
The University of Saskatchewan
Department of Computer Science

Technical Report #2016-01

On Families of Full Trios Containing Counter Machine Languages ∗

Oscar H. Ibarra
Department of Computer Science,

University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Ian McQuillan
Department of Computer Science, University of Saskatchewan

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract

We look at NFAs augmented with multiple reversal-bounded counters where, during an ac-
cepting computation, the behavior of the counters during increasing and decreasing phases is
specified by some fixed “pattern”. We consider families of languages defined by various pattern
behaviors and show that some correspond to the smallest full trios containing restricted classes
of bounded semilinear languages. For example, one such family is exactly the smallest full trio
containing all the bounded semilinear languages. Another family is the smallest full trio con-
taining all the bounded context-free languages. Still another is the smallest full trio containing
all bounded languages whose Parikh map is a semilinear set where all periodic vectors have at
most two non-zero coordinates. We also examine relationships between the families.

1 Introduction

A language L is bounded if L ⊆ w∗1 · · ·w∗k, for non-empty words w1, . . . , wk. Further, L is bounded
semilinear if there exists a semilinear set Q ⊆ Nk0 such that L = {w | w = wi11 · · ·w

ik
k , (i1, . . . , ik) ∈

Q} [10]. It is known that every bounded semilinear language can be accepted by a one-way non-
deterministic reversal-bounded multicounter machine (NCM, [9]). Also, every bounded language
accepted by an NCM can be accepted by a deterministic NCM (DCM, [10]). Thus, every bounded
semilinear language can be accepted by a DCM.

Recently, several families of languages that are both bounded and semilinear have been defined
and studied [7]. The notion of bounded semilinear above is referred to as bounded Ginsburg semi-
linear to distinguish from other types. Two other interesting types are: a language L ⊆ w∗1 · · ·w∗k
is bounded Parikh semilinear if L = {w | w = wi11 · · ·w

ik
k , the Parikh map of w is in Q}, where Q

is a semilinear set with |Σ| components; L is bounded general semilinear if L is both bounded and
semilinear. It was shown that the family of bounded Parikh semilinear languages is a strict subset
of the family of bounded Ginsburg semilinear languages, which is a strict subset of the family of
bounded general semilinear languages. However, it was shown that in any language family L that
is a semilinear trio (the family only contains semilinear languages, and is closed under λ-free homo-
morphism, inverse homomorphism, and intersection with regular languages), all bounded languages
within L are bounded Ginsburg semilinear, and are therefore in NCM and even DCM, enabling
∗The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research of I. McQuillan

was supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 327486-2010.

1

many decidability properties for bounded languages in L. Furthermore, a criteria was developed
for testing when the bounded languages within L and DCM coincide; this occurs if and only if L
contains all distinct-letter-bounded Ginsburg semilinear languages. This was shown to be the case
for finite-index ET0L languages [12], and therefore the bounded languages within these families are
the same.

In this paper, we attempt to restrict the operation of NCM in order to precisely characterize types
of languages that are bounded and semilinear. Indeed, restricting the behavior of NCM can naturally
capture several interesting families of bounded languages. This is accomplished through the use
of so-called instruction languages. Informally, a k-counter machine M is said to satisfy instruction
language I ⊆ {C1, D1, . . . , Ck, Dk}∗ if, for every accepting computation ofM , replacing each increase
of counter i with Ci, and decrease of counter i with Di, gives a sequence in I. Then, for a family
of instruction languages I, NCM(I) is the family of NCM machines satisfying some I ∈ I. Several
interesting instruction language families are defined and studied. For example, if one considers
BDiLBd, the family of instruction languages consisting of bounded increasing instructions followed
by letter-bounded decreasing instructions, then we show that the family of languages accepted by
NCM(BDiLBd) is the smallest full trio containing all bounded Ginsburg semilinear languages (and
therefore, the smallest full trio containing all bounded languages from any semilinear trio). It is
also possible to characterize exactly the bounded context-free languages with a subfamily of counter
languages. Several other families are also defined and compared. For each, characterizations are
given with a single language for each number of counters such that the families are the smallest
full trios containing the languages. Using these characterizations, we are able to give even simpler
criteria than those in [7] for testing if the bounded languages within a semilinear full trio coincide
with those in DCM. We then give applications to several interesting families, such as the multi-
pushdown languages [1], and restricted types of Turing machines, and it is shown that the bounded
languages within each are the same as those accepted by DCM. In a future paper, we will examine
closure and decision properties of the models.

