
The University of Saskatchewan
Department of Computer Science

Technical Report #2014-03

Deletion Operations on Deterministic Families of

Automata ∗

Joey Eremondi
Department of Information and Computing Sciences,

Utrecht University, P.O. Box 80.089 3508 TB Utrecht, The Netherlands
j.s.eremondi@students.uu.nl

Oscar H. Ibarra
Department of Computer Science,

University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Ian McQuillan
Department of Computer Science, University of Saskatchewan

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

December 8, 2014

Abstract

Many different deletion operations are investigated applied to languages ac-
cepted by one-way and two-way deterministic reversal-bounded multicounter
machines as well as finite automata. Operations studied include the prefix,
suffix, infix and outfix operations, as well as left and right quotient with lan-
guages from different families. It is often expected that language families de-
fined from deterministic machines will not be closed under deletion operations.
However, here, it is shown that one-way deterministic reversal-bounded multi-
counter languages are closed under right quotient with languages from many
different language families; even those defined by nondeterministic machines
such as the context-free languages, or languages accepted by nondeterministic
pushdown machines augmented by any number of reversal-bounded counters.
Also, it is shown that when starting with one-way deterministic machines with
one counter that makes only one reversal, taking the left quotient with lan-
guages from many different language families, again including those defined by

∗The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research
of I. McQuillan was supported, in part, by the Natural Sciences and Engineering Research Council
of Canada.

1

nondeterministic machines such as the context-free languages, yields only one-
way deterministic reversal-bounded multicounter languages (by increasing the
number of counters). However, if there are even just two more reversals on the
counter, or a second 1-reversal-bounded counter, taking the left quotient (or
even just the suffix operation) yields languages that can neither be accepted
by deterministic reversal-bounded multicounter machines, nor by 2-way non-
deterministic machines with one reversal-bounded counter. A number of other
results with deletion operations are also shown.

1 Introduction

This paper involves the study of various types of deletion operations applied to lan-
guages accepted by one-way deterministic reversal-bounded multicounter machines
(DCM). These are machines that operate like finite automata with an additional
fixed number of counters, where there is a bound on the number of times each
counter switches between increasing and decreasing [1, 8]. These languages have
many decidable properties, such as emptiness, infiniteness, equivalence, inclusion,
universe and disjointness [8].

These machines have been studied in a variety of different applications, such
as to membrane computing, verification of infinite-state systems and Diophantine
equations.

Recently, in [3], a related study was conducted for insertion operations; specifi-
cally operations defined by ideals obtained from the prefix, suffix, infix and outfix re-
lations, as well as left and right concatenation with languages from different language
families. It was found that languages accepted by one-way deterministic reversal-
bounded counter machines with one reversal-bounded counter are closed under right
concatenation with Σ∗, but having two 1-reversal-bounded counters and right con-
catenating Σ∗ yields languages outside of DCM and 2DCM(1) (languages accepted
by two-way deterministic machines with one counter that is reversal-bounded). It
also follows from this analysis that the right input end-marker is necessary for even
one-way deterministic reversal-bounded counter machines, when there are at least
two counters. Also, concatenating Σ∗ to the left of some one-way deterministic 1-
reversal-bounded one counter languages yields languages that are neither in DCM
nor 2DCM(1). Other recent results on reversal-bounded multicounter languages
includes a technique to show languages are outside of DCM [2].

2 Preliminaries

The set of non-negative integers is denoted by N0, and the set of positive integers
by N. For c ∈ N0, let π(c) be 0 if c = 0, and 1 otherwise.

We assume knowledge of standard formal language theoretic concepts such as
languages, finite automata, determinism, nondeterminism, semilinearity, recursive

2

and recursively enumerable languages [1, 7]. Next, we will give some notation used
in the paper. The empty word is denoted by λ. If Σ is a finite alphabet, then Σ∗ is
the set of all words over Σ and Σ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗, if w = a1 · · · an
where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted by |w| = n, and the reversal
of w is denoted by wR = an · · · a1. A language over Σ is any subset of Σ∗. Given a
language L ⊆ Σ∗, the complement of L, Σ∗\L is denoted by L. Given two languages
L1, L2, the left quotient of L2 by L1, L

−1
1 L2 = {y | xy ∈ L2, x ∈ L1}, and the right

quotient of L1 by L2 is L1L
−1
2 = {x | xy ∈ L1, y ∈ L2}.

A language L is word-bounded or simply bounded if L ⊆ w∗1 · · ·w∗k for some
k ≥ 1 and (not-necessarily distinct) words w1, . . . , wk. Further, L is letter-bounded
if each wi is a distinct letter. Also, L is bounded-semilinear if L ⊆ w∗1 · · ·w∗k and

Q = {(i1, . . . , ik) | wi11 · · ·w
ik
k ∈ L} is a semilinear set [10].

Notation for common word and language operations used throughout the paper
are now presented.

Definition 1. For a language L ⊆ Σ∗, the prefix, suffix, infix and outfix operations
are defined by:

• pref(L) = {w | wx ∈ L, x ∈ Σ∗},

• suff(L) = {w | xw ∈ L, x ∈ Σ∗},

• inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗},

• outf(L) = {xy | xwy ∈ L,w ∈ Σ∗}.

Note that pref(L) = L(Σ∗)−1 and suff(L) = (Σ)−1L.
The outfix operation has been generalized to the notion of embedding [11]:

Definition 2. The m-embedding of language L ⊆ Σ∗ is the following: emb(L,m) =
{w0 · · ·wm | w0x1 · · ·wm−1xmwm ∈ L, wi ∈ Σ∗, 0 ≤ i ≤ m,xj ∈ Σ∗, 1 ≤ j ≤ m}.

Note that outf(L) = emb(L, 1).
A nondeterministic multicounter machine is a finite automaton augmented by a

fixed number of counters. The counters can be increased, decreased, tested for zero,
or tested to see if the value is positive. A multicounter machine is reversal-bounded
if every counter makes a fixed number of changes between increasing and decreasing.

