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Abstract—Finding  both  pattern  and  content  similarities  in  source  code  constitutes  the  core  of  several  research  domains  such  
as   plagiarism   and   clone   detection.   Recently,   code   clone   search   as   a   new   research   branch   has   emerged   aiming   to   provide  
similarity  search  functionality  for  code  fragments.  Scalability,  short  response  time,  and  the  ability  to  search  for  Type-1,  2  and  3  
clones  are  some  of   the  major  challenges  which  have   to  be  dealt  with  by   the  clone  search  community.  We   introduce  a  clone  
search  model,  based  on  clone  detection  and  information  retrieval  that  not  only  provides  scalability,  short  response  times,  and  
Type-1,  2  and  3  detection,  but  also  supports  result  ranking.  Ranking  of  result  sets  is  a  key  functionality,  which  has  been  widely  
overlooked  previously  by  the  clone  search  community.  For  our  approach,  the  ranking  not  only  forms  the  basis  for  ordering  result  
sets   based   on   their   similarity   to   a   given   query   but   also   introduces   an   important   quality   concept   in   clone   search   beyond  
traditional   precision   and   recall   measures.   Our   model   takes   advantage   of   a   non-positional   multi-level   indexing   approach   to  
achieve  a  search  that  is  scalable  with  a  high  recall.  Result  sets  are  ranked  using  two  information  retrieval  ranking  approaches:  
Jaccard  similarity  coefficient  and  cosine  similarity.  Both  ranking  approaches  exploit  code  patterns’  and  not  tokens  to  derive  local  
and  global  frequencies.  We  studied  the  performance  of  our  search  engine  through  40  candidate  search  schemata  for  Type-1,  2,  
and  3  clones   on  a   dataset   covering  25,000  projects.  Through   benchmarking  and   various  measures,  we  observed   that  clone  
search  via  information  retrieval  is  capable  to  deliver  scalability  with  high  precision  and  recall  in  near  real-time. 

Index  Terms— Source  code  clone  search,  source  code  similarity,  information  retrieval,  clone  detection,  source  code  search 
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1 INTRODUCTION
he term clone (Greek word klōn) dates back to Her-
bert J. Webber’s [WEH03] work in 1903, referring to 

the outcome of a derivation activity in the context of liv-
ing species. While in computer science, such autonomous 
reproduction is limited, derivation is an unavoidable fact 
of programming and is known as cloning. Derivation 
during software development usually occurs as the result 
of reuse [PER88] [DEE05]. The ease of reuse and the po-
tential harms caused by cloning in software development 
became a major motivation for computer scientists to in-
vestigate this type of code duplications. Consequently, a 
research discipline - clone detection – [BEL07] [ROS09] 
[BAK92] has emerged in computer science, which focuses 
on devising novel algorithms and heuristics for finding, 
tracing, and managing [KOS08] code clones. Although the 
input data for this type of similarity search is source code, 
which is structured and well organized, the clone detec-
tion problem remains a non-trivial problem due to the 
different types of similarities that can be distinguished 
[BEL07]. At source code level, clones share two types of 
similarity: (1) pattern and (2) content similarity. The chal-
lenge lies often in determining if two code fragments 
(e.g., “int temp=0;” and “float f=2) are actually cloned, as 
they can hold only negligible content (e.g., token names) 
similarity. 

More recently, clone search (e.g., [LER10]) has emerged 
as a new research direction that exploits the fundamentals 
of clone detection research to provide (similarity) search 

functionality for code fragments (i.e., clones). In contrast 
to traditional clone detection, clone search is only con-
cerned with locating similar code fragments for a given 
code fragment at run-time. In the literature, several terms 
have been introduced to emphasize the importance of 
response time in clone search, e.g., just-in-time [BAR10], 
real-time [KAW09], and instant [LER10] clone search. 
Several similarity and search models (exploiting clone 
detection fundamentals) have been proposed to address 
the core requirements of clone search: scalability, short 
response time, and being able to search for Type-1, 2 and 
3 clones. Similar to other search domains (e.g., Web 
search), clone search models are dealing with large search 
spaces returning often hundreds of matches for each que-
ry [ KLX11]. We therefore believe that ranking of results 
sets in clone search, as it is already in other domains, has 
to be considered a core requirement.  

In this research, we introduce a clone search model 
that covers ranking, scalability, fast response time, and 
Type-1, 2, and 3 detection. This model is based on our 
earlier work on clone search [KLX11] [KLZ11] and its 
emerging applications such as code search (e.g., [KLX12]). 
Our studies in [KLX11] have shown that a multi-level 
indexing approach can achieve scalability, short response 
time, and search capabilities for Type-1, 2 and 3 clones. 
However, support for ranking was missing. 

For this research, we extended our multi-level index-
ing approach by adopting the Jaccard similarity coeffi-
cient [JAC01] and cosine similarity [MAN08] to provide 
ranking of the result sets. Thus clone search ranking ap-
proach exploits code patterns’ (not token) local and global 
frequencies for assigning different weights to search re-
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sults, depending on the popularity of the patterns. For 
example, a domain specific pattern (e.g.,“EclipseEditor 
foo=new EclipseEditor()”) can be assigned higher weights 
compared to some general code patterns (e.g., “catch (Ex-
ception ex) {“). Moreover, the adaptation of Jaccard and 
cosine similarity makes it possible to discard all positional 
information during indexing and pattern matching. Dis-
carding such positional information improves the scala-
bility and performance in terms of memory consumption 
for indexing and computational complexity of the pattern 
matching. 

We have studied the applicability of our similarity 
search model using a representative dataset of 25,000 
open source Java projects. We evaluated the performance 
(scalability, response time, ability to detect Type-1, 2, and 
3 clones as well as the ranking of result sets) of our search 
model, using 40 different clone search configurations. 

For the evaluation of the ranking, we compared these 
schemata based on their ability to provide result sets in 
which the correct and most relevant search results were 
consistently placed in the top of these result sets. The 
evaluation was performed on a large corpus containing 
approximately 356 Million LOC, and a clone benchmark, 
which includes 50 queries and 650 seeded Type-1, 2, and 
3 clones. Our evaluation study also includes an extensive 
manual relevance scoring for 117,000 results, which were 
extracted from the top-60 hits of over 2000 experimental 
queries. As part of this manual evaluation, we analyzed 
the relevancy of 80,000 hits using a predefined scoring 
guideline, comparing both their clone types and their 
similarity with the search query. 

We selected 5 measures from the IR literature, to eval-
uate different quality aspects of our clone search model 
and to identify outperforming schemata. We observed 
that our approach is scalable; there are certain configura-
tions of our model that are able to answer a given query 
in real-time (~100 milliseconds). The identified configura-
tions also (1) detect all of the known Type-1, 2 and 3 
clones (2) and successfully rank them at top of the result 
set.   

The remainder of the paper is organized as follows. 
Section 2 outlines related work in clone detection, similar-
ity search and code search. Section 3 introduces our clone 
SeClone search model. Section 4 discusses retrieval and 
indexing steps of our search model in details, with the 
different ranking schemata of our search model being 
covered in Section 5.  Section 6, provides a discussion on 
the data characteristics of the corpus being search in our 
domain of discourse.  Section 7 introduces the measures 
we adopted from other domains to support our qualita-
tive analysis of clone search results (e.g., information re-
trieval). Finally Sections 8, 9, 10 and 11 provide the 
benchmark preparation, performance evaluation results, 
followed by threats to validity and conclusions. 

2 BACKGROUND  AND  RELATED  WORK 
In this section, we present a review of both early research 
and the state of the art in (1) source code clone, (2) code 
clone detection, and (3) code similarity. 

2.1. Background 
One of the earliest similarity detection approaches dates 
back to the work by Ottenstein [OTT76] in 1976. Otten-
stein introduced a metric-based approach for the detec-
tion of plagiarism in student programming assignments. 
His work also included a discussion on potential dissimi-
larity types that were supported by a plagiarism detection 
algorithm, such as re-formatting, re-naming and re-
ordering of statements. Later on, Grier [GRI81] in 1981 
extended Ottenstein’s work to Pascal code. The first actu-
al reference to the clone concept in the source code and 
programming domain dates back to the work by Abrams 
and Myrna [ABR79] in 1979. They used the term clone in 
a Programming Language (APL) context describing it as 
“… creates an output file and starts a "clone" of itself”. 
The concept of a “clone” in source code was later used by 
Jacobsen [JAC84] to describe a pre-defined command, 
and by Caudill and Wirfs-Brock [CAU86] as a reproduc-
tion of executable files in Smalltalk. Tanenbaum [TAN87] 
used clone to describe the variations of a software system. 
During the 1980s, the term clone was further popularized 
mostly through its use as a reference to computer hard-
ware, such as compatible computer (hardware), an IBM 
compatible (or short IBMclone) computer [KEL83] or, in 
[LOM83], as “…can’t tell what is on my disk without a 
clone of my computer”. Among the first researchers who 
actually used the term clone detection at the source code 
level were Carter et al. in 1993 [CAR93]. They described 
clone detection as the process of finding similar telecom-
munications systems using neural networks. 

Over the last two decades, clone detection, the process 
of finding code duplications in programming content 
[ROS09], has matured as a research discipline in comput-
er science and resulted in a number of clone detection 
techniques. Common to these traditional detection tech-
niques is that they perform a complete off-line search step 
to find all possible clone pairs within a static source code 
repository. At source code level, clones share two types of 
similarity: (1) pattern and (2) content. Table 1 provides an 
overview, including examples, of the three basic similari-
ty types related to syntactical clones.  
 
Table 1.  Examples for source code similarity types (i.e., clone types) 

The input code sample 
HashMap var=new HashMap (10); 

Similarity 
Type 

Example 

Type-1 

HashMap var    =    new HashMap (10); 

Additional Whitespace

 
Type-2 

HashMap list1=new HashMap (); 

Different variable name

 
Type-3 

HashMap list1=new HashMap (list2.size()); 

Additional Code

 
 
These are clones (Table 1) with an observable similari-

ty in the source code. Type-1 clones are exact copies of 
each other, except for possible differences in whitespaces 
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and comments. Type-2 clones are parameterized copies, 
where variable names and function calls have been re-
named and/or types have been changed. Changes (e.g., 
addition and deletion of statements) in a clone pair result 
in type-3 clones. In cases where two fragments share simi-
lar functionality with different syntactical presentations, 
they constitute a Type-4 clone pair.  

2.2. Related  work 
While earlier work in code clone and similarity research 
had mainly focused on detecting plagiarism in source 
code, this focus started to shift in the 1990s with software 
maintenance emerging as a new application for clone de-
tection. In 1992, Baker [BAK92] proposed Dup, a tool to 
support software maintenance and bug fixing by detect-
ing duplicate code. The Dup tool also implemented a 
clone detection solution, which exploited hash values and 
inverted-indexes to facilitate the search process during 
clone detection. Later approaches, such as metric-based in 
Merlo et al. in 1996 [MAY96] and AST-based Baxter et al. 
in 1998 [BAX98], supported the use additional facts ex-
tracted from source to further improve scalability, per-
formance, and efficiency of clone detection approaches. 

Clone Detection. Most clone detection approaches 
(e.g., CCFinder [KAM02]) are based on sequence compar-
ison. Data dependency and program dependency graph 
(PDG) are also studied for clone detection as alternative 
representations of computer program (e.g., Jia et al. 
[JMM09] or Higo and Kusumoto [YHU11]). Recently, 
novel search and retrieval models were introduced to 
scale clone detection to larger corpora such as scalable 
clone detection using suffix trees by Koschke [KOS12] 
and Göde [GRK09], R ∗ tree by Jiang et al. [JIA07], sim-
hash by Uddin et al. [UDD11][UDD13] and Levenshtein 
metric and Manhattan distance by Lavoie and Merlo 
[LAV11][LAV12]. Similarity measures and ranking for 
clone detection is also studied by Smith and Horwitz 
[SMI09]. There is also a body of work on the other forms 
of clones such as structural clones by Abdul Basit and 
Jarzabek [ABJ10] and semantic clones by Kim et al. 
[KKI11] and Gabel, Jiang, and Su [GJZ08]. Several appli-
cations for clone detection are discussed in the literature 
such as maintenance improvement by pro-active clone 
detection by Jablonski and Hou [JAH10]. 