2 Preliminaries

In this paper, we assume knowledge of automata and formal languages, and refer to [6] for an
introduction. Let Σ be a finite alphabet. Then, Σ∗ (resp. Σ+) is the set of all words (non-empty
words) over Σ. A word is any w ∈ Σ∗, and a language is any L ⊆ Σ∗. The empty word is denoted
by λ. The complement of L with respect to Σ, L = Σ∗ − L. The shuffle of words u, v ∈ Σ∗,
u v = {u1v1 · · ·unvn | u = u1 · · ·un, v = v1 · · · vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n}, extended to languages
L1 L2 = {u v | u ∈ L1, v ∈ L2}.

A language L ⊆ Σ∗ is bounded if there exists w1, . . . , wk ∈ Σ+ such that L ⊆ w∗1 · · ·w∗k, and is
letter-bounded if w1, . . . , wk are letters. Furthermore, L is distinct-letter-bounded if each letter is
distinct.

Let N be the set of positive integers and N0 = N ∪ {0}. A linear set is a set Q ⊆ Nm0 if there
exists ~v0, ~v1, . . . , ~vn such that Q = {~v0 + i1 ~v1 + · · ·+ in ~vn | i1, . . . , in ∈ N0}. The vector ~v0 is called
the constant, and ~v1, . . . , ~vn are the periods. A semilinear set is a finite union of linear sets. Given
an alphabet Σ = {a1, . . . , am}, the length of a word w ∈ Σ∗ is denoted by |w|. And, given a ∈ Σ,
|w|a is the number of a’s in w. Then, the Parikh map of w is ψ(w) = (|w|a1 , . . . , |w|am), and the
Parikh map of a language L, ψ(L) = {ψ(w) | w ∈ L}. Also, alph(w) = {a ∈ Σ | |w|a > 0}. We
refer to Section 1 for the definitions of bounded Ginsburg semilinear and bounded Parikh semilinear
languages.

For a class of machines M, we let L(M) be the family of languages accepted by machines in

2

M. Let L(CFL) be the family of context-free languages. A trio (resp. full trio) is any family of
languages closed under λ-free homomorphism (resp. homomorphism), inverse homomorphism, and
intersection with regular languages. A full semi-AFL is a full trio closed under union [2]. Given a
language family L, Lbd are the bounded languages in L.

A one-way k-counter machine [9] is a tuple M = (k,Q,Σ,�, δ, q0, F), where Q,Σ,�, q0, F are
respectively the finite set of states, input alphabet, right input end-marker (unnecessary for non-
deterministic machines and will largely not be used in this paper), initial state, and final states.
The transition relation is a relation from Q × (Σ ∪ {�, λ}) × {0, 1}k to Q × {−1, 0,+1}k, such
that (p, d1, . . . , dk) ∈ δ(q, a, c1, . . . , ck) and ci = 0 implies di ≥ 0 to prevent negative values
in the counters. Also, M is deterministic if |δ(q, a, c1, . . . , ck) ∪ δ(q, λ, c1, . . . , ck)| ≤ 1, for all
q ∈ Q, a ∈ Σ ∪ {�}, (c1, . . . , ck) ∈ {0, 1}k. A configuration of M is a tuple (q, w, i1, . . . ik) where q
is the current state, w ∈ Σ∗ � ∪{λ} is the remaining input, and i1, . . . , ik are the contents of the
counters. The derivation relation `M is defined between configurations, where (q, aw, i1, . . . , ik) `M
(p, w, i1 + d1, . . . , ik + dk) if there is a transition (p, d1, . . . , dk) ∈ δ(q, a, c1, . . . , ck), where cj is 1 if
ij > 0, and cj = 0 otherwise, if ij = 0. Let `∗M the reflexive, transitive closure of `M . M accepts
a word w ∈ Σ if (q0, w�, 0, . . . , 0) `∗M (qf , λ, i1, . . . , ik), qf ∈ F, i1, . . . , ik ∈ N0, and the language of
all words accepted by M is denoted by L(M).