Formally, a one-way k-counter machine is a tuple M = (k,Q,Σ, $, δ, q0, F),
where Q,Σ, $, q0, F are respectively the finite set of states, the input alphabet, the
right input end-marker, the initial state in Q, and the set of final states that is a
subset of Q. The transition function δ (defined as in [8] except with only a right end-
marker since we only use one-way inputs) is a mapping from Q× (Σ∪{$})×{0, 1}k
into Q×{S,R}×{−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk)
and ci = 0 for some i, then di ≥ 0 to prevent negative values in any counter. The
direction of the input tape head movement is given by the symbols S are R for

3

either stay or right respectively. The machine M is deterministic if δ is a function.
A configuration of M is a k + 2-tuple (q, w$, c1, . . . , ck) for describing the situation
where M is in state q, with w ∈ Σ∗ still to read as input, and c1, . . . , ck ∈ N0 are the
contents of the k counters. The derivation relation `M is defined between configura-
tions, where (q, aw, c1, . . . , ck) `M (p, w′ , c1 + d1, . . . , ck + dk), if (p, d, d1, . . . , dk) ∈
δ(q, a, π(c1), . . . , π(ck)) where d ∈ {S,R} and w′ = aw if d = S, and w′ = w if d = R.
Extended derivations are given by `∗M , the reflexive, transitive closure of `M . A
word w ∈ Σ∗ is accepted by M if (q0, w$, 0, . . . , 0) `∗M (q, $, c1, . . . , ck), for some
q ∈ F , and c1, . . . , ck ∈ N0. The language accepted by M , denoted by L(M), is the
set of all words accepted by M . The machine M is l-reversal bounded if, in every
accepting computation, the count on each counter alternates between increasing and
decreasing at most l times.

We denote by NCM(k, l) the family of languages accepted by one-way nondeter-
ministic l-reversal-bounded k-counter machines. We denote by DCM(k, l) the family
of languages accepted by one-way deterministic l-reversal-bounded k-counter ma-
chines. The union of the language families are denoted by NCM =

⋃
k,l≥0NCM(k, l)

and DCM =
⋃
k,l≥0DCM(k, l). We will also sometimes refer to a multicounter ma-

chine as being in NCM(k, l) (DCM(k, l)), if it has k l-reversal bounded counters (and
is deterministic).

We denote by REG the family of regular languages, and by NPCM the family of
languages accepted by nondeterministic pushdown automata augmented by a fixed
number of reversal-bounded counters [8]. We also denote by 2DCM(1) the family
of languages accepted by two-way input, deterministic finite automata (both a left
and right input tape end-marker are required) augmented by one reversal-bounded
counter [9]. A machine of this form is said to be finite-crossing if there is a fixed c
such that the number of times the boundary between any two adjacent input cells
is crossed is at most c [4]. A machine is finite-turn if the input head makes at most
k turns on the input, for some k. Also, 2NCM is the family of languages accepted
by two-way nondeterministic machines with a fixed number of reversal-bounded
counters, while 2DPCM is the family of two-way deterministic pushdown machines
augmented by a fixed number of reversal-bounded counters.

The next result proved in [10] gives examples of weak and strong machines that
are equivalent over word-bounded languages.

Theorem 1. [10] The following are equivalent for every word-bounded language L:

1. L can be accepted by an NCM.

2. L can be accepted by an NPCM.

3. L can be accepted by a finite-crossing 2NCM.

4. L can be accepted by a DCM.

5. L can be accepted by a finite-turn 2DCM(1).

4

6. L can be accepted by a finite-crossing 2DPCM

7. L is bounded-semilinear.

We also need the following result in [9]:

Theorem 2. [9] Let L ⊆ a∗ be accepted by a 2NCM (not necessarily finite-crossing).
Then L is regular, hence, semilinear.

3 Closure and Non-Closure for Erasing Operations

3.1 Right Quotient for DCM

We begin by showing the closure of DCM under right quotient with any non-
deterministic reversal bounded machine, even when augmented with a pushdown
store.

Proposition 1. Let L1 ∈ DCM and let L2 ∈ NPCM. Then L1L2
−1 ∈ DCM.

Proof. Consider DCM machine M1 = (k1, Q1,Σ, $, δ1, s0, F1) and NPCM machine
M2 over Σ with k2 counters where L(M1) = L1 and L(M2) = L2. A DCM machine
M ′ will be constructed accepting L1L2

−1.
Let Γ = {a1, . . . , ak1} be new symbols. For each q ∈ Q1, let Mc(q) be an interim

k1 + k2 counter (plus a pushdown) NPCM machine over Γ constructed as follows:
on input ap11 · · · a

pk1
k1

, Mc(q) increments the first k1 counters to (p1, . . . , pk1). Then
Mc(q) nondeterministically guesses a word x ∈ Σ∗ and simulates M1 on x$ starting
from state q and from the counter values of (p1, . . . , pk1) using the first k1 counters,
while in parallel, simulating M2 on x using the next k2 counters and the pushdown.
This is akin to the product automaton construction described in [8] showing NPCM
is closed under intersection with NCM. Then Mc(q) accepts if both M1 and M2

accept.

Claim 1. Let Lc(q) = {ap11 · · · a
pk1
k1
| ∃x ∈ L2 such that (q, x$, p1, . . . , pk1) `∗M1

(qf , $, p
′
1, . . . p

′
k1

), p′i ≥ 0, 1 ≤ i ≤ k1, qf ∈ F1}. Then L(Mc(q)) = Lc(q).

Proof. Consider w = ap11 · · · a
pk1
k1
∈ Lc(q). Then there exists x where x ∈ L2 and

(q, x$, p1, . . . , pk1) `∗M1
(q1f , $, p

′
1, . . . p

′
k1

), where q1f ∈ F1. There must then be some

final state q2f ∈ F2 reached when reading x$ in M2. Then, Mc(q), on input w places
(p1, . . . , pk1 , 0, . . . , 0) on the counters and then can nondeterministically guess x
letter by letter and simulate x inM1 from state q on the first k1 counters and simulate
x inM2 from its initial configuration on the remaining counters and pushdown. Then
Mc(q) ends up in state (q1f , q

2
f), which is final. Hence, w ∈ L(Mc(q)).

Consider w = ap1 · · · apk1 ∈ L(Mc(q)). After adding each pi to counter i, Mc(q)
guesses x and simulates M1 on the first k1 counters from q and simulates M2 on
the remaining counters from an initial configuration. It follows that x ∈ L2, and

5

(q, x$, p1, . . . , pk1) `∗M1
(q1f , $, p

′
1, . . . p

′
k1

), p′i ≥ 0, 1 ≤ i ≤ k1, q
1
f ∈ F1. Hence, w ∈

Lc(q).

Since for each q ∈ Q1, Mc(q) is in NPCM, it accepts a semilinear language [8], and
since the accepted language is bounded, it is bounded-semilinear and can therefore
be accepted by a DCM-machine by Theorem 1. Let M ′c(q) be this DCM machine,
with k′ counters, for some k′.