While the existing research is focused on clone detec-
tion, it also forms the foundations for any research about 
code similarity measurement and clone search. Our re-
search approach is similar to the one by Carter et al. 
[CAR93] since both use cosine similarity. Our approach 
also shares commonalities with the vector space models 
used by DECKARD [JIA07] and Carter et al. [CAR93]. 
However, we create the vectors using code patterns in-
stead of metrics and predefined code fingerprints [JIA07] 
[CAR93]. Also compared to the work in NiCad [ROS08] 
and CCFinder [KAM02]), we deploy a non-positional 
similarity search instead of a sequence matching ap-
proach. This approach provides us the possible of achiev-
ing scalability and real-time response time both together. 

Non-positional retrieval is explored earlier by Smith and 
Horwitz [SMI09], Baker et al. [BAK98], and Uddin et al. 
[UDD11][UDD13]. Our research focuses on the applica-
tion of Information Retrieval models for clone search. Our 
approach not only detects the major clone types but also 
is aiming to discriminate among Type-1, 2 and 3 clones. 
Being able to differentiate between Type-1, 2, and 3 is 
important if we want to rank the detected fragments 
based on their similarity to the query. 

In other research domains such as concept location, in-
formation retrieval has been explored for code similarity. 
Marcus and Maletic [MAR01] used Latent Semantic In-
dexing (LSI) to extract semantics from source code facts 
(e.g., identifier names) to guide the detection of code 
fragments implementing similar features. LSI also has 
been exploited by Tairas and Gray [TAI09] for clone re-
sult clustering. Kontogiannis [KON97] uses a basic IR 
infrastructure and Mishne et al. [MIS04] introduced an 
approach using Conceptual Graphs and structural infor-
mation to find similar code.  

Clone Search. Although detecting code similarities 
and patterns is a well-established research area in clone 
detection, more recently “source code clone search”, a 
research area also known as just-in-time [BAR10], real-
time [KAW09], or instant [LER10] clone search has 
emerged. While clone search still shares its fundamentals 
with traditional clone detection, both its objective and 
requirements differ significantly. Traditional clone detec-
tion applications are based on a complete off-line search 
step to find all possible clone pairs within a static source 
code repository. In contrast, code clone search models can 
be considered as specialized search engines that are de-
signed to find clones matching a single fragment (query) 
within an often large corpus. Clone search approaches 
index source code repositories as part of their off-line 
processing and use input provided in the form of a code 
fragment at run-time, to trigger and perform the search 
process. 

SHINOBI [KAW09] provides the search functionality 
via a suffix array built on transformed tokens using 
CCFinder’s rules [KAM02]. Hummel et al. [HUM10] use 
inverted index for scalable Type-2 clone search. A multi-
dimensional token-level indexing approach is introduced 
by Lee et al. [LER10] [LEM11] using an  R ∗ tree on 
DECKARD’s [JIA07] approximate vector matching. The 
language elements (e.g., assignment) constitute the di-
mensions of the search space. Barbour et al. [BAR10] in-
troduce a result sampling approach that uses results ob-
tained from other clone detection tools to find candidate 
clones. The collected candidates are indexed and then 
compared by Knuth-Morris-Pratt string searching algo-
rithm [KNU77]. Zibran and Roy [ZIB12] introduced an 
IDE-support for Type-3 clone search based on Rabin’s 
fingerprinting algorithm and suffix trees. Bazrafshan and 
Koschke [BAZ11] exploit Chang and Lawler’s search al-
gorithm, which was originally proposed for the bioinfor-
matics domain to find approximate source code patterns.  
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Figure 1.  SeClone –clone search approach  

In our earlier work on clone search [KLX11] [KLZ11], 
we introduced a hash-based inverted indexing approach, 
which uses multi-level indexing for Type-3 clone search. 
Our research differs from earlier work (including ours) on 
clone search since we are aiming to provide a clone search 
model that includes not only support for Type-2 and 3 
clones but also ranking of the result set. Moreover, we are 
proposing adaptation of non-positional search space of 
code patterns and information retrieval models for both 
retrieval and ranking. To the best of our knowledge, Jac-
card coefficient and vector space model (combined with 
local and global frequencies) via cosine similarity for a set 
of vectors made of code patterns have not been studied 
before for clone search. 

3 A  MODEL  FOR  CLONE  SEARCH 
In this section, we introduce our code clone search ap-
proach, SeClone, which supports up to Type-3 clone, 
scalability, fast response time, and ranking of result sets. 
Our model is based on existing models, including vector 
space model (VSM), cosine similarity, and Jaccard similar-
ity coefficient (JSC) from information retrieval (IR). They 
are frequently used by the IR community for similarity 
search due to their scalability to large corpora [BRI98] 
[MAN08]. 
We are motivated to adapt them in our research since 
common to both models is low computational complexity 
for Type-3 clone search process. The low complexity is 
due to their non-positional approach. The non-positional 
similarity search is different from the dominant matching 
approach in clone detection that is positional (e.g., longest 
common subsequent (LCS) [HUN77] and suffix tree). 

3.1 Overview 
SeClone combines multi-level indexing and information 
retrieval ranking models. Our approach is able to find the 
closest matches (hits) to a given query, and return these 
hits as a ranked result set based on their similarity to the 

input query. Figure 1 provides an overview of SeClone 
and its major processing steps, which include: (1) prepro-
cessing, (2) indexing, (3) retrieval and (4) ranking. The 
performance (off-line and online processing) of our search 
model approach is configurable via its search schema, 
which consists of nine parameters (Figure 2).  

Preprocessing. SeClone is a line based detection ap-
proach that uses abstract syntax tree (AST) as its input for 
the offline preprocessing step. SeClone parses the ASTs of 
individual files to create a uniform representation, anno-
tated by token types. The preprocessing step also trans-
forms AST tokens using transformation rules, which are 
specified through the search schema parameters 𝑡 and 𝑡௦. 
These transformation rules generate an encoded code 
patterns (𝑒𝑝) for each line of code. 

The second index 
config.

The first index 
config.

Scoring schem
a

Size function

Local frequency

Global frequency

Frequency 
norm

alization

Ranking Retrieval & Indexing

 
Figure 2.  The SeClone search schema - configuration parameters 

Indexing. Our approach uses multi-level indexing. By 
default, it creates two1 inverted indices, denoted by p 
(primary) and s (secondary). The 𝑒𝑝 datasets, generated 
by the transformation rules 𝑡 and 𝑡௦, are indexed as hash 
table-based indices. The hash values can be generated for 
different granularities: 𝑔 and 𝑔௦ which are specified as 
part of the search schema.  

Retrieval. At run-time, SeClone creates two 𝑒𝑝 datasets 
for the given query (i.e., code fragment). The hash values 
 

1 Our multi-level indexing idea implies that the actual number of 
indices should be at least two when both pattern and content simi-
larity are important (e.g., Type-3 clone search). However, depending 
on the actual application context, additional indices can be added.  
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are generated using the same configuration used by the 
preprocessing and indexing steps. Finally, SeClone gen-
erates two vectors (𝑣௬ and 𝑣௦ௗ௬) for each query 
𝑞 using hash values of the encoded code patterns:  

𝐼𝑛𝑝𝑢𝑡  (𝑜𝑟𝑑𝑒𝑑𝑟𝑒𝑑  𝑏𝑎𝑔):                            𝑞    (𝑙ଵ, … , 𝑙௬) 
𝑣௬ < 𝑒𝑝ଵ

, 𝑒𝑝ଶ
, 𝑒𝑝ଷ

, … , 𝑒𝑝
 > 

𝑣௦ௗ௬ < 𝑒𝑝ଵ௦, 𝑒𝑝ଶ௦, 𝑒𝑝ଷ௦, … , 𝑒𝑝௦ > 
These vectors ignore the ordering of the elements similar 
to our inverted indices. For each vector, a look up action 
is performed on the corresponding index. The goal is to 
retrieve all code fragments indexed in the corpus, which 
share at least one hash value 𝑒𝑝௫

௬ with the query. The un-
ion of both candidate sets, from the primary and second-
ary indices, constitutes the complete set of hits, i.e., all 
clone candidates. 

Ranking. The retrieval step finds all possible answers 
for a given query. However, all of them are not equally 
similar to the query. In addition, in a comprehensive cor-
pus most of the candidates are false positives. The goal of 
ranking step is to sort them based on their similarity de-
gree to the query (e.g., Figure 1). Without a proper rank-
ing, the end user has to iterate over thousands of matches 
to find the true positives. Our ranking models are based 
on VSM and JSC, which both can be configured within 
our search schema (𝒂. 𝒃𝟏𝒃𝟐𝒃𝟑𝒃𝟒. 𝑡𝑔. 𝑡௦𝑔௦), with the rank-
ing parameters being highlighted in bold. Similarity 
scores are calculated for each hit that is returned by the 
retrieval step. SeClone generates the final ranked result 
set (e.g., Figure 1) by sorting the hits over the calculated 
similarity degree. Figure 3 summarizes the SeClone 
search algorithm for both retrieval and ranking steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Algorithm overview for retrieval and ranking steps 

3.2. Computational  complexity 
A summary of the computational complexity of our 

approach for both run-time complexity and memory con-
sumption is shown in Table 2. For the analysis, we ex-
cluded style unification, transformations, and AST build 
times, since they are negligible and linear to the size of 
the input data set. 

We separate our analysis in three major processing 
steps: (1) off-line indexing for creating the hash table indi-
ces, (2) the actual search, which includes retrieval and 
ranking, and (3) the corpus update. 𝑇 represents the in-
verted index size, which is 𝑂(𝑛) with 𝑛 being the size of 

the corpus in terms of lines of code (LOC). The size of the 
result set is represented by 𝑐, and the total number of up-
dated lines of code by 𝑙, with the expected lookup com-
plexity for the inverted index being 𝑂(1), since the index 
is hash table-based. The resulting clone search time com-
plexity is 𝑂(𝑐 ∗ log 𝑐), since in order to create the ranked 
result set all hits must be first sorted based on their rele-
vance scores. This low time complexity for both clone 
search (including Type-3 clones) and repository prepara-
tion can be attributed to the use of non-positional index-
ing. Memory consumption for indices is also almost line-
ar. This cannot be further optimized without the use of 
compression and other abstraction mechanisms.  

Table 2.  SeClone computational complexity 

 Processing step Time com-
plexity 

Memory com-
plexity 

Repository preparation (Indexing) 𝑂(𝑛) 𝑂(𝑛) 
Clone search 𝑂(𝑐 ∗ log 𝑐) 𝑂(𝑐) 
Repository update (content 
addition/deletion) 𝑂(𝑙) 𝑂(𝑙 + 𝑇) 

4. SECLONE  INDEXING  MODEL   
In this section, we describe the details of our indexing 
approach. Our clone search model uses the concept of 
encoded code pattern (𝑒𝑝) to construct its search space. 
An encoded code pattern is a template that defines a cer-
tain degree of similarity. The idea of encoding code pat-
tern supports Type-2 detection following Baker’s p-strings 
[BAK92]. However, instead of using these patterns direct-
ly, they are transformed to hash values. Hash values pro-
vide an efficient numeric representation of textual content 
in terms of space consumption and retrieval (lookup) 
times, with a lookup complexity of 𝑂(1). Both of these 
properties are important for our model to ensure that it is 
both scalable and efficient.  

4.1. Encoded  code  pattern  generation 
Our encoded code patterns are based on line granularity. 
Encoding the original code content “as is”, would consti-
tute the most restrictive 𝑒𝑝, and only allow to de-
tect/match exact (Type-1) clones during the search pro-
cess. Less restrictive encoding increases recall and sup-
ports Type-2 clone search however, at the cost of lower 
precision. In our research, we defined a number of mod-
els for encoding code patterns to address the tradeoff be-
tween recall and precision. Each model is defined 
through (1) a transformation function and (2) its encoding 
granularity. The granularity (g) determines the number of 
neighboring lines of code that will be considered for the 
encoding. The transformation function 𝑡, on the other 
hand, determines the parameterization rules. 

Hash function. The hash function 𝐻 is used for gener-
ating hash values that represent the encoded code pat-
tern. The function uses four input parameters: the code 
fragment 𝑐, offset 𝑜, granularity 𝑔, and the transformation 
function 𝑡. 