Further, M is l-reversal-bounded if, in every accepting computation, the counter alternates
between increasing and decreasing at most l times. We will often associate labels from an alphabet
T to the transitions of M bijectively, and then write `tM to represent the changing of configurations
via transition t. This is generalized to derivations over words in T ∗.

Then NCM(k, l) is the class of one-way l-reversal-bounded k-counter machines, and NCM is all
reversal-bounded multicounter languages, and replacing N with D gives the deterministic variant.

3 Instruction NCM Machines

It is known that the bounded languages in L(NCM) are a “limit” to the bounded languages in
semilinear trios [7]. We start this section by considering subclasses of L(NCM) in order to determine
more restricted methods of computation that can also form such a limit. We are able to do this
optimally. Furthermore, characterizations of the restricted families are also possible, and lead to
even simpler methods to determine the bounded languages within semilinear full trios.

First, we define restrictions of NCM depending on the sequences of counter instructions that
occur. These restrictions will only be defined on NCMs that we will call well-formed. A k-counter
NCM M is well-formed if M ∈ NCM(k, 1) whereby all transitions change at most one counter
value per transition, and all counters decrease to zero before accepting. Indeed, an NCM (or DCM)
can be assumed without loss of generality to be 1-reversal-bounded by increasing the number of
counters [9]. It is also clear that all counters can be forced to change one counter value at a time,
and decrease to zero without loss of generality. Thus, every language in L(NCM) can be accepted
by a well-formed NCM. Also, since we will only be considering nondeterministic machines, we
will not include �. Let ∆ be an infinite set of new symbols, ∆ = {C1, D1, C2, D2, . . .}, and for
k ≥ 1,∆k = {C1, D1, . . . , Ck, Dk},∆(k,c) = {C1, . . . , Ck},∆(k,d) = {D1, . . . , Dk}.

Given a well-formed k-counter NCM machine M , let T be a set of labels in bijective correspon-
dence with transitions of M . Then, define a homomorphism h∆ from T ∗ to ∆k that maps every
transition label associated with a transition that increases counter i to Ci, maps every label associ-
ated with a transition that decreases counter i to Di, and maps all labels associated with transitions
that do not change any counter to λ. Also, define a homomorphism hΣ that maps every transition
that reads a letter a ∈ Σ to a, and erases all others. Then, we say that M satisfies instruction

3

language I ⊆ ∆∗k if every sequence of transitions α ∈ T ∗ corresponding to an accepting computation
— that is (q0, w, 0, . . . , 0) `αM (q, λ, c1, . . . , ck), q a final state — has h∆(α) ∈ I. This means that M
satisfies instruction language I if I describes all possible counter increase and decrease instructions
that can be performed in an accepting computation by M , with Ci occurring for every increase of
counter i by one, and Di occurring for every decrease of counter i by one.

Given a family of languages I with each I ∈ I over ∆k, for some k ≥ 1, let NCM(k, I) be the
subset of well-formed k-counter NCM machines that satisfy I for some I ∈ I with I ⊆ ∆∗k; these are
called the k-counter I-instruction machines. The family of languages they accept, L(NCM(k, I)),
are called the k-counter I-instruction languages. Furthermore, NCM(I) =

⋃
k≥1 NCM(k, I) (resp.

L(NCM(I) =
⋃
k≥1 L(NCM(k, I)) are the I-instruction machines (and languages). We will only

consider instruction languages I where, for all w ∈ I, every occurrence of Ci occurs before any
occurrence of Di, for all i, 1 ≤ i ≤ k, which is enough since every well-formed machine is 1-reversal-
bounded.