Thus, a final DCM machine M ′ with k1 + k′ counters is built as follows. In
it, M ′ has k1 counters used to simulate M1, and also k′ additional counters, used
to simulate some M ′c(q), for some q ∈ Q1. Then, M ′ reads its input x$, where
x ∈ Σ∗,while simulating M1 on the first k1 counters, either failing, or reaching
some configuration (q, $, p1, . . . , pk1), for some q ∈ Q1, upon first hitting the end-
marker $. If it does not fail, we then simulate the DCM-machine M ′c(q) on input
ap11 · · · a

pk1
k1

, but this simulating is done deterministically by subtracting 1 from the
first k1 counters, in order, until each are zero instead of reading input characters,
and accept if ap11 · · · a

pk1
k1
∈ L(M ′c(q)) = Lc(q). Then M ′ is deterministic and accepts

{x | either (s0, x$, 0, . . . , 0) `∗M1
(q′, a$, p′1, . . . , p

′
k1

) `M1 (q, $, p1, . . . , pk1),

a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), s.t. ap11 · · · a
pk1
k1
∈ Lc(q)}

= {x | either (s0, x$, 0, . . . , 0) `∗M1
(q′, a$, p′1, . . . , p

′
k1

) `M1 (q, $, p1, . . . , pk1),

a ∈ Σ, or (s0, x$, 0, . . . , 0) = (q, $, p1, . . . , pk1), where ∃y ∈ L2 s.t.
(q, y$, p1, . . . , pk1) `∗M1

(qf , $, p
′′
1, . . . , p

′′
k1

), qf ∈ F1}
= {x | xy ∈ L1, y ∈ L2}
= L1L

−1
2 .

These immediately show closure for the prefix operation.

Corollary 1. If L ∈ DCM, then pref(L) ∈ DCM.

We can modify this construction to show a strong closure result for one-counter
languages that does not increase the number of counters.

Proposition 2. Let l ∈ N. If L1 ∈ DCM(1, l) and L2 ∈ NPCM, then L1L2
−1 ∈

DCM(1, l).

Proof. The construction is similar to Proposition 1. However, we note that since the
input machine for L1 has only one counter, Lc(q) is unary (regardless of the number
of counters needed for L2). Thus Lc(q) is unary and semilinear, and Parikh’s theorem
states that all semilinear languages are letter-equivalent to regular languages [6],
and all unary semilinear languages are regular. Thus Lc(q) is regular, and can be
accepted by a DFA.

We can then construct M ′ accepting L1L2
−1 as in Proposition 1 without re-

quiring any additional counters or counter reversals, by transitioning to the DFA
accepting Lc(q) when we reach end of input at state q.

6

Corollary 2. Let l ∈ N. If L ∈ DCM(1, l), then pref(L) ∈ DCM(1, l).

In fact, this construction can be generalized from NPCM to any class of automata
that can be defined using Definition 3. These classes of automata are described in
more detail in [5]. We only define it in a way specific to our use in this paper. Only
the first two conditions are required for Corollary 3, while the third is required for
Corollary 5.

Definition 3. A family of languages F is said to be reversal-bounded counter
augmentable if

• every language in F is effectively semilinear,

• given DCM machine M1 with k counters, state set Q and final state set F , and
L2 ∈ F , we can effectively construct, for each q ∈ Q, the following language
in F ,

{ap11 · · · a
pk
k | ∃x ∈ L2 such that (q, x$, p1, . . . , pk) `∗M1

(qf , $, p
′
1, . . . p

′
k),

p′i ≥ 0, qf ∈ F},

• given DCM machine M1 with k counters, state set Q, and L2 ∈ F , we can
effectively construct, for each q ∈ Q, the following language in F ,

{ap11 · · · a
pk
k | ∃x ∈ L2 such that (q, x, 0, . . . , 0) `∗M1

(q, λ, p1, . . . pk)}.

There are many reversal-bounded counter augmentable families that L2 could
be from in this corollary, such as:

Corollary 3. Let L1 ∈ DCM and L2 ∈ F , a family of languages that is reversal-
bounded counter augmentable. Then L1L2

−1 ∈ DCM. Further, if L1 ∈ DCM(1, l)
for some l ∈ N, then L1L2

−1 ∈ DCM(1, l).

This construction could be applied to several other families of semilinear lan-
guages such as:

• MPCA’s: one-way machines with k pushdowns where values may only be
popped from the first non-empty stack, augmented by a fixed number of
reversal-bounded counters [5].

• TCA’s: NFA’s augmented with a two-way read-write tape, where the number
of times the read-write head crosses any square is finitely bounded, again
augmented by a fixed number of reversal-bounded counters [5].

• QCA’s: NFA’s augmented with a queue, where the number of alternations
between the non-deletion phase and the non-insertion phase is bounded by a
constant [5].

7

• EPDA’s: embedded pushdown automata, modelled around a stack of stacks,
introduced in [13]. These accept the languages of tree-adjoining grammars,
a semilinear subset of the context-sensitive languages. As was stated in [5],
we can augment this model with a fixed number of reversal-bounded counters
and still get an effectively semilinear family.

3.2 Right and Left Quotients of Regular Sets

Let F be any family of languages (which need not be recursively enumerable). It
is known that REG is closed under right quotient by languages in F [7]. However,
this closure need not be effective, as it will depend on the properties of F . The
following is an interesting observation which connects decidability of the emptiness
problem to effectiveness of closure under right quotient:

Proposition 3. Let F be any family of languages which is effectively closed under
intersection with regular sets and whose emptiness problem is decidable. Then REG
is effectively closed under both left and right quotient by languages in F .

Proof. We will start with right quotient.
Let L1 ∈ REG and L2 be in F . Let M be a DFA accepting L1. Let q be

a state of M , and Lq = {y | M from initial state q accepts y}. Let Q′ = {q |
q is a state of M,Lq∩L2 6= ∅}. Since F is effectively closed under intersection with
regular sets and has a decidable emptiness problem, Q′ is computable. Then a DFA
M ′ accepting L1L

−1
2 can be obtained by just making Q′ the set of accepting states

in M .
Next, for left quotient, let L1 be in F , and L2 in REG be accepted by a DFA M

whose initial state is q0.
Let Lq = {x |M on input x ends in state q}. Let Q′ = {q | Lq ∩ L1 6= ∅}. Then

Q′ is computable, since F is effectively closed under intersection with regular sets
and has a decidable emptiness problem.

We then construct an NFA (with λ-transitions) M ′ to accept L−11 L2 as follows:
M ′ starting in state q0 with input y, on λ input nondeterministically goes to a state
q in Q′ and then simulates the DFA M .

Corollary 4. REG is effectively closed under left and right quotient by languages
in:

1. the families of languages accepted by NPCM and 2DCM(1) machines,

2. the family of languages accepted MPCAs, TCAs, QCAs, and EPDAs,

3. the families of ET0L and Index languages.

Proof. These families are closed under intersection with regular sets. They have
also a decidable emptiness problem [5].