𝐻(𝑐, 𝑜, 𝑔, 𝑡) = 𝑣 

Algorithm 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙_𝑎𝑛𝑑_𝑅𝑎𝑛𝑘𝑖𝑛𝑔(𝑞, 𝑖𝑥, 𝑖𝑥௦, 𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ. 𝑡𝑔. 𝑡௦𝑔௦) 
Input          q : query’s code fragment, ixy: primary and secondary indices                
Output      ℎ𝑖𝑡𝑠:  ordered set of all candidate clone fragments based on their similarity 
to the query 
 
1. 𝑣௬[]         ← 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒(𝑞, 𝑡, 𝑔)        //𝑣௬: the un-ordered set of hash values  
2. 𝑣௦ௗ௬[]   ← 𝐻𝑎𝑠ℎ𝑉𝑎𝑙𝑢𝑒(𝑞, 𝑡௦, 𝑔௦)  
3. for h in 𝑣௬                //find and add all fragments with at least one occurrence of h 
4.               ℎ𝑖𝑡𝑠௬[]   ← 𝑖𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝(ℎ)                          
5. for h in 𝑣௦ௗ௬  
6.               ℎ𝑖𝑡𝑠௦ௗ௬[]  ← 𝑖𝑥௦. 𝑙𝑜𝑜𝑘𝑢𝑝(ℎ)  //this is an un-ordered set of all candidate 

clones 
7. ℎ𝑖𝑡𝑠[] ←  ℎ𝑖𝑡𝑠௬   ∪   ℎ𝑖𝑡𝑠௦ௗ௬                                
8. for hit in ℎ𝑖𝑡𝑠 
9.             ℎ𝑖𝑡𝑠′[]                                       ←   𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑞, ℎ𝑖𝑡, 𝑎, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ) 
10. sort(ℎ𝑖𝑡𝑠′  𝑜𝑛  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒) 
11. return hits 
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Figure 4.  Example  of  SeClone’s  hash  and  transformation  function  output 

Since our approach is a line-based clone search, the 
hash function also operates at line level granularity. Con-
sequently, the input code fragment has to be at least one 
syntactically complete line of code. The offset refers to the 
line of code that is used as a target line for the hash value 
generation process. The generation of hash values for a 
code fragment requires the function to be called several 
times, by iterating over the target line parameter.  

Granularity. The 𝐻 function generates hash values not 
only based on the target line content, but also on its 
neighboring content. While having a single line granulari-
ty can increase recall, such fine-granularity often decreas-
es precision, as the overall similarity depends not only on 
the resemblance of the participating lines but also on their 
order. Therefore, to improve search precision, code pat-
terns should also be encoded for higher granularity lev-
els. In our approach, can generate hash values for a target 
line at both one and three-line granularities (Table 3). 

Transformation functions. Table 4 reviews the trans-
formations (t) supported by our approach, including their 
semantics, i.e., type of transformation being performed. A 
key difference among these transformations is their em-
phasis on either content or pattern resemblance. While 
content resemblance focuses on token name similarities, 
pattern resemblance enforces the order of tokens regard-
less of the token names. For example, the transformation 
function 𝑤 ignores the token ordering completely, while 
m attempts to keep the balance between patterns and con-
tent resemblance. 

Example. For line-based detection approaches, code 
layout unification through formatting and normalization 
is an essential processing step to increase recall of the re-
trieval algorithm [KAM02]. Layout unification requires 
normalization of all source code extracted from the code 
repository and the search queries. During the layout 
normalization, information from the AST of each source 
code file in the repository is used to extract tokens and 
data types. The extracted information is the input to the 
transformation functions. Furthermore, a combination of 
transformation function and granularity parameters can 
be used to specify a specific encoding model. For exam-
ple, 𝑚3 refers to the TLS granularity using the trans-
formed lines of code with only method name preserva-
tion. Figure 4 illustrates the complete process how our 
hash function assigns an identical value to two different 
code fragments by exploiting the 𝑚3 encoded pattern 
model. In this case, the code fragments identified by the 
target lines 53 (i.e., lines 52-54) and 84 (i.e., lines 83-85) 
share the same pattern but their content resemblance is 
low due to differing class and variable names (Figure 4).  

Table 3.  SeClone pre-defined granularities for hash function – 𝑔  

 Granularity Description 
FLS 1 Only the target line that is specified by the 

offset parameter must be considered 
TLS 3 The target line specified by the offset 

parameter 𝑜 including 𝑜 − 1 and 𝑜 + 1 lines 
must be considered - Three lines in total 

Table 4.  SeClone source code transformation functions – the 𝑡 parameter 
Transform

ation function  

   
D

escription 
           

D
escription 

Style unification 

Preserve code ordering w
ithin line 

Preserve m
ethod call nam

es e.g., 
toString() 

Preserve class nam
es e.g., Stream

 

Preserve sym
bols e.g., ( ) 

Preserve prim
itive types e.g., int 

Preserve language keyw
ords 

Preserve constants and  literals 

Preserve variable nam
es 

exact 
x Same as input except for 

changes in style 
x x x x x x x x x 

loose (Type-1) 
l Same content for all code 

fragments which  can be 
considered as Type-1 
clone 

x x x x x x x - x 

word set 
w An unordered set of the 

selected fingerprints 
(only method and type 
tokens) 

x - x x - x - - - 

transformed tokenized method fingerprints 
m Preserves only method 

names in method call 
tokens and the overall 
pattern, while the content 
(i.e., names) of the other 
tokens  are ignored via 
replacing them by a 
single place holder  (e.g., 
#). 

x x x - x x x - - 

transformed tokenized method and type fingerprints 
c Similar behavior as m 

except it preserves the 
content of both method 
and type tokens.  

x x x x x x x - - 

4.2. Non-positional  multi-level  indexing  and  
retrieval 

In this section, we discuss the motivation behind our idea 
for non-positional multi-level indexing. The encoded code 
patterns represented by hash values support the detection 

Transformed Lines
(using m function)

FLS Value
(m1 Hash Value)

TLS Value
(m3 Hash Value)

06: import java.io.File;
...
52: Set<AttributeEntity> remAttrributes;      # #; -2342    -2342       
53: Map<String, AttributeEntity> theAttributes;     # #; -2342    -2342                   370
54: for(AttributeEntity var : t.getAttributes()){   for(# #:#.getAttributes()){ 59378    59378
…  
83: List<String> fieldNames;                        # #;       -2342    -2342
84: for(JAttribute form : f.getAttributes()){       for(# #:#.getAttributes()){     59378    -2342              370
85: List<String> formulaNames;                      # #; -2342    59378

Source Code
(c parameter) TLS Entity

TLS GroupsFormat unification
Transformation

Sort
Sort

1 Line Granularity 3 Lines Granularity

Sa
m

pl
e 

Ta
rg

et
 L

in
es

H(c,53,3,m)=

H(c,84,3,m)=
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of two categories of similarities, pattern and content simi-
larity. Figure 4 provides an example of two cloned frag-
ments which are identified as similar using the 𝑚3 model. 
Standard hash value-based indexing and retrieval ap-
proaches can identify these two code fragments as clones. 
However, if a third fragment exists in the corpus that is 
identical to the first fragment (line 52-54), a single index-
ing model using a single encoded code pattern will not be 
capable of distinguishing potential differences in similari-
ty (e.g. content or pattern) among these three fragments. 
Such differentiating however is required to be able to dis-
tinguish and rank hits in the result set. Using our multi-
level indexing and retrieval approach for the clone search 
problem we deploys two (or more) indexes at the same 
time, with each index capturing specific types of similari-
ty (i.e., content or pattern). 

5. SECLONE  RANKING  MODEL   
A contribution of our research is that it addresses the 
ranking of clone search result sets using Information Re-
trieval (IR) models. The ranking model determines the 
position of hits in the result set. The position is based on 
their degree of similarity represented by the pair <
𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡 >.  

5.1. Ranking  approaches 
As discussed earlier, the hash values of the encoded code 
patterns constitute the basic entities within our search 
space. For our ranking model, any code fragment that 
shares at least one hash value with a given query will be 
considered for the ranking. Our ranking approach is 
based on two similarity models that have been widely 
used in IR [MAN08]: (1) Jaccard similarity coefficient and 
(2) the vector space model with cosine similarity.  

5.1.1. Jaccard  coefficient   
The Jaccard similarity coefficient is a widely used set the-
ory function for content matching and measuring the se-
mantic similarities. We calculate the semantic resem-
blance of two blocks based on their shared content (e.g., 
lines), regardless of their order. Our ranking model 
measures the content similarity of two code fragments 
using the numerical output of the Jaccard coefficient. We 
denote 𝑠ଵ and 𝑠ଶ as the sets which contain hash values 
that belong to the search query fragment (𝑠ଵ) and the 
matched fragment (𝑠ଶ). Both 𝑠ଵ and 𝑠ଶ neither contain du-
plicate instances nor do they preserve the ordering 
among entities, due to our non-positional index approach.  

𝐽(𝑠ଵ, 𝑠ଶ) =   
|𝑠ଵ ∩ 𝑠ଶ|
|𝑠ଵ ∪ 𝑠ଶ|

 

5.1.2. Vector  space  model   
In addition to the Jaccard coefficient, we also take ad-
vantage of the vector space model (VSM) for the ranking 
of result sets. A key benefit of VSM is that it provides ad-
ditional flexibility during ranking compared to the Jac-
card coefficient. Using VSM, code fragments are repre-
sented as vectors of frequency values. Entity frequency 
can be used to discriminate among entities’ contribution 
by considering both their local and global popularity (oc-

currences). The relevance is expressed as the similari-
ty/distance between a pair of vectors (𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡). Simi-
larity is calculated using the cosine similarity function 
that measures the angle between participating vectors.  

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ) =
𝑠ଵ. 𝑠ଶ
|𝑠ଵ||𝑠ଶ|

 

5.1.3. Weighting  factors 
Our |𝑥| − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 search space consists of code 
fragments presented as vectors, 𝑠పሬሬ⃗ =  < ℎଵ, ℎଶ, ℎଷ, … , ℎ௫ >, 
with ℎ௫ being the weight (frequency) of an encoded code 
pattern 𝑥. While the local frequency captures the number 
of occurrences of an encoded code pattern within a par-
ticular code fragment, the global frequency represents the 
total number of code fragments with at least one occur-
rence of the pattern. Our approach support different 
models to calculate these local and global frequencies and 
weights of an entity 𝑥 within a code fragment  𝑖. For ex-
ample, a combination of 𝑙 local frequency (Table 5) and 𝑡 
global frequency (Table 6) leads to the well-known IR tf-
idf model. Having several ranking options allows us to 
configure the weights at run-time for different ranking 
context and to study their effect on the overall clone 
search performance. 

Table 5.  Weighting support for local frequency (𝑏ଵ parameter) 

Function Name 𝒃𝟏 parameter 
value 

Formula 

Boolean 𝑏 
൝
1                                                    𝑖𝑓        𝑙𝑓௫, > 0  

  
0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Natural 𝑛 𝑙𝑓௫, = ห𝑙𝑜𝑐𝑎𝑙  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௫,ห 
Logarithmic 𝑙 1 + 𝑙𝑜𝑔൫𝑙𝑓௫,൯ 

Table 6.  Weighting support for global frequency (𝑏ଶ parameter) 

Function Name 𝒃𝟐 parameter 
value 

Formula 

No 𝑛 1 
Simple 𝑠 𝑔𝑓௫ = |𝑔𝑙𝑜𝑏𝑎𝑙  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௫| 
IR idf 𝑡 𝑙𝑜𝑔 ൬

𝑁
𝑔𝑓௫

൰ 

5.2.  SeClone  search  schema 
As previously discusses search schema (Figure 2) in Se-
Clone allows for the configuration of the model proper-
ties. The schema includes configuration for (1) the pre-
processing and creation of indices for the retrieval phase, 
(2) the ranking approach, (3) local frequency function, (4) 
global frequency function, and (5) additional information 
such as normalization and size comparison functions. 
The first parameter of our schema defines the overall 
ranking approach (Table 7), which can be a variation of 
cosine similarity, Jaccard similarity, or a combination of 
both. Furthermore, 𝑏ଵ and 𝑏ଶ refer to the local and global 
frequency functions being used (see Tables 5 and 6). If the 
Jaccard coefficient is used, only the Boolean local frequen-
cy is applicable for 𝑏ଵ; and  𝑏ଶ, 𝑏ଷ and 𝑏ସ will not affect the 
final result and are set to 𝑛 (none) to ensure conformance 
with our schema template. Additionally, we consider the 
size resemblance between the query and the matched 
code fragment, which is denoted by 𝑏ସ. This option is on-
ly applicable for the VSM scoring model. 
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Table 7.  SeClone scoring schemata (𝑎 parameter) 