First, we will study properties of these restrictions before examining some specific types.

Proposition 1. Given any family of languages I over ∆k, L(NCM(k, I)) is a full trio. Furthermore,
given any family of languages I, where each I ∈ I is over some ∆k, k ≥ 1, L(NCM(I)) is a full
trio.

Proof. The standard proofs for closure under homomorphism and inverse homomorphism apply. The
proof for intersection with regular languages also works, as restricting the words of the language
can restrict the possible sequences of instructions appearing in accepting computations, but the
resulting sequences of instructions will therefore be a subset of the instruction language of the
original machine.

Next, we require another definition. Given a language I over ∆k, let

Ieq = {w | w ∈ I, |w|Ci = |w|Di , every Ci occurs before any Di, for 1 ≤ i ≤ k}.

Further, given a language family I over ∆ where each I ∈ I is over ∆k, for some k ≥ 1, then Ieq is
the family of all languages Ieq, where I ∈ I.

Proposition 2. Let I be a family of languages where each I ∈ I is a subset of ∆∗k, for some k ≥ 1,
and I is a subfamily of the regular languages. Then L(NCM(I)) is the smallest full trio containing
Ieq.

Proof. First, it follows from Proposition 1 that L(NCM(I)) is a full trio.
To see that Ieq ⊆ L(NCM(I)), let I ∈ I and let M be a DFA accepting I ⊆ ∆∗k. Then we

will create a well-formed k-counter machine M ′ that accepts Ieq as follows: M ′ simulates M while
adding to counter i for every Ci read, and subtracting from counter i for every Di read (never
adding after subtracting), accepting if M does, and if all counters end at zero. Then M ′ accepts
all words of I with an equal number of Ci’s as Di’s, for each i where all Ci’s occur before any Di.
This is exactly Ieq. Also, M ′ satisfies Ieq and I. Hence Ieq ⊆ L(NCM(I)).

Next we will verify that L(NCM(I)) is the smallest full trio containing Ieq. For this, let M =
(k,Q,Σ,�, δ, q0, F) ∈ NCM(I) with k counters that satisfies instruction language I ∈ I.

Let g be a homomorphism from Γ∗ to ∆∗k (Γ defined below) that maps (q, a,Xi, p) to Xi, where
Xi ∈ ∆k, p, q ∈ Q, a ∈ Σ∪ {λ}, and there is a transition from q to p on a that increases counter i if
Xi = Ci, decreases counter i ifXi = Di; similarly g maps (q, a, 0, p) to λ, where p, q ∈ Q, a ∈ Σ∪{λ},
where there is a transition from q to p on a that does not change any counter. Both of these types
of symbols can be created from transitions defined on any counter value (0 or positive). We say that

4

symbol (q, a,Xi, p), Xi ∈ ∆k ∪ {0} is defined on counter i positive if it was created above from a
transition defined on counter i being positive. We say that the symbol is defined on counter i being
zero if it was created from a transition on counter i being zero (such a symbol could be defined on
counter i being both 0 and positive).

Then, create a regular language R ⊆ Γ∗, R = {y0y1 · · · yn | yi = (pi, ai+1, Xi+1, pi+1), p0 =
q0, pn+1 ∈ F, for each i, 1 ≤ i ≤ k, if j is the smallest such that Xj = Ci and if l is the largest such
that Xj = Di, then y0, . . . , yj are defined on counter i zero, yj+1, . . . , yl are defined on counter i
positive, and yl+1, . . . , yn are defined on counter i zero}.

Let h be a homomorphism from Γ∗ to Σ∗ such that h projects onto the second component. Then
it is clear that L(M) = h(g−1(Ieq) ∩R) since g−1(Ieq) ∩R consists of all words of R with an equal
number of Ci’s as Di’s, for each i, 1 ≤ i ≤ k.

We will consider several instruction language families that define interesting subfamilies of
L(NCM).