8

3.3 Suffix, Infix and Left Quotient for DCM(1, 1)

In the case of one-counter machines that makes only one counter reversal, it will
be shown that a DCM-machine that can accept their suffix and infix languages
can always be constructed. However, in some cases, these resulting machines often
require more than one counter. Thus, unlike prefix, DCM(1, 1) is not closed under
suffix, left quotient, or infix. But, the result is in DCM.

We will give some intuition for the result. First, DCM is closed under union and
so the second statement of Lemma 1 follows from the first. For the first statement, an
intermediate NPCM machine is constructed from L1 and L that accepts a language
Lc. This language contains words of the form qai where there exists some word
w such that both w ∈ L1, and also from the initial configuration of M (accepting
L), it can read w and reach state q with i on the counter. Then, it is shown that
this language is actually a regular language, using the fact that all semilinear unary
languages are regular. Then, DCM(1, 1) machines are created for every state q of M .
These accept all words w such that qai ∈ Lc, and in M , from state q and counter i
with w to read as input, M can reach a final state while emptying the counter. The
fact that Lc is regular allows these machines to be created.

Lemma 1. Let L ∈ DCM(1, 1), L1 ∈ NPCM. Then L−11 L is the finite union of
languages in DCM(1, 1). Furthermore, it is in DCM.

Proof. For the first statement, let M = (1, Q,Σ, $, δ, q0, F) be a 1-reversal bounded,
1-counter machine. Let Q↓ be those states that M can be in after the counter
reversal, plus those states that M can be in one transition before (for example,
(p,−1, T) ∈ δ(q, c, 1) implies q, p ∈ Q↓). Let Q↑ = Q \Q↓. We can assume without
loss of generality that for all q ∈ Q↓, there is no increase in counter possible from any
state reachable from q (if for example δ(q, d, 1) decreases and δ(q, c, 1) increases, then
add a new state q′ and transition (q′, 0,S) ∈ δ(q, d, 1), and then q′ ∈ Q↓ and q ∈ Q↑).
We can also assume that all q ∈ Q↑ are only used before a counter reversal. Further,
assume without loss of generality that there are no stay transitions on δ(q, c, 0),
where c ∈ Σ, q ∈ Q↓. This can be assumed as any sequence of stay transitions
followed by a right transition,

(q1, 0,S) ∈ δ(q, c, 0), . . . , (qm, 0,S) ∈ δ(qm−1, c, 0), (p, 0,R) ∈ δ(qm, c, 0),

can be replaced by (p, 0,R) ∈ δ(q, c, 0) and remain deterministic and the machine
can only accept while reading the right end-marker $ /∈ Σ. This cannot be assumed
when c = $ however, as acceptance is defined to be at the end-marker in a final
state. Also, assume that for all states q ∈ Q↓, there are no states that have a stay
transition defined without changing the counter (any stay transition that does not
change the counter can be skipped over to either a right transition or a decrease
transition). Lastly, assume without loss of generality that δ(q, d,+) is defined for
all q ∈ Q, d ∈ Σ, and that the counter always empties before accepting.

9

Next, we create a NPCM machine M ′ that accepts

Lc = {qai | ∃w ∈ L1, (q0, w, 0) `∗M (q, λ, i)},

where a is a new symbol not in Σ. Indeed, M ′ operates by nondeterministically
guessing a word w, simulating in parallel, the NPCM machine accepting L1 using
the pushdown and a set of counters, as well as simulating M on w on an additional
counter. Then at some point nondeterministically, when M is in state q, verify that
the contents of the counter of M is i and that the word read thus far is in L1. Then,
for each q ∈ Q, the set q−1Lc is a unary NPCM language. Moreover, every NPCM
language is semilinear [8], and it is also known that every unary semilinear language
is regular [6], and effectively constructable. Thus, Lc =

⋃
q∈Q(q(q−1Lc)) is regular

as well. Let M c = (Qc, Q∪ {a}, δc, rc0, F c) be a DFA accepting Lc. Assume without
loss of generality that δc is a complete DFA.

We will create three sets of DCM(1, 1) machines and languages as follows:

1. M q
0 , for all q ∈ Q↑, and Lq0 = L(M q

0). We will construct it such that

Lq0 = {w | (q, w$, 0) `∗M (qf , $, 0), qf ∈ F, qa0 = q ∈ Lc}. (1)

2. M q
↑ , for all q ∈ Q↑, and Lq↑ = L(M q

↑). We will construct it such that

Lq↑ = {w | ∃i > 0, (q, w$, i) `∗M (qf , $, 0), qf ∈ F, qai ∈ Lc}. (2)

3. M q
↓ , for all q ∈ Q↓, and Lq↓ = L(M q

↓). We will construct it such that

Lq↓ = {w | ∃i ≥ 0, (q, w$, i) `∗M (qf , $, 0), qf ∈ F, qai ∈ Lc}. (3)

It is clear that
(L1)

−1L(M) =
⋃
q∈Q↑

Lq0 ∪
⋃
q∈Q↑

Lq↑ ∪
⋃
q∈Q↓

Lq↓,

and thus it suffices to build the DCM(1, 1) machines and show Equation (1), (2) and
(3) hold.

First, for (1), construct M q
0 for q ∈ Q↑ as follows: M q

0 operates just like M
starting at state q if q ∈ Lc, and if q /∈ Lc, then it accepts ∅. Hence, (1) is true.

Next, we will give intuition for (3) before giving the formal construction. In
fact, it will be shown that Lq↓ is always a regular language. Then the construction
and proof of correctness of (3) will be used within the proof and construction of
(2). A slight generalization of (3) will be used in order to accommodate its use
for (2). Despite the languages being regular, DCM machines will be constructed
instead of finite automata, but with no counter, in order to maintain consistency
and for ease of using the machines within the construction of (2). In fact, we will
first construct intermediary NCM(1, 1) machines accepting each Lq↓ for each q ∈ Q↓

10

that never uses the counter. Therefore, an NFA can be built accepting the same
language, which can then be converted to a DFA accepting the same language using
the subset construction, which could then be converted to a DCM(1, 1) machine that
never changes the counter. Intuitively, the machine will simulate M and also keep
track of the number of decreases on the counter by using the DFA M c. If M c is in
a final state, then the counter could be zero and reach that configuration. But the
simulated machineM may only accept from configurations with larger counter values
(acceptance also depends on the sequence of transitions after emptying the counter).
Thus, the new machine uses nondeterminism to try every possible configuration
where zero could occur on the counter, trying each to see if the rest of the input
accepts (by directly simulating M).

We will give the construction here, then the proof of correctness of the construc-

tion. All the machines M q,q′

↓ ∈ NCM(1, 1), for each q ∈ Q↓, q′ ∈ Q (essentially NFAs)
will have the same set of input alphabets, states, transitions, and final states, with
only the initial state differing.