Function Name a parameter 
value  

Formula 

Jaccard coefficient 𝑗 𝐽(𝑠ଵ, 𝑠ଶ) 
Cosine similarity 𝑤 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ) 
Cosine Similarity 
augmented with 
Size similarity 

𝑐 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠ଵ, 𝑠ଶ)
+  𝑏ସ(𝑠ଵ, 𝑠ଶ) 

Table 8.  SeClone size functions (𝑏ସ parameter) 

Function Name 𝒃𝟒  parameter 
values 

Formula 

Jaccard 
coefficient 

𝑗 𝐽(𝑠ଵ, 𝑠ଶ) 

Simple 𝑠 ห|𝑠ଵ| − |𝑠ଶ|ห          𝑤ℎ𝑒𝑟𝑒  𝑠𝑖𝑠  𝑎  𝑏𝑎𝑔   
Naïve 𝑛 

ቐ
1

|𝑠௧|
                                                    𝑖𝑓        |𝑠௧| > 0  

  
1                                                                                  |𝑠௧| = 0

 

 
The size functions (boosters) supported in SeClone are 

summarized in Table 8.  Our search schema also supports 
normalization of relevance scores, which is denoted by  𝑏ଷ. 
Available normalization functions are 𝑛 (none) and 𝑐 (co-
sine): 

𝑐𝑜𝑠𝑖𝑛𝑒  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛                  
1

ට∑ ℎ௬
ଶ௫

௬ୀଵ

 

In summary, our search schema configures both the re-
trieval and ranking of SeClone. For example, the 
  𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 schema denotes that SeClone uses the cosine 
similarity scoring schema which is augmented with the 
Jaccard-based size function (the size booster in this con-
text) to create an IR like 𝑡𝑓 − 𝑖𝑑𝑓 weighting by using co-
sine normalization function. The indexing is based on 
single line hash values of Type-1 clones and 3-line hash 
values of encoded code patterns where only method 
names have been preserved. 

6. DATA  CHARACTERISTICS  STUDY 
In the previous sections, we reviewed our clone search 
model, SeClone. As we are approaching the actual per-
formance evaluation phase, several issues related to our 
indexing heuristics can threaten the success of our re-
search. In this section, we conduct a set of preliminary 
studies to acquire the required insight for the final large-
scale performance evaluation phase. 

These threats include: (1) the ability to perform clone 
search with near real-time response time (latency time 
≈100 milliseconds or less), given outliers, retrieval granu-
larity, and index growth rate of the data, and (2) the abil-
ity to maintain reasonable precision of the search result 
due to potential collisions in our hash function values. For 
us to evaluate these threats, we conducted a study on the 
characteristics of data being searched. Such study re-
quires a representative dataset which reflects real data 
and is large enough to reduce any potential bias within 
the dataset. For our preliminary study we adopted the 
UCI dataset [UCI10], which covers over 18,000 Java open 
source projects extracted from online repositories on the 
Internet. 

 

6.1. Effect  of  search  granularity  on  clone  search  
latency  times 

In the first part of our data characteristic study, we ana-
lyze the effect of different search granularities on re-
sponse times to (1) determine if fine-grained granularities 
(e.g., single line) are actually practical for real-time clone 
search over large amounts of data, and (2) estimate the 
increase in the response time by reducing the granularity. 
We address these questions by first analyzing the number 
of retrieved entities (matches) for each element of a query. 
This analysis provides us with some insight on upper and 
lower response time boundaries. We observe and com-
pare the worst-case scenarios with respect to the number 
of matches for both of our two predefined index granular-
ity levels (single and three-line granularity). We first 
group source code fragments within the dataset in chunks 
of three lines, with each Third Level Similarity (TLS) 
group denoting a set of potentially similar three-line code 
fragments (code clone) where all fragments match the 
same encoded code pattern. We then repeat the same 
study for the First Level Similarity (FLS) based on pattern 
similarity at a single-line granularity.  

For creating the dataset, we extract ~300 MLOC of 
non-distinct source code lines, which provides us with a 
sufficiently large dataset to reduce any potential bias in 
the data. From this dataset, we then generate 30 million 
unique TLS groups, covering 71 million distinct lines of 
source code within method blocks. In our index, each TLS 
group refers to all occurrences of the same three-line code 
fragment in the whole repository.  

 

 
Figure 5.  Occurrence frequency distribution for the 3-line (TLS) encoded 

code patterns 

Table 9.  TLS and FLS characteristics 

Property 
Value 

TLS FLS 
Number of encoded code patterns 30,232,018 7,606,433 
Total number of distinct lines 71,911,376 71,911,376 
Number of single-member encoded code 
patterns (one occurrence) 22,824,697 4,770,010 

Largest group size (the pattern with most 
occurrences/members) 1,048,575 2,937,700 

Average occurrence frequency 2.37 9.45 
Standard Deviation occurrence frequency 293.23 1898.75 

 
Evaluating the index granularity allows us to observe 

the number of occurrences (including average, min and 
max) for each encoded code pattern captured by a TLS 
group. This is of interest, since fewer occurrences will 
result in a shorter response time. The first observation 
from this study (Figure 5 and Table 9) is that almost all 
TLS groups contain less than 2,000 occurrences (instances) 
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and only a few outlier patterns, 1,220 out of the 30M 
(0.004%) patterns had more than 2,000 occurrences. Our 
study shows that the three-line granularity tends to pro-
duce large numbers of small groups and very small num-
bers of large groups. On average, each TLS group (code 
pattern) has 2.37 occurrences. However, if we exclude 
patterns with only one occurrence and outliers (with 
more than 2000 matches), this average would go up to 
5.25. From our analysis, we were able to conclude that 
three-line granularity is practical for real-time clone 
search, as long as outlier patterns are handled, since it is 
only for these few outliers that the response time will de-
grade considerably. Our analysis shows that using TLS, 
patterns typically occur in small-size groups (on average 
around 5 members). This is an important observation for 
our real-time search context since given the small group 
sizes and our hash-based indexing approach, queries will 
only be compared against a small number of candidates 
at run-time. 

In addition, similar to our three line similarity (TLS) 
index experiment, we also studied the distribution of pat-
terns using a single-line level granularity (FLS) index. 
This experiment actually showed some unexpected dif-
ferences between the two granularities.  For the FLS, the 
number of outliers (patterns with more 2,000 occurrences) 
is considerably larger than for the TLS’s. This observation 
is further supported by data in Table 9, which shows that 
TLS distributes the candidates into 3.9 times more groups, 
while its group size can be 6 times smaller than the FLS’s 
group size. Moreover, outliers in the FLS index tend to be 
much larger when compared to the TLS index. Given that 
the ranking at the group level has a computation com-
plexity of 𝑂(𝑛𝑙𝑜𝑔𝑛), where n corresponds to the group 
size, n  has a direct effect on the response time. Our study 
also reveals that while both TLS and FLS are applicable 
for real-time search, TLS can outperform FLS granularity 
by a factor of 6.  

6.2. The  outlier  patterns 
Outliers often introduce threats to the quality and non-
functional performance of search approaches. For exam-
ple, in text retrieval research, outliers known as stop 
words are typically eliminated as part of a pre-processing 
step. As our previous study already showed, while we 
might only deal with a very small number of outlier pat-
terns (patterns with more than 2000 occurrences) in our 
dataset, these outliers can have a significant effect on the 
overall performance of our clone search approach. In or-
der to be able to mitigate this potential threat, it is neces-
sary to identify and study these outlier code clones in 
more detail. For example our study showed that there 
exists a three-line pattern with more than one million oc-
currences (Table 9). If an outlier pattern occurs in the 
search result set, the ranking algorithm will have to eval-
uate and rank all occurrences, potentially slowing down 
the search by a factor of 1000 compared to non-outlier 
searches (Table 9). For this reason, we further analyze the 
source code matching these outlier patterns to observe 
what kinds of programming tasks are associated to the 
outliers. When analyzing the TLS patterns, we observed 

that only 1,220 out of 30 million TLS groups (three-line 
code patterns) contain more than 2,000 pattern occurrenc-
es. 
Examples of top 10 outlier patterns are shown in Table 
10). Some of the observations from our study are: (1) 
members of outlier pattern #3 belong to one of the largest 
open source projects in the dataset (gov.nih.ncgc), which 
is related to genomics and contains very large files con-
taining these pattern instances. (2) Code fragments in the 
outlier #6 belong to classes related to the initialization of 
Graphical User Interfaces. (3) Outlier pattern #8 occur-
rences can typically be found within extraordinarily large 
java classes (larger than 10K LOC). The examples in Table 
10 illustrate that, similar to the other search domains, out-
liers in clone search can be also discarded because they 
are not associated with vital programming problems. 
Nevertheless, we do not exclude them in our further per-
formance evaluation studies (in this paper) to ensure un-
biased and repeatable results.  

Table 10.  The outlier code patterns 

Rank Number of 
Occurrence Pattern Title Sample Code 

1 1304840 Local getter method()  {return  variable;;} 

2 636846 General Setter method(type  arg)  { 
                this.variable  =  arg;;} 

3 445552 Unknown 
s.addToWellOneBased(…   new  
WellComponent(…  
l.getCompound(…),  …));; 

4 246082 General getter method()  { 
return  variabale.property;;} 

5 239604 Local setter method(type  arg)  { 
variable  =  arg;;} 

6 124836 Consecutive 
new 

jEdtTest  =  new  JEditorPane();; 
lblToken  =  new  JLabel();; 

7 124693 Variable&null type  var1  =  null;; 
type  var2  =  null;; 

8 115230 Consecutive 
case 

case  'value': 
case  'value':: 

9 100900 Case&return 
return  "Mountain";; 
case  TYPE_GAS: 
return  "Gas";; 

10 72842 Throw&new method(…)  { 
throw  (new  type());;} 

 

6.3. Index  size  growth  rate 
Retrieval systems such as [BRI98] keep their indices in 
main memory, rather than swapped to a disk, in order to 
reduce latency times when accessing them. In most text 
retrieval systems [BRI98], the approximate index size is 
known in advance, as it is directly related to the data 
characteristics in the domain of discourse (e.g., natural 
languages). However, for the clone search problem, data 
characteristics have not yet been fully studied, and no 
data exists on potential index sizes and growth rates as 
new patterns and occurrences will be indexed. Without 
this prior knowledge it is very difficult to determine and 
allocate in advance appropriate memory resources for 
creating and storing indices. As we need to know such 
information for a proper large-scale performance evalua-
tion, we study them as part of our preliminary analysis. 
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Figure 6.  Analysis of the increase rate of new hash values (TLS hashes) per file. Patterns are categorized based on total # of occurrences per hash value. 

For a hash table-based indexing system, total memory 
consumption can be estimated based on: (1) the number 
of distinct hash values being indexed and (2) the number 
of pointers required for the repeated hash values. Given 
that no prior information is available on potential growth 
rates, we studied the effect of repository size on the index 
growth rate. We in particular study how different pattern 
categories (and their indices) evolve as the repository size 
increases. 

For this analysis, we incrementally increase our dataset 
by adding chunks of 50,000 source code files to the reposi-
tory. We evaluate the index increase rate for each pattern 
group, which is summarized in Figure 6. The analysis 
shows that for popular code patterns (with at least 2 oc-
currences), the growth decreases over time. This was ex-
pected, as the code base being indexed, the likelihood that 
the same code fragment has already been indexed in-
creases. However, our studies also show that the growth 
rate for uncommon/unique code patterns remains stable. 
That is, each chunk of 50K files will introduce a similar 
number of code patterns that are not cloned and remain 
therefore unique.  

Our study provided us with insights on index growth 
rate. Finally, using the increase rate table in Figure 6, we 
can now estimate the index growth via the number of 
distinct hash values and possible pointers (duplicated 
patterns), to estimate the feasibility and scalability of our 
search approach and allocate proper memory resources. 

6.4. Hash  value  strength 
Hash table based indexing relies on its ability to maintain 
indices in the main memory to ensure consistent and fast 
access times. One approach to reduce the memory foot-
print is by reducing the length of hash codes, as this will 
directly affect the memory consumption. However, re-
ducing the length of hash codes can potentially lead to the 
collision (duplication) of indices. In our approach, we 
opted to use a 32-bit hash code, which is in contrast to 
other existing work such as Hummel et al. [HUM10], who 
used 128-bit code for their clone search approach. The use 
of smaller hash code (32 versus 128 bits) will not only 
provide (1) a 75% lower memory requirements for the 
indices, but can also (2) reduce the latency times due to 
hardware design. 

