] I. Keivanloo, J. Rilling, and P. Charland, “SeClone-a hybrid approach to
internet-scale real-time code clone search,” International Conference on Program
Comprehension (ICPC), 223-224, 2011.
[KLX12] I. Keivanloo, “Leveraging clone detection for Internet-scale source code
search,” International Conference on Program Comprehension (ICPC), 277-280,
2012.
[KLF12] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis, J.
Rilling, “A Linked Data Platform for Mining Software Repositories,” Working
Conference on Mining Software Repositories (MSR), 2012.
[KON97] K. Kontogiannis, “Evaluation experiments on the detection of pro-‐‑
gramming patterns using software metrics,” Working Conference on Reverse
Engineering, 44-54, 1997.
[KOS12] R. Koschke, “Large-scale inter-system clone detection using suffix
trees,” European Conference on Software Maintenance and Reengineering
(CSMR), 309-318, 2012.
[KNU77] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, 6(2): 323-350, 1977.
[KOS08] R. Koschke, “Frontiers of software clone management,” Frontiers of
Software Maintenance (FoSM), 119-128, 2008.
[LEM11] M. W. Lee, S. W., Hwang, and S. Kim, “Integrating code search into the
development session,” International Conference on Data Engineering (ICDE), 1336-
1339, 2011.
[LER10] M. W. Lee, J. W. Roh, S. W. Hwang, and S. Kim, “Instant code clone
search,” ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’10), 167-176, 2010.
[LOM83] J. V. Lombardi, “Computer literacy: The basic concepts and language,”
Indiana University Press, 1983.
[MAN08] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to infor-‐‑
mation retrieval,” Cambridge University Press. 2008.
[MAR01] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” International Conference on Automated Software Engineering
(ASE), 107-114, 2001.
[MAY96] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automat-‐‑
ic detection of function clones in a software system using metrics,” International
Conference on Software Maintenance, 244-253, 1996.
[MIS04] G. Mishne and M. De Rijke, “Source code retrieval using conceptual
similarity,” Conference on Computer Assisted Information Retrieval (RIAO’04),
539-554, 2004.
[OTT76] K. J. Ottenstein, “An algorithmic approach to the detection and preven-‐‑
tion of plagiarism,” ACM SIGCSE Bulletin, 8(4): 30-41, 1976.
 [PER88] J. M. Perry, “Perspective on Software Reuse,” Technical Report, No.
CMU/SEI-88-TR-22, Carnegie-Mellon Univ. Pittsburgh PA Software Engineering

AUTHOR ET AL.: TITLE 21

Inst., 1988.
[ROY09] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” International Conference on
Software Testing, Verification and Validation Workshops (ICSTW'09), 157-166,
2009.
[ROS09] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Science of
Computer Programming, 74(7): 470-495, 2009.
[SMI09] R. Smith and S. Horwitz, “Detecting and measuring similarity in code
clones,” International Workshop on Software Clones (IWSC), 2009.
[TAI09] R. Tairas and J. Gray, “An information retrieval process to aid in the
analysis of code clones,” Empirical Software Engineering, 14(1):33-56, 2009.
[TAN87] A. S. Tanenbaum, “A UNIX clone with source code for operating
systems courses,” ACM SIGOPS Operating Systems Review, 21(1):20-29, 1987.
[UCI10] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI source code data
sets,” http://www.ics.uci.edu/~lopes/datasets, 2010.
[WAL03] A. Walenstein and A. Lakhotia, “Clone detector evaluation can be
improved: ideas from information retrieval,” 2nd International Workshop on
Detection of Software Clones (IWDSC), 2003.
 [WEH03] H. J. Webber, “New horticultural and agricultural terms,” Science,
18(459): 501-503, 1903.
[YHU11] Y. Higo and S. Kusumoto, “Code clone detection on specialized PDGs
with heuristics,” European Conference on Software Maintenance and Reengineer-
ing (CSMR), 75-84, 2011.
[ZIB12] M. F. Zibran and C. K. Roy, “IDE-based real-time focused search for
near-miss clones,” ACM Symposium on Applied Computing (SAC’12), 1235-1242,
2012.

APPENDIX - TRANSFORMATION FUNCTION DESIGN
DISCUSSION

Several token types exist in source code such as method
names, class names, primitive types, language keywords,
variables, and constants. In general, apart from language
keywords, which are consistent through the code, the
token names can refer to different concepts. Despite dif-
ferences in names, the semantic of tokens can still be simi-
lar (from algorithmic point of view). We refer to this case
as tokens’ semantic stability issue. Figure 11 provides an
example where two code fragments can be considered
clones even though they use different variable names (i.e.,
att and var).

…
5: String msg=”exit 0";
6: for(AttributeEntity att : t.getAttributes())
7: {
…

…
5: String msg=”exit 0";
6: for(AttributeEntity var : t.getAttributes())
7: {
…

Figure 11. Two code cloned code fragments that are using different varia-

ble names

 It is a well-known practice (e.g., [KAM02]) in clone de-
tection tools to replace all tokens with placeholders to
reduce such syntactic and semantic dissimilarities. This
practice is useful when the clone detection approach is
not able to judge the semantics of the token based on its
name and other available information (e.g., AST). In our

research, we proposed various transformation functions
in order to be able to address different types of similarity.
For example, the 𝑐 function only preserves method names
and class names. 𝑐 replaces almost all other tokens with #
as placeholder. We defined 5 transformation functions
(Table 4) covering different scenarios and requirements.
However, all of them preserve the method name tokens.
For our approach, we decided to preserve method names,
as we observed that method names have stable semantics
in our research context (i.e., large-scale code search). Our
observation is based on an analysis of a one-year query log
of Koders [UCI10] (one of the state of the art code search
engines). When analyzing the query log, we focused on 18
programming languages, which have a method construct
as part of their language. This log contains a total of ap-
proximately 10 million records that we analyzed. As part
of that analysis, we observed that for Internet-scale code
search, method names play an essential role. Our analysis
showed that if a method name was present as part of the
query, code download occurred 98% of the time (Figure 12
– MCQ values), whereas the overall download rate is 69%
(Figure 12 – All values). Note that in Web search activity
mining, downloads/clicks on search results are interpret-
ed as the result of a successful search. This observation
shows the importance of method names in a code search
and can be used as an indicator for method tokens’ seman-
tics stability from end-users’ point of view. Therefore, all
encoded code patterns generated by our transformation
functions preserve the method names, which also provide
the added benefit of reducing the number of false positive
rates during the later matching.

Figure 12. Importance of method names to the code search success rate –
an indicator for method tokens’ semantics stability from end-users’ point of

view.

0
0.2
0.4
0.6
0.8

1
All

C#
*(NotSpecifi…

java

actionscript

asp

assembler

c
cpp

delphi
javascript

jsp
matlab
perl

php

python

ruby

sql
vb
vb.net

All

MCQ