Definition 1. We define instruction language families:

• LBiLBd = {I = Y Z | k ≥ 1, Y = a∗1 · · · a∗m, ai ∈ ∆(k,c), 1 ≤ i ≤ m,Z = b∗1 · · · b∗n, bj ∈
∆(k,d), 1 ≤ j ≤ n}, (letter-bounded-increasing/letter-bounded-decreasing instructions),

• StLBid = {I | k ≥ 1, I = a∗1 · · · a∗m, ai ∈ ∆k, 1 ≤ i ≤ m, there is no 1 ≤ l < l′ < j < j′ ≤
m such that al = Cr, al′ = Cs, aj = Dr, aj′ = Ds, r 6= s},
(stratified-letter-bounded instructions),

• LBid = {I | k ≥ 1, I = a∗1 · · · a∗m, ai ∈ ∆k, 1 ≤ i ≤ m}, (letter-bounded instructions),

• BDiLBd = {I = Y Z | k ≥ 1, Y = w∗1 · · ·w∗m, wi ∈ ∆∗(k,c), 1 ≤ i ≤ m,Z = a∗1 · · · a∗n, aj ∈
∆(k,d), 1 ≤ j ≤ n}, (bounded-increasing/letter-bounded-decreasing instructions),

• LBiBDd = {I = Y Z | k ≥ 1, Y = a∗1 · · · a∗m, ai ∈ ∆(k,c), 1 ≤ i ≤ m,Z = w∗1 · · ·w∗n, wj ∈
∆∗(k,d), 1 ≤ j ≤ n}, (letter-bounded-increasing/bounded-decreasing instructions),

• BDid = {I | k ≥ 1, I = w∗1 · · ·w∗m, wi ∈ ∆∗k, 1 ≤ i ≤ m}, (bounded instructions),

• LBd = {I | k ≥ 1, I = Y Z, Y = ∆∗(k,c), Z = a∗1 · · · a∗n, aj ∈ ∆(k,d), 1 ≤ j ≤ n},
(letter-bounded-decreasing instructions),

• LBi = {I | k ≥ 1, I = Y Z, Y = a∗1 · · · a∗m, ai ∈ ∆(k,c), 1 ≤ i ≤ m,Z = ∆∗(k,d), },
(letter-bounded increasing instructions),

• LB∪ = LBd ∪ LBi, (either letter-bounded-decreasing or letter-bounded-increasing instructions),

• ALL = {I | k ≥ 1, I = ∆∗k}.

For example, every NCM machine M where the counters are increased and decreased according
to some bounded language, then there is an instruction language I such that M satisfies I, and
I ∈ BDid, and L(M) ∈ L(NCM(BDid)). Even though not all instructions in I are necessarily used,
the instructions used will be a subset of I since the instructions used are a subset of a bounded
language. It is also clear that L(NCM) = L(NCM(ALL)).

Example 1. Let L = {uaivbjwaixbjy | i, j > 0, u, v, w, x, y ∈ {0, 1}∗}. We can easily construct a
well-formed 2-counter machineM to accept L where, on input uaivbjwai′xbj′y, M increases counter
1 i times, then increases counter 2 j times, then decreases counter 1 verifying that i = i′, then
decreases counter 2 verifying that j = j′. This machine satisfies instruction language C∗1C

∗
2D
∗
1D
∗
2,

which is a subset of some instruction language in every family in Definition 1 except for StLBid,
and therefore L ∈ L(NCM(I)) for each of these families I.

5

Example 2. Let L = {a2+i+2jb3+2i+5j | i, j ≥ 0}. Note that the Parikh map of L is a linear set Q =
{(2, 3)+(1, 2)i+(2, 5)j | i, j ≥ 0}. L can be accepted by a well-formed 4-counter NCM M as follows,
when given input ambn: first, on λ-moves, M increments counters 1 and 2 a nondeterministically
guessed number of times i ≥ 0, then on λ-moves, increments counters 3 and 4 a nondeterministically
guessed number of times j ≥ 0. Then, M verifies that m = 2 + i + 2j by reading 2 a’s and using
(i.e., decrementing) counter 1 to zero and then 3 to zero to check that the remaining number of a’s
is equal to the value of counter 1 plus 2 times the value of counter 3. Finally, M checks and accepts
if n = 3 + 2i + 5j by first reading 3 b’s and decrementing counter 2 and then 4. The instructions
of M as constructed are a subset of I = (C1C2)∗(C3C4)∗D∗1D