We conducted an experiment to evaluate whether the 
use of a 32-bit hash value might potentially introduce a 
threat to the index quality in terms of collisions. For our 

evaluation we created 32-bit hash keys for all single trans-
formed source code lines, using our default transfor-
mation function and the Java standard hash method for 
strings. We extracted more than 4 million distinct trans-
formed lines of code and analyzed the possibility of hav-
ing an ambiguous key that might be used for more than 
two distinct lines. The result of our analysis showed that 
for our 32-bit hash function, the error (collision) rate is 
small, i.e., 0.002%. Given this low error rate and the re-
sulting tradeoff between precision and memory con-
sumption, we can conclude that the 32-bit hash keys can 
be considered strong enough for indexing source code. In 
particularly since for our clone search context, scalability 
and response times are key requirements. 

6.5. Summary 
The studies in this section provide valuable insights on 
data characteristics, such as index growth rates and outli-
ers in a real world, large scale data. Contrary to other re-
search domains, these aspects had not yet previously 
studied for the clone search problem. We presented the 
results of our analysis for various data characteristics of 
the UCI dataset [UCI10]. The insights of our studies bene-
fit the prediction of latency times, index sizes, and overall 
quality of clone search approaches. Furthermore, our ob-
servations also support that our proposed approach using 
a multi-level indexing and retrieval approach should be 
capable of providing a real-time and scalable clone 
search. 

7. PERFORMANCE  EVALUATION  MEASURES 
With traditional clone detection techniques putting little 
emphasize on ranking of result sets [WAL03], ranking 
quality is typically not part of the performance evalua-
tion. This is in contrast to clone search research, which 
shares many features with the information retrieval do-
main, including the need for supporting ranking of result 
sets. We therefore also consider ranking of clone search 
results as a quality measure and adopt existing quality 
and performance criteria commonly used by the IR search 
community for assessing ranked result sets. 

7.1. Requirements 
Among the main quality criterion used in IR for evaluat-
ing the quality of search engines is the result relevancy 
from a user expectation. That is, a search is considered to 
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be successful if it locates documents that are not only re-
lated to the query, but also meet the end-user expecta-
tions [MAN08]. Therefore, only hits (results) that are rele-
vant from an end-user perspective are considered to be 
true positives. For example, a result returned by the que-
ry “Java”, might only be relevant when one considers the 
user’s expectation, which might be referring either to the 
coffee concept or the programming language concept. 
Such relevancy can be measured on a binary scale (rele-
vant vs. non-relevant) or by using a more refined scale, 
using different degrees of relevancy (e.g., highly relevant, 
relevant, marginal, and non-relevant).  

Benchmarks are required to measure the quality of re-
sult sets reflecting the feedback of either users or experts. 
They constitute the “gold standard” or “ground truth”. A 
benchmark or test suite includes three major parts: (1) the 
input data, (2) some queries, and (3) the pre-tagged da-
taset of relevant items. The dataset also typically contains 
relevance scores for each query and its input data, with 
these scores being subjective to the human experts creat-
ing the benchmark. In cases when no benchmarks are 
available, user studies might be performed.  

7.2. The  measure  suite 
For the evaluation of ranked result sets in search applica-
tions no single measure has been considered to be suffi-
cient (e.g., [LEM11], [KLX12]). For our research, we iden-
tified therefore different categories of ranked result set 
measures to evaluate clone search models. Most of these 
measures are based on the definitions provided by Man-
ning et al. [MAN08]. 
Traditional measures. Recall or precision are typically 
used by the clone detection and search community to 
evaluate the quality of any unranked result (sets). These 
measures are widely accepted or used (search communi-
ty), since they are easy to calculate and interpret. Howev-
er, they are not capable of assessing accurately the quality 
of ranked result sets. 
IR measures for ranked results. Most IR systems return 
result sets that contain some true positives (TP) and false 
positives (FP) within an ordered list. These IR measures 
evaluate the true positives and their rank (position) in the 
result set. Furthermore, relevancy degree is exploited by a 
subset of measures in this category when all true posi-
tives are not equal in quality. 
Non-functional performance measures. In our research 
context, non-functional measures need to be considered 
when evaluating user satisfaction.  We are in particular 
interested in measures scalability and on assessing the 
ability to provide near real-time services for other appli-
cations. 

7.3. Measures  for  ranked  result  sets 
With many traditional measures like precision or recall 
being designed to evaluate unranked lists (e.g., unor-
dered sets), the IR community has emphasized special 
measures for assessing the quality of ranked sets. In this 
section, we introduce measures mostly adapted from the 
IR [MAN08] community to assess ranked result sets re-
turned by our clone search models.  

7.3.1. First  False  Positive  measure 
A commonly used evaluation criteria for search engines 
in the IR domain are the top displayed items (hits) in a 
result set. Studies in IR have shown that end-users tend to 
browse only top items in a displayed result set [MAN08]. 
Furthermore, since search engines typically do not pro-
duce 100% precise results (some non-relevant hits might 
be displayed), search engines are expected to place as 
many true positives as possible in the highest ranked po-
sition of their result set (e.g., top-10). Therefore, the place 
of the first false positive (FFP) in the displayed result list 
can be used as a fair measure for evaluating the perfor-
mance of search engines. For example, given two order 
result sets R1 and R2, with both result sets containing 10 
hits (R1 = 〈ℎଵ, 𝒇𝒑, ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ, ℎ, ℎ଼, ℎଽ〉 and R2 = 
〈ℎଵ, ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ, ℎ, ℎ଼, 𝒇𝒑, ℎଽ  〉), of which nine results 
are correct hits and one is a false positive (𝑓𝑝). While the 
precision for both results sets is 90% (9 out of 10 hits are 
correct), the user satisfaction for R2 would be considered 
higher, since the FFP occurs later in the ranked result set 
(position 9 in R2 versus position 2 in R1).  

Discussion. In clone search, one typically deals with a 
corpus that contains a significant amount of noise (irrele-
vant code fragments). For example, in one of our case 
studies we observed that for some queries only 6 out of 
~1.7 million code fragments in the corpus were relevant. 
Therefore, from a code/clone search perspective, a search 
approach has to deal with two major challenges: (1) being 
able to detect the few relevant fragments, and (2) assign-
ing these true positive results a higher priority than the 
false positives in the result sets. The First False Positive 
idea provides an easy to use and interpret measure to 
assess some quality aspects of an ordered result set. 
Weakness. Given that the FFP is highly dependent on the 
data and query characteristics, its applicability to evaluate 
system performance is often limited. For example, if a 
corpus contains a skewed dataset with only 𝑋 true posi-
tives for a given query, the best achievable result using 
this measure is 𝑋 + 1. This becomes an issue particularly 
in cases where the number 𝑋 (true positives) varies con-
siderably for different queries. Consequently, the FFP 
measure cannot be generalized since it cannot be aver-
aged across different queries. 
7.3.2. “Precision  at  k”  measure 
Precision at 𝐾 (P@K) is a measure that reports the number 
of true positives within the hit list (top K), where 𝐾 can be 
any positive number to reflect the window size for the 
assessment. However, window sizes of 10, 20, and 30 are 
typically used for 𝐾𝑠. The value of 𝐾 is derived by the 
general rule of thumb from search engine GUI design, 
where the first page usually shows only the top 10 hits. 
The measure captures closely the end-users quality per-
ception, since users tend to consider only results on the 
first result page to be important and consequently are less 
likely to browse subsequent result pages. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
                     

  𝑤ℎ𝑒𝑟𝑒  𝑡𝑝  𝑎𝑛𝑑  𝑓𝑝  𝑎𝑟𝑒  𝑙𝑖𝑚𝑖𝑡𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒  𝑡𝑜𝑝  𝐾  ℎ𝑖𝑡𝑠 
This measure is in particular applicable when (1) the 

total number of relevant results is unknown and therefore 
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no recall can be computed, and (2) the number of re-
turned items is too large to be fully validated, making the 
calculation of standard precision measures impossible. 

Weakness. While this measure is a good candidate for 
evaluating search engines, especially when no very strict 
evaluations (e.g., “first false negative” measure) are re-
quired, its major drawback is its dependency on the que-
ry. For example, in order to provide a fair evaluation us-
ing “Precision at 10” measure, at least 10 actual relevant 
items must exist in the corpus for all executed queries. 
Furthermore, similar to the FFP measure, results from this 
measure cannot be generalized (averaged) across queries. 

7.3.3. Normalized  Discounted  Cumulative  Gain  
measure 

The Normalized Discounted Cumulative Gain (NDCG) 
measure assesses the quality of search engines and their 
ranking algorithms in terms of being able to assign higher 
ranks to more relevant true positive answers. NDCG 
takes into consideration not only the relevance of hits but 
also the order of the results. Therefore, the measure al-
lows comparing result sets for queries using an existing 
oracle. These oracles are typically manually created result 
sets (for each query) which include a list of all possible 
answers. Moreover, each answer in the oracle must be 
assigned a relevance score that presents its relevancy to a 
the query. The oracle captures the best overall achievable 
result set (including the order of answers), independent 
of local configurations, search algorithm, and search 
schema. The measure result is a number which allows 
comparing different search and ranking configurations.  

Details.  DCG calculates the discounted cumulative 
gain achieved using a given search schema for query 𝑞 
when compared to the oracle with its manually assigned 
relevance scores for the top 𝑛 hits. The output of DCG 
depends on the query and available data within the cor-
pus (𝐷𝐶𝐺 ∈ [0,∞]). It is not possible to compare directly 
DCG results of different queries with each other since the 
number of positive hits is dependent on the data charac-
teristics of corpus. To overcome this limitation and to be 
able to compare results, we use NDCG, which is a nor-
malized value of DCG. We first calculate the Ideal DCG 
(IDCG), which is the highest achievable DCG given the 
available relevance scores in the oracle. Using DCG and 
IDCG, we can then calculate the final NDCG value. The 
function 𝑟(𝑞, 𝑖) returns the relevancy score based on a 
given query and a corresponding hit from the oracle. 

 

𝐷𝐶𝐺  (𝑞, 𝑛) = 𝑟(𝑞, 1) +  
𝑟(𝑞, 𝑖)
𝑙𝑜𝑔ଶ(𝑖)



ୀଶ

          𝐚𝐧𝐝        𝑁𝐷𝐶𝐺(𝑞, 𝑛) =
𝐷𝐶𝐺(𝑞, 𝑛)
𝐼𝐷𝐶𝐺(𝑞, 𝑛)

 

Discussion. Since the output of the NDCG function is 
normalized, it can now be used for both (1) query com-
parison and (2) as an overall indicator for the performance of 
a search engine. The ability to average the measure results 
provides a concrete single output value for performance 
comparison purposes. For example, in our studies we use 
this single output value to compare the performance of 
different search configurations. The value for the NDCG 
function ranges from 1.0, for a result set that exactly 

matches the oracle, and a minimum of 0.0 for a result sets 
with no true positive.  

Weakness. The measure allows for a fine-grained 
evaluation of the quality and ordering of result sets, by 
providing a single value assessment that allows the com-
parison among different options or configurations of a 
system. However, the measure is only applicable when 
fine-grained ordering is important, otherwise measures 
such as Precision at K are preferred. Applying NDCG is 
also expensive, since not only all possible answers for 
each query have to be evaluated manually, but also a sim-
ilarity score for each answer is to be provided. Neverthe-
less, NDCG is still considered as one of the state of the art 
search engine measures in the IR domain. 

7.3.4. Mean  Average  Precision  measure 
Mean Average Precision (MAP), is a single value measure 
that has been commonly used to compare different rank-
ing systems. For a single query experiment, the measure 
will compute the average of all precision at 𝐾𝑠, where 𝐾𝑠 
refers to the position of all relevant retrieved items in the 
result set. For experiments involving more than one que-
ry, the output is the average of all queries.  

𝐴𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
|𝑅|

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑎𝑡  𝑘  
  ∈  ோ

 

𝑤ℎ𝑒𝑟𝑒  𝑹  𝑖𝑠  𝑡ℎ𝑒  𝒔𝒆𝒕  𝑜𝑓  𝑎𝑙𝑙  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑  𝑖𝑡𝑒𝑚𝑠   

𝑀𝐴𝑃 =
1
|𝑄|

 𝐴𝑃
  ∈  ொ

                                𝑤ℎ𝑒𝑟𝑒  𝑸  𝑖𝑠  𝑡ℎ𝑒  𝒔𝒆𝒕  𝑜𝑓  𝑎𝑙𝑙  𝑞𝑢𝑒𝑟𝑖𝑒𝑠 

Weakness. MAP is an essential and low cost measure 
that does not require the creation of relevance scores (un-
like NDCG) and only considers the positions of true posi-
tives. However, since MAP does not include relevance 
scores, it lacks the ability to compare true positives from 
relevancy aspect. Moreover, it is generally only suitable 
for queries where a reasonable number of true positives 
are available; otherwise its output might be biased. 