Formally, let q ∈ Q↓, q
′ ∈ Q, qc1 = δ̂c(rc0, q

′) (the extended transition function

of M c) and M q,q′

↓ = (1, P↓, $,Σ, δ↓, s
q,q′

↓ , F↓), where P↓ = (Q × Qc) ∪ Q↓, sq,q
′

↓ =
(q, qc1), F↓ = F .

The transitions of δ↓ (the same for all machines M q,q′

↓) are created by the fol-
lowing algorithm:

1. For all transitions (p,−1,S) ∈ δ(r, d, 1), p ∈ Q↓, d ∈ Σ ∪ {$}, and all rc ∈ Qc,
create

((p, δc(rc, a)), 0,S) ∈ δ↓((r, rc), d, 0),

and if δc(rc, a) ∈ F c, create

(p, 0,S) ∈ δ↓((r, rc), d, 0).

2. For all transitions (p, 0,R) ∈ δ(r, d, 1), p ∈ Q↓, d ∈ Σ, and all rc ∈ Qc, create

((p, rc), 0,R) ∈ δ↓((r, rc), d, 0).

3. For all transitions (p,−1,R) ∈ δ(r, d, 1), p ∈ Q↓, d ∈ Σ, and all rc ∈ Qc, create

((p, δc(rc, a)), 0,R) ∈ δ↓((r, rc), d, 0),

and if δc(rc, a) ∈ F c, create

(p, 0,R) ∈ δ↓((r, rc), d, 0).

4. For all transitions (p, 0,R) ∈ δ(r, d, 0), p ∈ Q↓, d ∈ Σ, create

(p, 0, R) ∈ δ↓(r, d, 0).

11

5. For all transitions (p, 0, S) ∈ δ(r, $, 0), p ∈ Q↓, create

(p, 0, S) ∈ δ↓(r, $, 0).

Claim 2. For all q ∈ Q↓, q′ ∈ Q,

{w | ∃i ≥ 0, (q, w$, i) `∗M (qf , $, 0), qf ∈ F, q′ai ∈ Lc} ⊆ L(M q,q′

↓).

Proof. Let q ∈ Q↓, q′ ∈ Q. Let w be such that there exists i ≥ 0, qf ∈ F, q′ai ∈ Lc,
and (q, w$, i) `∗M (qf , $, 0). Let pj , wj , xj , 0 ≤ j ≤ m be such that p0 = q, w$ =
w0, x0 = i, qf = pm, $ = wm, xm = 0 and (pl, wl, xl) `M (pl+1, wl+1, xl+1), 0 ≤ l <
m, via transition tl+1. Then

(p0, w0, x0) `∗M (pγ , wγ , xγ) `∗M (pm, wm, xm),

where γ is the smallest number (if it exists) such that xγ < i, and µ the smallest
number greater than or equal to γ such that xµ = 0.

The transitions t1, . . . , tγ−1 are of the form, (pl, yl, Tl) ∈ δ(pl−1, dl−1, 1), for 1 ≤
l < γ, where i is on the counter on all x0, . . . , xγ−1, and y0, . . . , yγ−1 are all equal
to 0 and T0, . . . , Tγ−1 are equal to R (since all transitions from states in Q↓ that do
not decrease the counter must move right). This creates transitions in step 2 of the
form

((pl, q
c
1), 0, R) ∈ δ↓((pl−1, qc1), dl−1, 0),

for 0 < l < γ. Then,

((p0, q
c
1), w0, x0 − i = 0) `∗M↓ ((pγ−1, q

c
1), wγ−1, xγ−1 − i = 0).

The transitions tγ , . . . , tµ are of the form, (pl, yl, Tl) ∈ δ(pl−1, dl−1, 1), for γ ≤
l ≤ µ, and for γ ≤ l < µ creates transitions in steps 1, 2 and 3 of the form

((pl, q
c
l), 0, Tl) ∈ δ

q
↑((pl−1, q

c
l−1), dl−1, 0).

Then,

((pγ−1, q
c
1), wγ−1, 0) `M↓ · · · `M↓ ((pµ−1, q

c
µ−1), wµ−1, 0),

where there are exactly i − 1 decreasing transitions. Then δc(qµ−1, a) ∈ F c since
q′ai ∈ F c, and thus (pµ, yµ, Tµ) ∈ δ(pµ−1, dµ−1, 1) creates

(pµ, 0, Tµ) ∈ δ↓((pµ−1, qcµ−1), dµ−1, 0)

in step 1 or 3.
There remains transitions tµ+1, . . . , tm, for µ < l ≤ m of the form (pl, 0, Tl) ∈

δ(pl−1, dl−1, 0), Tl = R until wl = $ at which point they are all S transitions, by

12

the assumption that there are no stay transitions from a state in Q↓ with 0 on the
counter. These transitions are all created in steps 4 and 5 and thus

(pµ, wµ, 0) `∗
Mq,q′
↓

(pm = qf , wm = $, 0),

and hence w ∈ L(M q,q′

↓).

Claim 3. For all q ∈ Q↓, q′ ∈ Q,

L(M q,q′

↓) ⊆ {w | ∃i ≥ 0, (q, $, i) `∗M (qf , $, 0), qf ∈ F, q′ai ∈ Lc}.

Proof. Let w ∈ L(M q,q′

↓). Let µ, pl, wl, 0 ≤ l ≤ m, and qcl , 0 ≤ l ≤ µ be such that
p0 = q0, w0 = w$, wm = $, qm ∈ F, q ∈ Q↓, q′ ∈ Q (the counter is always zero) and

((pl, q
c
l), wl, 0) `

Mq,q′
↓

((pl+1, q
c
l+1), wl+1, 0),

for 0 ≤ l < µ, via transition tl+1 of the form

((pl+1, q
c
l+1), 0, Tl+1) ∈ δ↓((pl, qcl), dl, 0),

and
((pµ, q

c
µ), wµ, 0) `

Mq,q′
↓

(pµ+1, wµ+1, 0),

via transition tµ+1, (pµ+1, 0, Tµ+1) ∈ δ↓((pµ, qcµ), dµ, 0), and

(pl, wl, 0) `
Mq,q′
↓

(pl+1, wl+1, 0),

via transitions tl+1, for µ+ 1 < l < m of the form (pl+1, 0, Tl+1) ∈ δ↓(pl, dl, 0). Let i
be the number of times transitions of type 1 or 3 are applied. Then by the transition
tµ, this implies q′ai ∈ F c. Then, this implies that they are created from transitions
of the form (pl+1, yl+1, Tl+1) ∈ δ(pl, dl, 1), for all l, 0 ≤ l ≤ µ where yl+1 = −1
exactly when a transition of type 1 or 3 is applied, and (pl+1, 0, Tl+1) ∈ δ(pl, dl, 0),
for all l, µ+ 1 ≤ l < m, by the construction. Hence, the claim follows.