∗
3D
∗
2D
∗
4. This is a subset of some

language in each of BDiLBd,BDid, LBd but not the other families, and therefore M is in each of
NCM(BDiLBd),NCM(BDid),NCM(LBd). Even thoughM is not in the other classes of machines such
as NCM(LBi), it is possible for L(M) to be in L(NCM(LBi)) (using some other machine that accepts
the same language). Indeed, we will see that L(M) is also in L(NCM(LBiBDd)) and L(NCM(LBi)).

Example 3. Let L1 = {w#aibj | |w|a = i, |w|b = j}. We construct M1 that reads w, and adds
to the first counter for every a read, and adds to the second counter for every b read. Then, after
the # symbol, M1 subtracts from counter 1 for every a read, then when reaching a b, it switches
to decreasing the second counter for every b read. Therefore, it satisfies language {C1, C2}∗D∗1D∗2
which is indeed a subset of {C1, C2}∗ D∗1D

∗
2 ∈ LBd.

Now let L2 = LR1 . We conjecture that L2 is not in L(NCM(LBd)), but we can construct a machine
M2 ∈ NCM(LBi) to accept L2. (M2, when given bjai#w, stores i and j in two counters and then
checks by decrementing the counters that |w|a = i and |w|b = j.) Similarly, we conjecture that L1

is not in L(NCM(LBi)). Obviously, L1 and L2 are both in L(NCM(LB∪)).

Example 4. Let L = {w | w ∈ {a, b}+, |w|a = |w|b > 0}. L can be accepted by an NCM which
uses two counters that increments counter 1 (resp. counter 2) whenever it sees an a (resp., b).
Then it decrements counter 1 and counter 2 simultaneously and accepts if they reach zero at the
same time. This counter usage does not have a pattern in any of the restrictions above. It is quite
unlikely that L(M) ∈ L(NCM(I)) for any of the families in the definition above except the full
L(NCM(ALL)) = L(NCM).

Every family I in Definition 1 is a subfamily of the regular languages. Therefore, by Proposition
2, the following can be shown by proving closure under union:

Proposition 3. Let I be any family of instruction languages from Definition 1. Then L(NCM(I))
is the smallest full trio (and full semi-AFL) containing Ieq.

Proof. It suffices to show closure under union for each family. For LBiLBd, given two machines
M1,M2 with k1, k2 counters respectively, we can build a k1 + k2 counter machine M where M adds
to counters according to M1 using the first k1 counters, then decreasing according to M1, or the
same with M2 on the remaining counters. It is clear that this gives an instruction language that
is a subset of the increasing pattern of M1 followed by the increasing pattern of M2, followed by
the decreasing pattern of M2, then M1. This is letter-bounded insertion followed by letter-bounded
deletion behavior. The same construction works in all other cases.

As a corollary, if we consider the instructions languages of ALL (thus, the instructions are totally
arbitrary), and for i ≥ 1, let Li = {Cni Dn

i | n ≥ 0}, then ALLeq = {I | I = L1 L2 · · · Lk, k ≥
1}. Hence, L(NCM) can be characterized as the smallest full trio containing ALLeq, by Proposition
2. Or, it could be stated as follows (this is essentially already known, and follows from work in [4]
and [5]).

6

Corollary 1. [4, 5] L(NCM) is the smallest shuffle or intersection closed full trio containing {anbn |
n ≥ 0}.