7.4. Measures  for  highly  positive  ranked  results 
Sometime, no or only a few 𝑓𝑝 are included in the hit list 
(e.g., top 10). While all hits might be true positives, end-
users often rank some true positives higher than others. 
Assessing this type of ranking requires more precise 
measures that take also into account the exact order of 𝑡𝑝𝑠 
in a ranked result set and compare them against the ora-
cle. Such measures are different from earlier measures 
introduced in this section (e.g., NDCG), as they evaluate 
the relative or exact position of all items within the or-
dered list. Several measures have been introduced to as-
sess this type of ranking performance. 

7.4.1. Normalized  Kendall’s  𝝉  distance   
Kendall’s 𝜏 measures the dissimilarity of the items’ order 
against the ideal order [LAP06]. Suppose 𝜋 and 𝜎 denote 
the ordering of two item sets containing the same items, 
with 𝑁. 𝑆(𝜋, 𝜎) being the minimum number of switches 
required between adjacent items to make the first ordered 
list identical to the second ordered list.  

𝜏 = 1 −  
2 × 𝑆(𝜋, 𝜎)
𝑁(𝑁 − 1) 2⁄
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7.4.2. Spearman’s  rank  correlation  coefficient 
This measure compares the rank of each shared retrieved 
item among two subject ranked lists, which are denoted 
by 𝜋 and 𝜎 with the number of items being equal to 𝑁.  

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 1 −
6∑ (𝜋(𝑖) − 𝜎(𝑖))ଶே

ୀଵ

𝑁(𝑁ଶ − 1)
 

𝝅(𝒊)  𝑎𝑛𝑑  𝝈(𝒊)  𝑎𝑟𝑒  𝑟𝑒𝑓𝑒𝑟𝑟𝑖𝑛𝑔  𝑡𝑜  𝑡ℎ𝑒  𝑟𝑎𝑛𝑘  𝑜𝑓  𝑖𝑡𝑒𝑚  𝒊  𝑖𝑛  𝑡ℎ𝑒  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔  ℎ𝑖𝑡  𝑙𝑖𝑠𝑡 
Discussion. As Lapata [LAP06] pointed out, the main 

difference between Spearman’s and Kendall’s measures is 
that Spearman’s measure focuses on the pure rank values, 
whereas Kendall’s measure emphasizes more the relative 
order of items. 

7.5. Non-functional  performance  measures 
For our evaluation of the quality of result sets we also 
consider non-functional measures that can potentially 
effect user satisfaction (e.g. the ability to provide real-time 
services for other applications). We consider for clone 
search engines are: (1) indexing time, (2) querying latency 
time, and (3) corpus size. These measures are easy to cal-
culate (automatically) and interpret. 

7.6. Summary 
Assessing the quality of clone search (models) differs 
from traditional clone detection. While traditional clone 
detection approaches deal with unranked result sets 
where measures like recall and precision matter, they do 
not consider the order of the results being displayed. This 
is in contrast to clone search, where, as in other search 
approaches, the ranking of results (ranked hits) becomes a 
key quality criterion. While evaluation measures de-
signed for unranked result sets are useful (e.g., precision 
and recall), other evaluation measures which are devel-
oped for ranked result sets must be adopted to provide a 
more comprehensive evaluation of a clone search model. 
As part of our research, we selected and summarized sev-
eral ranked result set quality measures, originally used by 
the IR community [MAN08], and highlighted their ap-
plicability in our clone search context. 

8. PREPARATION  FOR  EVALUATION  STUDY 
While our preliminary results from the data characteristic 
study (Section 6) support the feasibility of our solution 
(run-time behavior), a more detailed performance evalua-
tion study is required. In this section, we discuss details 
of our evaluation, which takes advantage of the insight 
from our initial data characteristic study. For the perfor-
mance study, we deploy a concrete instance (SeClone) of 
our clone search model and apply it to our source code 
corpus, which contains source code facts from over 25,000 
open source Java projects [KLF12]. The key objectives of 
this evaluation are (1) to confirm that our model can meet 
the scalability and fast response time requirements and 
(2) to compare different search schemata (configurations) 
available in SeClone. Benchmarks are commonly used 
approaches to evaluate the quality of search engines. For 
us to be able to assess different features of our model (Se-
Clone), including both retrieval and ranking, we require a 
benchmark that meets a set of minimum requirements, 
including: the corpus (1) should be large enough to re-

duce the effect of individual outliers, (2) contains a set of 
representative queries (code fragments) to be used as 
search criteria, (3) includes a sufficient number of relevant 
Type-1, 2, and 3 clones, and  (4) includes fine-grained rel-
evance scores for clones. To the best of our knowledge, 
there exists no clone search benchmark that satisfies all 
these requirements. Therefore, prior to our evaluation, we 
had to create such a clone search benchmark. As part of 
the benchmark creation, we took advantage of an existing 
mutation generation framework [ROY09], which we used 
to automatically generate Type-1, 2, and 3 clones from 50 
randomly selected code fragments (query inputs). 50 que-
ries can be considered an acceptable number for a 
benchmark [MAN08]. For these 50 code fragments, we 
generated a total of 650 related Type-1, 2, and 3 clones.  
For the benchmark preparation, we injected not only 
these 650 clones generated by the mutation framework 
into our repository (which contains 356M LOC), but also 
performed an extensive manual inspection of ~80K code 
fragments for assigning their corresponding relevance 
scores. We then use this benchmark to assess SeClone’s 
search performance using the five measures introduced in 
the previous section, while analyzing over 40 different 
SeClone configurations (search schemata). This evalua-
tion involve 2000 queries (code fragments) for which a 
clone search was performed, resulting in 117,000 search 
results (hits). The following sections describe in more de-
tail our evaluation approach, its outcomes, and summa-
rize of our findings.  

8.1. Candidate  search  schemata 
SeClone supports hundreds of different configurations 
through its search schemata. These configurations allow 
users to specify different search models, indexing granu-
larities, and content transformation functions. From an 
end-user perspective, selecting an appropriate configura-
tion is the key to meet specific application or end-user 
needs. In our study, we conduct a detailed analysis of 40 
candidate configurations to determine their effect on the 
quality of the result sets and to provide guidance for end-
users when selecting a search schema. In sections 3, 4, and 
5 we already introduced in detail SeClone’s search sche-
ma and its configuration options: (1) parameters ( 
𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ) related to the ranking and (2) parameters ( 
𝑡𝑔. 𝑡௦𝑔௦) related to the processing of data for indexing 
and clone analysis.  For our experiments, we selected five 
ranking configurations and eight indexing (analysis) con-
figurations, which provided us with a total of 40 distinct 
configurations (Table 11). 

8.2. Corpus  and  environment  configurations 
For the deployment of SeClone, we used a Linux-based 
system with a 3.07 GHz CPU (Intel I7) and 24 GB of RAM. 
During our run-time evaluation, a configuration was exe-
cuted as single process, except for the Java virtual ma-
chine processes such as garbage collection. In order to 
evaluate the scalability, response time, and ranking, and 
to observe the handling of outliers (noise), a reasonably 
large corpus was required. For the evaluation we created 
the IJaDataset, a large multipurpose source code data set. 
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Table 11.  Selected SeClone search schemata for the evaluation phase 
(𝑆𝑒𝐶𝑙𝑜𝑛𝑒  𝑆𝑒𝑎𝑟𝑐ℎ  𝑆𝑐ℎ𝑒𝑚𝑎:    𝑎. 𝑏ଵ𝑏ଶ𝑏ଷ𝑏ସ. 𝑡𝑔. 𝑡௦𝑔௦) 

The first parameter group (ranking) 
𝒂. 𝒃𝟏𝒃𝟐𝒃𝟑𝒃𝟒 

× 

The second 
parameter 

group 
(indexing) 
𝒕𝒑𝒈𝒑. 𝒕𝒔𝒈𝒔 

=40 search schem
ata 

(A) c.ltcj 
(Cosine similarity augmented with Jacacrd 
size similarity using tf-idf like frequency) 

 
 
c1.m1    (1) 
c1.m3    (2) 
l1.m1     (3) 
l1.m3     (4) 
w1.m1   (5) 
w1.m3   (6) 
x1.m1    (7) 
x1.m3    (8) 
 

(B) c.nscs 
(Cosine similarity augmented with Simple 
size similarity + natural frequency) 

(C) j.bnn 
(Jaccard coefficient similarity approach) 

(D) w.ltcn 
(Cosine similarity using tf-idf like freq.) 

(E) w.nscn 
(Cosine similarity using natural frequency) 

Total 5 Total 8 
 

The dataset contains Java source code data crawled 
and downloaded from major open source code reposito-
ries (e.g. Sourceforge) [KLF12]. We performed several 
data cleaning steps, such as: (1) removal of all non-Java 
source code and duplicate Java files, (2) using a Java par-
ser, we detected and removed all unparsable files, and (3) 
we identified and excluded Java interfaces, since these 
Java interfaces do not contain any significant code.  

The most recent version of the IJaDataset (Version 2.0) 
has been updated with data crawled in 2012 and covers 
approximately 25,000 projects and includes Java classes 
without package specification (default package) [KLF12]. 
The dataset is based on source code files that were down-
loaded from SVN, Git, and CVS repositories from Source-
Forge and Google Code. To remove high-level duplica-
tions in the dataset, only one Java File is selected for each 
available class name identified by its fully qualified name 
(FQN). During the filtering of duplications, we were bi-
ased toward files that appeared in the "trunk" directory. 
The crawled data (with duplicated files) initially included 
12 million files, but were reduced (through the filters) to 3 
million files (2.7M regular Java class source code files and 
140K files with default package). We then successfully 
indexed all 356M LOC in the IJaDataset (Version 2.0) with 
SeClone to create a single, searchable corpus. To the best 
of our knowledge, this represents the largest inter-project 
Java data set (based on real source code) that has been 
used for clone search. The IJaDataset dataset is publicly 
available for download and reuse (http://secold.org). 

8.3. The  benchmark 
A high-quality benchmark for clone search should not 
only include queries and their correct answers, but also a 
variety of clone types (specifically Type-3 clones) for each 
query. Having such a rich benchmark provides not only 
the basis for evaluating our core SeClone search engine, 
but also for evaluating its ability to rank result sets and 
detect Type-3 clones. Using the mutation framework in-
troduced in [ROY09], we created our initial benchmark 
using 50 code fragments (queries) and their mutants, 
which correspond to Type-1, 2, and 3 clones. We selected 
a mutation framework configuration that automatically 

generates 13 clones (4 Type-1s, 3 Type-2s, and 6 Type-3s) 
for each query. Table 12 summarizes the clones. In case of 
code insertion when generating Type-3 clones, the muta-
tion framework uses random code snippets available in 
its corpus. The generated clones were then included and 
indexed as part of our SeClone corpus. Using this muta-
tion approach provides us with a known minimum num-
ber of true positives. Therefore, we are able to (partially) 
measure the recall in addition to the other precision-like 
measures. It should be pointed out that since the corpus 
contains millions of indexed lines of code, SeClone will 
not only detect and retrieve the seeded clones, but also 
may include other (positive) clones in the search results.   

8.4.  Assignment  of  relevance  scores   
When evaluating the performance of search engines, sole-
ly measuring true positives is not sufficient. In addition 
one has also to consider the relevance (score) of the re-
turned search results (hits) with regard to a given search 
query. For our evaluation we therefore assigned scores (in 
the range of 0 to 5) to indicate the relevancy of a hit and 
its search query. A score of 0 reflects no relevancy (false 
positive), and scores between 1 and 5 denoting that a hit 
has some degree of similarity (true positive 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉 
clone pair). Increasing scores indicate higher levels of 
similarity, with a score of 5 being an exact (Type-1) 
match. As part of creating our benchmark we have initial-
ly assigned such relevance scores to the 650 cloned frag-
ments that were generated by the mutation framework 
and the corresponding search queries for retrieving them.  