We let M q,q′ = (1, Qq,q
′
, $,Σ, δq,q

′

↓ , sq,q
′

↓ , F q,q
′

↓) be a DCM(1, 1) machine accept-

ing L(M q,q′) that never uses the counter, which can be created since it is regular.

Assume all the sets of states Qq,q
′

↓ are disjoint.
Then, Equation (3) follows from the two claims above by considering only sets

Lq,q↓ , q ∈ Q↓, and they are all indeed regular. The construction for M q
↑ will be given,

and it will use the transitions from M q,q′

↓ . Intuitively, M q
↑ will simulate computations

that would start from configuration (q, u$, i) by starting instead at 0, all transitions

13

that occurred from i to a maximum of α, and back to i again after the reversal, M q
↑

simulates from (q, u$, 0) to a maximum of α− i, back to 0 again in (q′, u′$, 0). Then,
M q
↑ uses the machine M q′,q to test if the rest of the input can be accepted with any

counter value that can reach q′ by using words in Lc that start with q′.
Formally, M q

↑ = (1, P↑, $,Σ, δ↑, s
q
↑, F↑), where P↑ = Q ∪

⋃
s∈QQ

s,q
↓ , s

q
↑ = q, F↑ =⋃

s∈Q↓ F
s,q, where Q is disjoint from other states.

The transitions of δ↑ are created by the following algorithm:

1. For all transitions (p, y, T) ∈ δ(r, d, 1), p, r ∈ Q, d ∈ Σ, T ∈ {S,R}, y ∈
{−1, 0, 1}, create

(p, y, T) ∈ δ↑(r, d, e),

for both e = 1, and e = 0 if r ∈ Q↑,

2. Create (sr,q↓ , 0, S) ∈ δ↑(r, d, 0), for all d ∈ Σ, and for all r ∈ Q↓ if (p,−1, T) ∈
δ(r, d, 1), for some r, p ∈ Q↓,

3. Add all transitions from M s,q
↓ , s ∈ Q↓.

Indeed, M q
↑ is deterministic as those transitions created in step 1 are in M , and

M s,p
↓ is deterministic, for all s, p.

Claim 4. For all q ∈ Q↑,

{w | ∃i > 0, (q, w$, i) `∗M (qf , $, 0), qf ∈ F, qai ∈ Lc} ⊆ Lq↑.

Proof. Let q ∈ Q↑. Let w be such that there exists i > 0, qf ∈ F, qai ∈ Lc, and
(q, w$, i) `∗M (qf , $, 0). Let pj , wj , xj , 0 ≤ j ≤ m be such that p0 = q, w = w0, x0 =
i, qf = pm, λ = wm, xm = 0 and (pl, wl$, xl) `M (pl+1, wl+1$, xl+1), 0 ≤ l < m, via
transition tl+1. Assume that there exists α > 1 such that xα > i, and let α be the
smallest such number. Then, there exists

(p0, w0$, x0) `∗M (pα, wα$, xα) `∗M (pβ, wβ$, xβ) `∗M (pm, wm$, xm),

where β is smallest number bigger than α such that xβ = i. In this case, in step 1
of the algorithm, transitions t1, . . . , tα of the form (pl, yl, Tl) ∈ δ(pl−1, dl−1, 1), 0 <
l ≤ α, create transitions of the form (pl, yl, Tl) ∈ δ↑(pl−1, dl−1, 0), and thus

(p0, w0$, x0 − i = 0) `∗Mq
↑

(pα−1, wα−1$, xi−1 − i = 0) `Mq
↑

(pα, wα$, xα − i),

where xα − i > 0.
In step 1 of the algorithm, transitions tα+1, . . . , tβ of the form (pl, yl, Tl) ∈

δ(pl−1, dl−1, 1), α < l ≤ β create transitions of the form

(pl, yl, Tl) ∈ δ↑(pl−1, dl−1, 1).

14

Thus, (pα, wα$, xα − i) `∗Mq
↑

(pβ, wβ$, xβ − i = 0), since xα − i, . . . , xβ−1 − i are all

greater than 0. Then, using transitions of type 2, (pβ, wβ$, 0) `Mq
↑

(s
pβ ,q
↓ , wβ$, 0).

Then since (pβ, wβ$, xβ) `∗M (pm, $, 0), pm ∈ F , and pβ ∈ Q↓, qai ∈ Lc, then w ∈
L
pβ ,q
↓ , by Claim 2. Then

(s
pβ ,q
↓ , wβ$, 0) `∗

M
pβ,q

↓
(q′f , $, 0),

for some q′f ∈ F .
Lastly, the case where there does not exist an α > i such that xα > i (thus i

is the highest value in counter) is similar, by applying transitions of type 1 until
the transitions before the first decrease, then a transitions of type 2, followed by a
sequence of type 3 as above.

Claim 5. For all q ∈ Q↑,

Lq↑ ⊆ {w | ∃i > 0, (q, w$, i) `∗M (qf , $, 0), qf ∈ F, qai ∈ Lc}.

Proof. Let w ∈ L(M q
↑). Then

(q, w$, 0) `∗Mq
↑

(q′, w′$, 0) `Mq
↑

(q′, δc(sc0, q
′), w′$, 0) `∗Mq

↑
(q′f , $, 0),

where q′f ∈ F q
′,q. Let β, pl, wl, xl, 0 ≤ l ≤ β be such that p0 = q, w0 = w, x0 =

0, q′ = pβ, w
′ = wβ, xβ = 0 such that (pl, wl$, xl) `Mq

↑
(pl+1, wl+1$, xl+1), 0 ≤ l < β.

Then w′ ∈ Lq
′,q
↓ , and hence by Claim 3, there exists i ≥ 0 such that (q′, w′$, i) `∗M

(qf , $, 0), qf ∈ F, qai ∈ Lc. Further, by the construction in step 1,

(p0, w0$, x0 + i) `M · · · `M (pβ, wβ$, xβ + i),

and since x0 = xβ = 0 and w′ = wβ and q′ = pβ, then (q, w$, i) `∗M (qf , $, 0) and
qai ∈ Lc and the claim follows.

Hence, Equation 2 holds.
It is also known that DCM is closed under union (by increasing the number of

counters). Therefore, the finite union is in DCM.

From this, we obtain the following general result.