Given the size of our corpus (25,000 projects and 356 
MLOC), there is a good chance that other true positives 
might be reported during the evaluation process. The 
relevancy of detected and reported clone pairs therefore 
not only depends on the returned injected clones but also 
on the non-seeded and reported clones, which have to be 
considered as part of an overall evaluation. We therefore 
in addition (to the seed clones) (1) manually evaluated all 
reported hits to determine if they are actual true or false 
positives and (2) assigned the proper relevance scores 
using a predefined guideline (Table 13). 

Since it is both impossible and unnecessary to consider 
all potential hits retrieved for each query in the bench-
mark (a query might return thousands of hits), we decid-
ed to consider only the top K hits. While it is common 
best practice in the IR and search community to consider 
the top 10 hits, we decided to increase the evaluation 
scope by including the top 60 hits. This extended evalua-
tion is motivated by the characteristic of our corpus, con-
sidering the fact that we have generated and included at 
least 13 controlled, true positives (clones generated by the 
mutation framework) for each of the 50 queries. 

As part of our evaluation, SeClone reported for the 
2000 executed queries a total of 117K hits (clone results) 
when considering the top 60 criterion. We used some 
basic heuristics (e.g., hit size and keywords) to automati-
cally identify some of the false positives and eliminate 
them from the manual analysis process. Using these heu-
ristics, we were able to eliminate 37K false positives that 
no longer required a manual inspection and scoring. We 
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then manually assigned relevance scores to the remaining 
80K results (32K distinct 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉 pairs). Table 14 
summarizes the details of this manual assignment of rele-
vance scores for which considered both syntactical and 
semantic similarities. The manual relevance score as-
signment has been done in 3 months by the first author. 

 
Table 12.  Available clones for each query in the benchmark 

ID Description 
(changes comparing to the que-

ry) 

Clone 
type 

Our relevance 
score 

1 no change Typ-1 5 
2 changes in whitespace Typ-1 5 
3 changes in comments Typ-1 5 
4 changes in formatting Typ-1 5 
5 semantic renaming of identifiers Typ-2 4 
6 arbitrary renaming of identifiers Typ-2 4 
7 arbitrary change of an literal Typ-2 4 
8 replacement of identifiers Typ-3 3 
9 small insertion within a line Typ-3 3 
10 small deletion within a line Typ-3 3 
11 insertion of one or more line Typ-3 2 
12 deletion of one or more line Typ-3 2 
13 modification of entire line Typ-3 3 

Table 13.  Guidelines for assigning relevance scores 

The assigned score Scoring guideline 
0 Non-relevant 
1 Relevant (partial similar under Type-3) 
2 Relevant (Type-3 with modification of few 

lines) 
3 Relevant (Type-3 with one line different) 
4 Highly Relevant (Type-2) 
5 Highly Relevant (Type-1 / exact) 

Table 14.  The evaluation steps and hits manual investigation details 

Property Value 
Total search schemata 40 
Total benchmark queries 50 
Total querying experiments 2000 
Result set limit Top 60 
Total retrieved hits 117K 
Total number of hits which are 
automatically ignored using heuristics 

7.7K   (size heuristic) 
28K   (keyword heuristic) 

Total number of hits which are tagged 
manually 

81K   (32K distinct 〈𝑞𝑢𝑒𝑟𝑦, ℎ𝑖𝑡〉 
pairs) 

Breakdown 
Score #hits 

0 34K 
1 14.9K 
2 3.6K 
3 15K 
4 4.9K 
5 8.8K 

9.  PERFORMANCE  EVALUATION 
In this section, we present the results of our performance 
evaluation study. We conduct this study to answer two 
major concerns with regard to the applicability of Se-
Clone: 

G1. We study if SeClone can be used for interactive 
search scenarios with large-scale corpus. 100 milliseconds is 
the de facto response time for interactive search [BAS13]. 
Therefore, as the first step, we study scalability and re-
sponse time of SeClone for the candidate search schemata 
(Table 11). 

G2. The second goal of our study is to evaluate the 
performance of SeClone in terms of ranking. We study 
whether SeClone can successfully place the known posi-
tive answers, from the benchmark, at the top of the 
ranked lists before the other less similar answers (e.g., 
false positives). To evaluate the ranking performance of 
SeClone, we use five applicable measures from the meas-
ure suite introduced in Section 7. We present the results 
for G1 and G2 in Sections 9.1. and 9.2. consecutively. 

9.1.  Scalability  and  response  time 
One of the key requirements for SeClone, being a special-
ized search engine, is the need to be scalable and to pro-
vide search results in near real-time (i.e., 100 milliseconds 
[BAS13]). In what follows, we discuss SeClone’s run-time 
and scalability performance based on the execution of our 
benchmark queries. For the analysis, we consider clone 
lookup times, ranking, and sorting as the total response 
time, which is reported in milliseconds. 

It should be noted that to deploy the SeClone server 
application and its indices, SeClone requires 10 minutes 
for the incremental indexing of the encoded code patterns 
covering the 356M LOC (3 million Java files). 

Figure 7 summarizes the response times that we ob-
served for the 50 queries executed for each of the 40 
schemata (Table 11). The schemata are identified by their 
short names that are highlighted in bold in Table 11. For 
example A1 denotes 𝑐. 𝑙𝑡𝑐𝑗. 𝑐1.𝑚1 schema. In this study, 
we found five different configurations (out of forty can-
didates) that are both scalable and real-time, i.e., ~100 𝑚𝑠, 
even for our ultra-large scale corpora. Users can use these 
configurations for clone search and get scalability and 
near real-time response time experience, e.g., A4 
(𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3) and C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) that are tagged in 
Figure 7. 

Next, we examine the results to find the reason behind 
the success or failure of some of the schemata. We ob-
serve that all of the successful schemata use 𝑙1.𝑚3 as the 
indexing configuration. Therefore, first, we analyze the 
role of indexing configuration on response time. As we 
discussed in Section 6, a successful combination of index 
granularity and transformation function can achieve real-
time response time only if it distributes well the indexed 
entities across the index. Our analysis confirms our earlier 
discussion. Both index granularity and transformation func-
tion can significantly affect response times. Mann-
Whitney U test (a non-parametric test) shows that a statis-
tically significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒   <   0.05) improvement could 
be obtained where l1.m3 is used as the primary and sec-
ondary indices. Similarly, we compared the response 
times of the two major ranking models, i.e., Jaccard and 
VSM. We observe that the choice of ranking model does 
not affect response time significantly in the context of 
clone search. 
 
 
 
 

 
 

Finding. Indexing configuration (i.e., granularity 
and transformation function) affects significantly 
the response time in our research context. 
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9.2.  Result  set  quality 
In this section, we study the performance of SeClone from 
the quality point of view. This study addresses the second 
goal of our performance evaluation analysis (G2). In gen-
eral, we are interested to observe whether SeClone (1) 
identifies the known true positives in our benchmark, and 
(2) places the true positive answers at the top of the result 
sets. These two questions can be mapped naively to the 
traditional recall and precision concerns respectively. 
First, we provide a brief summary of SeClone perfor-
mance in the context of traditional recall and precision in 
Section 9.2.1. However, as discussed earlier, the concrete 
evaluation approach should be based on the concept of 
ranking. Therefore, we report the details of our actual 
evaluation study on SeClone ranking in details after the 
brief summary in Section 9.2.1. 

9.2.1.  Can  SeClone  detect  the  true  positive  answers? 
In this section, we provide a naïve summary of SeClone 
performance as we were concerned whether SeClone can 
detect any of the known true positive clones. We are in-
terested to observe whether the SeClone retrieval model 
can really achieve high recall.   
We observe that there are 27 schemata of SeClone, out of 
40 tested schemata in Table 11, that detect all of the 13 
known positive answers (Table 12) from the benchmark, 
including the Type-3 clones. From a benchmark-based 
evaluation point of view [BEL07], SeClone achieves 100% 
recall. Our initial analysis also shows that for 96% of que-
ries, some of the schemata with high recall also achieve 
100% precision for top K hits within the result sets, with K 
being equal to the number of expected positive answers 
from the benchmark. These results are promising, specifi-
cally (1) on a noisy ultra large corpus (2) with an ap-
proach that is not aware of the positional information of 
source code. However, these numbers should be inter-
preted carefully due to our benchmark-based evaluation 
approach, as discussed by Bellon et al. [BEL07]. We report 
the details of our observation in the next sections. 

9.2.2.  First  False  Positive 
In the previous section we reported that SeClone 

achieves high precision and recall. However, it does not 
mean SeClone is the perfect clone search model. In the 
following, we report the details of our analysis and the 
observations that we made showing both pluses and defi-
ciencies of SeClone. Our major concern is to observe 
whether the fast schemata, that are shown to perform in 
real-time in Section 9.1, are amongst those producing 
high quality ranked result sets. In other words, is there 
any configuration of SeClone that performs well from 

both quality and response time points of view? In the fol-
lowing, we refer to the certain schemata of SeClone that 
achieve both scalability and near real-time response time 
(Section 9.1) as target schemata, e.g., A4 (𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3) and 
C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3). 

Figure 8 provides a summary of the result for the First 
False Positive (FFP) measure. The observation is based on 
the FFP values for all queries across all 40 search configu-
rations (schemata). The results show that the first false 
positive appears on average at the 25th position for most 
schemata. Among the 40 schemata, two of them consider-
ably outperform the others by having first false positive 
at position 30 on average, whereas 9 of the 40 schemata 
perform poorly. 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1. 𝑚3 (A4) and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3 (C4) 
outperform the other schemata, even the other target 
schemata, i.e., 𝑤. 𝑙𝑡𝑐𝑛. 𝑙1. 𝑚3 (D4) and 𝑤. 𝑛𝑠𝑐𝑛. 𝑙1.𝑚3 (E4). 
Therefore, regarding the earlier question, there is no 
schema better than SeClone real-time schemata from FFP 
point of view. We consider A4 and C4 as the surviving 
target schemata in our further analysis. Note, both schema-
ta detect all of the 13 known positive answers from the 
benchmark. Our observation also shows that SeClone 
finds and ranks further positive answers beside the 
benchmark’s 13 positive answers at the top of the result 
set, achieving 30 (average) for FFP, e.g., using A4 schema.  

9.2.3.  Precision  at  K 
In the FFP section, we studied the position of the first 
false positive answer. FFP is a conservative measure. To 
provide a higher level overview of SeClone performance, 
we consider Precision at K measure (P@K). We study 7 
different scenarios: K = 10, 15, 20, 30, and 60. The motiva-
tion for evaluating these different K values was to pro-
vide an analysis of SeClone’s performance as K increases. 
We limited the K value to a maximum of 60, since we on-
ly tagged the top 60 hits during our relevance score as-
signment step. We observe that for precision at 10 and 15, 
SeClone achieves 100% precision (for 48 out of 50 queries) 
for both K ranges. As expected, the precision values drop 
as the K values increase to 60 (Figure 9). The major reason 
for this drop in precision is mainly related to data scarci-
ty. This is partly caused by our benchmark, since we gen-
erated through the mutation framework (and seeded af-
terwards) only 13 confirmed clones for each query. As a 
result, the precision at K values higher than 13 depends 
on the actual data availability in our corpus, which is 
non-deterministic, in particular given the size of the cor-
pus and the differences among queries. 

An interesting observation can be made for schemata 
such as 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1. 𝑚1, when the second index uses the m 
transformation function at the single line granularity level 
(i.e., m1). These search schemata actually achieve the 
highest median value, which can be explained by the fact 
that for such a fine-grained index, the engine was able to 
detect a large number of true positives to achieve higher 
recall. However, the improvement is not statistically sig-
nificant comparing to our surviving target schemata from 
the FFP study (i.e., A4 and C4). 

Finding. Ranking model (i.e., Jaccard or VSM) does 
not affect significantly the response time. 