Theorem 3. Let L ∈ DCM(1, 1), L1, L2 ∈ NPCM. Then both (L−11 L)L−12 and
L−11 (LL−12) are a finite union of languages in DCM(1, 1). Furthermore, both lan-
guages are in DCM.

15

Proof. It will first be shown that (L−11 L)L−12 is the finite union of languages in
DCM(1, 1). Indeed, L−11 L is the finite union of languages in DCM(1, 1), 1 ≤ i ≤ k by

Lemma 1, and so L−11 L =
⋃k
i=1Xi for Xi ∈ DCM(1, 1). Further, for each i, XiL

−1
2

is the finite union of DCM(1, 1) languages by Lemma 2.
It remains to show that

⋃k
i=1XiL

−1
2 = (L−11 L)L−12 . If w ∈

⋃k
i=1XiL

−1
2 , then

w ∈ XiL
−1
2 for some i, 1 ≤ i ≤ k, then wy ∈ Xi, y ∈ L2. Then wy ∈ L−11 L, and

w ∈ (L−11 L)L−12 . Conversely, if w ∈ (L−11 L)L−12 , then wy ∈ L−11 L for some y ∈ L2,
and so wy ∈ Xi for some i, 1 ≤ i ≤ k, and thus w ∈ XiL

−1
2 .

For L−11 (LL−12), it is true that LL−12 ∈ DCM(1, 1) by Lemma 2. Then L−11 (LL−12)
is the finite union of DCM(1, 1) by Lemma 1.

It is also known that DCM is closed under union (by increasing the number of
counters). Therefore, both finite unions are in DCM.

And, as with Corollary 3, this can be generalized to any language families that
are reversal-bounded counter augmentable.

Corollary 5. Let L ∈ DCM(1, 1), L1 ∈ F1, L2 ∈ F2, where F1 and F2 are any fam-
ilies of languages that are reversal-bounded counter augmentable. Then (L−11 L)L−12

and L−11 (LL−12) are both a finite union of languages in DCM(1, 1). Furthermore,
both languages are in DCM.

As a special case, when using the fixed regular language Σ∗ for the right and left
quotient, we obtain:

Corollary 6. Let L ∈ DCM(1, 1). Then suff(L) and inf(L) are both DCM languages.

It is however necessary that the number of counters increase to accept suff(L)
and inf(L), for some L ∈ DCM(1, 1). The result also holds for the outfix operator.

Proposition 4. There exists L ∈ DCM(1, 1) where all of suff(L), inf(L), outf(L)
are not in DCM(1, 1).

Proof. Assume otherwise. Let L = {anbncn | n ≥ 0}, L1 = {anbnck | n, k ≥
0}, L2 = {anbmcm | n,m ≥ 0}, L3 = {anbmck | n,m, k ≥ 0}. Let Σ = {a, b, c} and
Γ = {d, e, f}.

It is well-known that L is not a context-free language, and therefore is not a
DCM(1, 1) language. However, each of L1, L2, L3 are DCM(1, 1) languages, and
therefore, so are L1, L2, L3 and so is L′ = d#1L1#2 ∪ e#1L2#2 ∪ f#1L3#2 (all
complements over Σ∗). It can also be seen that L = L1 ∪ L2 ∪ L3.

But suff(L′) ∩ #1Σ
∗#2 = inf(L′) ∩ #1Σ

∗#2 = outf(L′) ∩ #1Σ
∗#2 = #1L#2,

and since DCM(1, 1) is closed under intersection with regular languages and left and
right quotient by a symbol, and complement, this implies L is a DCM(1, 1) language,
a contradiction.

16

3.4 Non-Closure of Suffix, Infix and Outfix with Multiple Counters
or Reversals

In [3], a technique was used to show languages are not in DCM and 2DCM(1) si-
multaneously. The technique uses undecidable properties to show non-closure. As
2DCM(1) machines have two-way input and a reversal-bounded counter, it is dif-
ficult to derive “pumping” lemmas for these languages. Furthermore, unlike DCM
and NCM machines, 2DCM(1) machines can accept non-semilinear languages. For
example, L1 = {aibk | i, k ≥ 2, i divides k} can be accepted by a 2DCM(1) whose
counter makes only one reversal. However, L2 = {aibjck | i, j, k ≥ 2, k = ij} can-
not be accepted by a 2DCM(1) [9]. This technique from [3] works as follows. The
proof uses the fact that there is a recursively enumerable but not recursive language
Lre ⊆ N0 that is accepted by a deterministic 2-counter machine [12]. Thus, the ma-
chine when started with n ∈ N0 in the first counter and zero in the second counter,
eventually halts (i.e., accepts n ∈ Lre).

Examining the constructions in [12] of the 2-counter machine demonstrates that
the counters behave in a regular pattern. Initially one counter has some value d1
and the other counter is zero. Then, the machine’s operation can be divided into
phases, where each phase starts with one of the counters equal to some positive
integer di and the other counter equals 0. During the phase, the positive counter
decreases, while the other counter increases. The phase ends with the first counter
containing 0 and the other counter containing di+1. In the next phase, the modes of
the counters are interchanged. Thus, a sequence of configurations where the phases
are changing will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 = qs (the initial state), and d1, d2, d3, . . . are
positive integers. The second component of the configuration refers to the value of
the first counter, and the third component refers to the value of the second. Also,
notice that in going from state qi in phase i to state qi+1 in phase i+1, the 2-counter
machine goes through intermediate states.

For each i, there are 5 cases for the value of di+1 in terms of di: di+1 =
di, 2di, 3di, di/2, di/3 (the division operation only occurs if the number is divisible
by 2 or 3, respectively). The case applied is determined by qi. Hence, a function
h can be defined such that if qi is the state at the start of phase i, di+1 = h(qi)di,
where h(qi) is one of 1, 2, 3, 1/2, 1/3.

Let T be a 2-counter machine accepting a recursively enumerable language that
is not recursive. Assume that q1 = qs is the initial state, which is never re-entered,
and if T halts, it does so in a unique state qh. Let Q be the states of T , and 1 be a
new symbol.

In what follows, α is any sequence of the form #I1#I2# · · ·#I2m# (thus we
assume that the length is even), where for each i, 1 ≤ i ≤ 2m, Ii = q1k for some
q ∈ Q and k ≥ 1, represents a possible configuration of T at the beginning of phase

17

i, where q is the state and k is the value of the first counter (resp., the second) if i
is odd (resp., even).

Define L0 to be the set of all strings α such that

1. α = #I1#I2# · · ·#I2m#;

2. m ≥ 1;

3. for 1 ≤ j ≤ 2m− 1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij , then after
one phase, T is in configuration Ij+1 (i.e., Ij+1 is a valid successor of Ij);

Then, the following was shown in [3].

Lemma 2. L0 is not in DCM ∪ 2DCM(1).

We will use this language exactly to show taking either the suffix, infix or outfix
of a language in DCM(1, 3),DCM(2, 1) or 2DCM(1) can produce languages that are
in neither DCM nor 2DCM(1).

Theorem 4. There exists a language L in all of L ∈ DCM(1, 3), L ∈ DCM(2, 1), and
L ∈ 2DCM(1) (which makes no turn on the input and 3 reversals on the counter)
such that suff(L) 6∈ DCM ∪ 2DCM(1), inf(L) 6∈ DCM ∪ 2DCM(1), and outf(L) 6∈
DCM ∪ 2DCM(1).

Proof. Let L0 be the language defined above, which we know is not in DCM ∪
2DCM(1). Let a, b be new symbols. Clearly, bL0b is also not in DCM ∪ 2DCM(1).
Let L = {aib#I1#I2# · · ·#I2m#b | I1, . . . , I2m are configurations of the 2-counter
machine T , i ≤ 2m−1, Ii+1 is not a valid successor of Ii}. Clearly L is in DCM(1, 3),
in DCM(2, 1), and in 2DCM(1) (which makes no turn on the input and 3 reversals
on the counter).

Let L1 be suff(L). Suppose L1 is in DCM (resp., 2DCM(1)). Then L2 = L1 is
also in DCM (resp., 2DCM(1)).

Let R = {b#I1#I2 · · ·#I2m#b | I1, . . . , I2m are configurations of T}. Then since
R is regular, L3 = L2∩R is in DCM (resp, 2DCM(1)). We get a contradiction, since
L3 = bL0b.

Non-closure under infix and outfix can be shown similarly.

This implies non-closure under left-quotient with regular languages, and this
result also extends to the embedding operation, a generalization of outfix.

Corollary 7. There exists L ∈ DCM(1, 3), L ∈ DCM(2, 1), L ∈ 2DCM(1) (which
makes no turn on the input and 3 reversals on the counter), and R ∈ REG such that
R−1L 6∈ DCM ∪ 2DCM(1).

Corollary 8. Let m > 0. Then there exists L ∈ DCM(1, 3), L ∈ DCM(2, 1), L ∈
2DCM(1) (which makes no turn on the input and 3 reversals on the counter) such
that emb(L,m) 6∈ DCM ∪ 2DCM(1).

18

The results of Theorem 4 and Corollary 7 are optimal for suffix and infix as
these operations applied to DCM(1, 1) are always in DCM by Corollary 6 (and since
DCM(1, 2) = DCM(1, 1)). But whether the outfix and embedding operations applied
to DCM(1, 1) languages is always in DCM is an open question.

3.5 Closure for Bounded Languages

In this subsection, deletion operations applied to bounded and letter-bounded lan-
guages will be examined.

The following is a required corollary to Theorem 2.

Corollary 9. Let L ⊆ #a∗# be accepted by a 2NCM. Then L is regular.

Proof. Let M be a 2NCM accepting L. We can construct another 2NCM M ′ which
when given an, simulates M on #an#. Indeed, M ′ simulates the moves of M
on the left # (resp., right #), when M ′ on on the left (resp., right) end marker.
From Theorem 2, L(M ′) = {an | #an# ∈ L} is regular. It follows that L is also
regular.

Theorem 5. If L is a bounded language accepted by either a finite-crossing 2NCM,
an NPCM or a finite-crossing 2DPCM, then all of pref(L), suff(L), inf(L), outf(L)
can be accepted by a DCM.

Proof. By Theorem 1, L can always be converted to an NCM. Further, one can
construct NCM’s accepting pref(L), suff(L), inf(L), outf(L) since one-way NCM is
closed under prefix, suffix, infix and outfix. In addition, it is known that applying
these operations on bounded languages produce only bounded languages. Thus, by
another application of Theorem 1, the result can then be converted to a DCM.

The “finite-crossing” requirement in the theorem above is necessary:

Proposition 5. There exists a letter-bounded language L accepted by a 2DCM(1)
machine which makes only one reversal on the counter such that suff(L) (resp.,
inf(L), outf(L),pref(L)) is not in DCM ∪ 2DCM(1).

Proof. Let L = {ai#bj# | i, j ≥ 2, j is divisible by i}. Clearly, L can be accepted
by a 2DCM(1) which makes only one reversal on the counter. If suff(L) is in DCM∪
2DCM(1), then L′ = suff(L)∩#b+# would be in DCM∪ 2DCM(1). From Corollary
9, we get a contradiction, since L′ is not semilinear. The other cases are shown
similarly.

Open: If L is a bounded language accepted by a DCM and R is a non-bounded
regular set, are RL, LR in DCM (note that a DCM has a right end-marker)?

19

References

[1] Brenda S. Baker and Ronald V. Book. Reversal-bounded multipushdown ma-
chines. Journal of Computer and System Sciences, 8(3):315–332, 1974.

[2] Ehsan Chiniforooshan, Mark Daley, Oscar H. Ibarra, Lila Kari, and Shinno-
suke Seki. One-reversal counter machines and multihead automata: Revisited.
Theoretical Computer Science, 454:81–87, 2012.

[3] J. Eremondi, O.H. Ibarra, and I. McQuillan. Insertion operations on determin-
istic reversal-bounded counter machines, 2015. accepted to Proceedings of 9th
International Conference on Language and Automata Theory and Applications
(LATA).

[4] Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for
finite-turn multicounter machines. Journal of Computer and System Sciences,
22(2):220–229, 1981.

[5] Tero Harju, Oscar Ibarra, Juhani Karhumäki, and Arto Salomaa. Some decision
problems concerning semilinearity and commutation. Journal of Computer and
System Sciences, 65(2):278–294, 2002.

[6] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley
series in computer science. Addison-Wesley Pub. Co., 1978.

[7] J E Hopcroft and J D Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

[8] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1):116–133, 1978.

[9] Oscar H. Ibarra, Tao Jiang, Nicholas Tran, and Hui Wang. New decidability
results concerning two-way counter machines. SIAM J. Comput., 23(1):123–
137, 1995.

[10] Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilin-
ear languages by one-way and two-way deterministic machines. International
Journal of Foundations of Computer Science, 23(6):1291–1306, 2012.

[11] H Jürgensen, L Kari, and G Thierrin. Morphisms preserving densities. Inter-
national Journal of Computer Mathematics, 78:165–189, 2001.

[12] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in theory of Turing Machines. Annals of Mathematics, 74(3):pp. 437–455,
1961.

[13] K. Vijayashanker. A Study of Tree Adjoining Grammars. PhD thesis, Philadel-
phia, PA, USA, 1987.

20