Finding. G1. SeClone achieves both scalability and 
near real-time response time by certain schemata. 
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Figure 7.   SeClone response time using a 356M LOC corpus 

 

 

Figure 8.  First False Positive result across all configurations using a 356M LOC corpus 

 

 

Figure 9.  Precision at 60 result across all configurations using a 356M LOC corpus 
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9.2.4.  MAP 
Our first two studies (i.e., FFP and P@K) evaluate the per-
formance of SeClone from the precision point of view. We 
observe that for a reasonable K value (i.e., 15) with regard 
to our benchmark characteristics, SeClone achieves com-
plete precision for P@K. However, as K increases the pre-
cision value decreases. Our initial observation highlights 
that the drop is due to data scarcity. However to answer 
this concern concretely, we further study the Mean Aver-
age Precision (MAP) measure. MAP is a single value 
measure typically used in the IR community to evaluate 
ranking systems. For a single query experiment, the 
measure will simply compute the average of all Precision 
at 𝐾𝑠 where 𝐾𝑠 refers to the position of all retrieved rele-
vant items in the result set. MAP is useful when the de-
gree of similarity (relevance score) of true positives is not 
of importance. We observe that both of our surviving tar-
get schemata (i.e., 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) achieve 
almost complete MAP value, i.e., 0.98. Achieving a MAP 
close to 1 means that if there is a positive answer within 
our benchmark, SeClone has placed the TP almost at the 
top in most of the cases. This supports the idea that the 
drop in P@K for large Ks, is due to data scarcity, not Se-
Clone malfunctioning. Note, we also observe that there is 
also no other schema that significantly achieves a higher 
MAP value than our surviving target schemata. 

9.2.5.  Normalized  Discounted  Cumulative  Gain 
In the our previous studies, we observed that there are 
two schemata of SeClone that not only provide real-time 
clone search but also find the true positive answers and 
place them at the top of the ranked result set. However, 
there are further performance factors to be considered for 
a successful clone search model. Similar to the other 
search domains, all true positive answers in clone search 
are not equally relevant to the query. In our benchmark 
(Tables 12 and 13), we define the relevance degree of an-
swers to the query based on clone type and the degree of 
dissimilarity. To evaluate SeClone ranking for applications 
where the relevance score of true positives is emphasized, 
we used the Normalized Discounted Cumulative Gain 
(NDCG). We observe that x1.m3 index configuration (e.g., 
A8 schema) achieves the best NDCG in our study. How-
ever, the improvement is not statistically significant com-
paring to our surviving target schemata. Our NDCG study 
supports and confirms that both of our target real-time 
schemata (i.e., 𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) perform 
well by achieving 0.9 out of 1 NDCG in the worst case.  

9.2.6.  Normalized  Kendall’s  𝝉  distance 
In the NDCG study, we observed that SeClone can pro-
duce high quality ranking in terms of relevancy. Howev-
er, it does not mean that SeClone is a perfect clone search 
model for ranking clones. In this section, we discuss the 
limitations of SeClone in ranking clones using Normal-
ized Kendall’s 𝛕 distance. We use the Kendall tau meas-
ure, since it provides a fine-grained comparison of highly 
positive result sets based on their relative order.  

Since SeClone search schemata rank result sets based 
on their content similarity, Type-1 and Type-2 clones 

(similarities) are consistently placed in the correct relative 
order and position within the result sets. However, for 
Type-3 clones, the relative position (compared to Type-1 
and 2 clones), depends on the dissimilarity between the 
clones and the query fragment. Using Kendall’s 𝛕, we 
study how close our ranking approaches can match an 
optimum ranking (e.g., Table 12), in the exact order. The 
outcome value for Kendall’s 𝛕 can be between -1 and 1. 
The evaluation of our recommended schemata 
(𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) shows that SeClone is 
neither poor (i.e., -1) nor perfect (i.e., 1) in this context. 
However, SeClone is closer to 1 than -1. Figure 10 shows 
the summary of the observation. Although the median 
values for both schemata are close, the Jaccard coefficient 
search schema C4 (𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3) outperforms the VSM-
based schema by providing consistent (better) ranking 
results. Nevertheless, the difference between the two con-
figurations is not statistically significant. 

In summary, in this study we showed the promising 
achievements of SeClone using FFP, P@K, MAP, and 
NDCG measures. However, we observed that SeClone is 
not the perfect clone search model using the Kendall’s 𝛕 
observation and can be improved, if an exact ranking as 
Table 12 is expected. 

 
 
 

 
 

 
 

Figure 10.  Kendall’s  𝛕 distance study on the two surviving schemata 

9.3.  Discussion 
We observe that all of the 9 schemata belong to the B se-
ries underperform the others significantly. Common to all 
of the schemata belong to B series is the simple size similar-
ity booster. This function simply assigns higher rank to 
hits that are having the same size (i.e., unique patterns) as 
the query. We have been selected this function for our 
study based on its success in our earlier preliminary stud-
ies. In our preliminary studies on single-project datasets, 
the function performance was acceptable due to the char-
acteristics of small-size datasets (e.g., fewer pitfalls). In-

Finding. G2. SeClone detects positive answers and 
ranks them at the top of the result set before the 
other irrelevant answers with an acceptable per-
formance, i.e., 0.9 NDCG. 
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terestingly, as we observe in this study, the function fails 
significantly for clone search on a noisy corpus. This ob-
servation is interesting as it highlights the challenges of 
clone detection and search on ultra-large noisy datasets, 
i.e., a heuristic that works well for small-size dataset, is 
not necessarily suitable for large-scale clone search and 
detection. 

10. THREATS  TO  VALIDITY  AND  LIMITATIONS   
The clone search model proposed in this research can be 
adapted for different application contexts which require 
scalability, fast response time, ranking, and Type-1, 2, and 
3 detection (e.g., [LEM11]). This section summarizes some 
ongoing concerns that must be taken into consideration 
before adopting our clone search model. 

Data characteristics study. Our data characteristics 
studies provide essential insights on the data used in our 
research and application domain (e.g., corpus growth 
rate, data outliers, and the strength of the hash function). 
However, the observations reported from our studies 
depend on three major factors: (1) the corpus being 
searched, (2) the data granularity used for the study, and 
(3) the selected encoded code patterns. Although we tried 
to consider a representative dataset for our studies, all 
conclusions drawn from our case studies remain highly 
dependent on the corpus. For example, when using a da-
taset from industrial or closed code systems, the conclu-
sions will most likely differ, since the characteristics of the 
code might differ. Furthermore, our studies are limited to 
Java source code. For the granularities, our results are 
limited to line-level clone detection, and the conclusions 
are not generalizable for other granularity levels. Finally, 
we have selected encoded code patterns that will result in 
high recall. Achieving high recall helped us to study the 
worst-case scenarios for our retrieval and ranking steps, 
as it resulted in a large number of candidates to be 
ranked. Therefore, the observations are not generalizable, 
as is, to the other encoded code patterns that emphasize 
on other requirements.  

Performance evaluation study. Considering our eval-
uation approach, the quality of our benchmark plays an 
important role, since it has a direct impact on the outcome 
of the performance evaluation. Therefore, the following 
issues must be taken into consideration. Since no other 
benchmark was available for the evaluation of clone 
search results and ranking performance, we created our 
own benchmark using a mutation framework to generate 
an oracle of known clones. A key challenge, as with any 
benchmark is, how closely such a benchmark reflects real 
world data. We address some of these threats by creating 
a dataset that we believe is representative enough in size 
(containing 25,000 different open source projects and ap-
proximately 356 MLOC). Furthermore, the mutation 
framework output (our oracle) is injected to our corpus to 
ensure that a minimum number of clone instances existed 
for each query and to allow recall calculations. We also 
identified other possible positive answers from the origi-
nal corpus beside the injected clones similar to Bellon et 
al. approach [BEL07]. In an attempt to reduce the subjec-

tivity during the manual scoring process, the scoring pro-
cess was made as transparent and objective as possible 
similar to Bellon et al. approach [BEL07]. We also fol-
lowed predefined guidelines provided by the mutation 
framework to setup the scores.  

Implementation. We have implemented our clone 
search models and all of its processing components in 
Java. While we performed extensive testing of our im-
plementation, we did not consider a formal validation of 
either the design nor of the implementation (including the 
programming heuristics). 

Limitations. Our study focuses on a clone search mod-
el for Java source code. However, support for other pro-
gramming languages would require typically the substi-
tution of the language parser. While our model can be 
applied to the other programming languages such as C, 
its performance might differ significantly. This is due to 
the fact that our encoded code pattern generation rules 
have been designed and optimized based on characteris-
tics of Java source code available on the Internet, after a 
detailed experimental of existing code search query logs 
analysis (see Appendix).  

11.  CONCLUSIONS 
In this research, we study the potentials of Information 
Retrieval models for code clone search. Our research pre-
sents a clone search model which not only supports 
scalability (i.e., Internet-scale), short response times (i.e., 
real-time), and Type-1, 2 and 3 detection, but also empha-
sizes the ranking of result sets as a key functionality. This 
ranking is used to place highly similar fragments (hits) 
higher than other hits within the result set. Our clone 
search model (SeClone) takes advantage of a multi-level 
indexing (non-positional) approach to achieve a scalable 
and fast retrieval with high recall. Result sets are ranked 
using two Information Retrieval ranking approaches: Jac-
card similarity coefficient and cosine similarity via the 
vector space model. We combined these ranking models 
with code patterns’ (not token) local and global frequen-
cies functions, which can be used to customize the search 
schemata to specific application requirements.  

For the evaluation we created a large corpus (365M 
LOC). The corpus in combination with 50 sample queries 
and a total of 650 seeded Type-1, 2, and 3 clones formed 
our benchmark. This benchmark, including an extensive 
manual tagging of relevance scores of over 117,000 hits. 
The benchmark is used to evaluate SeClone retrieval and 
ranking quality. We selected five quality measures to 
evaluate and identify schemata, which can consistently 
outperform others. The analysis showed that SeClone not 
only scales to very large datasets but also can produce 
high quality results in near real-time using the identified 
schemata (𝑐. 𝑙𝑡𝑐𝑗. 𝑙1.𝑚3 and 𝑗. 𝑏𝑛𝑛𝑛. 𝑙1.𝑚3).  

As part of our future work we plan to extend and 
evaluate our clone search model to token-level similarity 
search granularity using non-positional indexing. We are 
also planning to release SeClone as an online clone search 
engine. 
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APPENDIX  -  TRANSFORMATION  FUNCTION  DESIGN  
DISCUSSION 

Several token types exist in source code such as method 
names, class names, primitive types, language keywords, 
variables, and constants. In general, apart from language 
keywords, which are consistent through the code, the 
token names can refer to different concepts. Despite dif-
ferences in names, the semantic of tokens can still be simi-
lar (from algorithmic point of view). We refer to this case 
as tokens’ semantic stability issue. Figure 11 provides an 
example where two code fragments can be considered 
clones even though they use different variable names (i.e., 
att and var). 
 
…  
5: String msg=”exit  0";   
6: for(AttributeEntity att : t.getAttributes())
7: {   
…  

…  
5: String msg=”exit  0";   
6: for(AttributeEntity var : t.getAttributes())
7: {   
…  

 
Figure 11.  Two code cloned code fragments that are using different varia-

ble names 

    It is a well-known practice (e.g., [KAM02]) in clone de-
tection tools to replace all tokens with placeholders to 
reduce such syntactic and semantic dissimilarities. This 
practice is useful when the clone detection approach is 
not able to judge the semantics of the token based on its 
name and other available information (e.g., AST). In our 

research, we proposed various transformation functions 
in order to be able to address different types of similarity. 
For example, the 𝑐 function only preserves method names 
and class names.  𝑐 replaces almost all other tokens with # 
as placeholder. We defined 5 transformation functions 
(Table 4) covering different scenarios and requirements. 
However, all of them preserve the method name tokens. 
For our approach, we decided to preserve method names, 
as we observed that method names have stable semantics 
in our research context (i.e., large-scale code search). Our 
observation is based on an analysis of a one-year query log 
of Koders [UCI10] (one of the state of the art code search 
engines). When analyzing the query log, we focused on 18 
programming languages, which have a method construct 
as part of their language. This log contains a total of ap-
proximately 10 million records that we analyzed. As part 
of that analysis, we observed that for Internet-scale code 
search, method names play an essential role. Our analysis 
showed that if a method name was present as part of the 
query, code download occurred 98% of the time (Figure 12 
– MCQ values), whereas the overall download rate is 69% 
(Figure 12 – All values). Note that in Web search activity 
mining, downloads/clicks on search results are interpret-
ed as the result of a successful search. This observation 
shows the importance of method names in a code search 
and can be used as an indicator for method tokens’ seman-
tics stability from end-users’ point of view. Therefore, all 
encoded code patterns generated by our transformation 
functions preserve the method names, which also provide 
the added benefit of reducing the number of false positive 
rates during the later matching. 

 
Figure 12.  Importance of method names to the code search success rate – 
an  indicator  for  method  tokens’  semantics  stability  from  end-users’  point  of  

view. 
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