Indeed, it is known that L(NCM) is shuffle and intersection closed full trio [9]. For intersection,
this follows since each instruction language I above can be represented by taking each Li, and
a homomorphism hi that maps Ci and Di to itself, and erases all other letters of ∆k. Then let
L′i = h−1

i (Li). Then, L1 L2 · · · Lk = L′1 ∩ L′2 ∩ · · · ∩ L′k.
Since {anbn | n ≥ 0} is in L(NCM(I)) for all I in Definition 1, the following is also immediate

from Corollary 1:

Corollary 2. For all I in Definition 1, L(NCM) is the smallest shuffle or intersection closed full
trio containing L(NCM(I)).

Thus, any instruction family I whereby L(NCM(I)) (L(NCM) and {anbn | n ≥ 0} ∈
L(NCM(I)) is immediately not closed under intersection and shuffle.

Next, we will prove the following lemma regarding many of the instruction language families
showing that letter-bounded instructions can be assumed to be distinct-letter-bounded, and for
bounded languages, for each letter in ∆k in the words to only appear once.

First, we need a definition. For each of the instruction families of Definition 1, we place an
underline below each LB if the letter-bounded language is forced to have each letter occur exactly
once (and therefore be distinct-letter-bounded), and we place an underline below BD if each letter
a ∈ ∆k appears exactly once within the words w1, . . . , wm. Thus, as an example, LBiBDd is the
subset of LBiBDd equal to {I = Y Z | k ≥ 1, Y = a∗1 · · · a∗k, ai ∈ ∆(k,c), |a1 · · · ak|a = 1, for all a ∈
∆(k,c), Z = w∗1 · · ·w∗n, wi ∈ ∆∗(k,d), 1 ≤ j ≤ n, |w1w2 · · ·wn|a = 1, for all a ∈ ∆(k,d)}. Thus, each
letter appears exactly once in the words or letters. The construction uses multiple new instruction
letters and counters, in order to allow each letter to only appear once.

Lemma 1. The following are true:

L(NCM(LBiLBd)) = L(NCM(LBiLBd)), L(NCM(LBid)) = L(NCM(LBid)),
L(NCM(LBiBDd)) = L(NCM(LBiBDd)), L(NCM(LBd)) = L(NCM(LBd)),
L(NCM(BDiLBd)) = L(NCM(BDiLBd)), L(NCM(LBi)) = L(NCM(LBi)).

Proof. First, consider the case for LBid. Let M ∈ NCM(k, LBid) that satisfies I ⊆ a∗1 · · · a∗n, ai ∈
∆k, 1 ≤ i ≤ n. We will construct a machine M ′ ∈ NCM(m, LBid) (with m potentially bigger than
k) such that M ′ satisfies I ′ ⊆ b∗1 · · · b∗2m, where b1, . . . , b2m is some permutation of the symbols in
∆m, and L(M) = L(M ′).

We will proceed in steps, removing each counter x whereby at least one of Cx or Dx occurs
multiple times in a1, . . . , an, one counter at a time. Then, for each such x, we convert M with I to
Mx and Ix ⊆ d∗1 · · · d∗l , d1, . . . , dl ∈ ∆m, whereby counter x will be removed, and multiple counters
added back, and then each new symbol Cy and Dy only appears once within d1, . . . , dl, such that
Mx satisfies Ix, and L(M) = L(Mx).

Let
f(x) = i1, . . . , iα, (1)

be the sequence of all positions where aip = Cx, 1 ≤ p ≤ α, and let

g(x) = j1, . . . , jβ, (2)

be all positions where ajq = Dx, 1 ≤ q ≤ β.

7

Then in Mx, instead of using counter x, Mx replaces it with α ·β counters, which we refer to by
(p, q), 1 ≤ p ≤ α, 1 ≤ q ≤ β, and we will use C(p,q) (resp.D(p,q)) to represent the instruction character
while increasing (resp. decreasing) counter (p, q) (these can easily be replaced with consecutive
numbered characters in ∆m at the end of the procedure). Then, Mx simulates M identically for
all counters other than x. When simulating M increasing counter x in section ip, for 1 ≤ p ≤ α,
Mx instead uses and increases counter (p, 1) until some nondeterministically chosen spot where Mx

switches to and increases from counter (p, 2) (while still simulating the same section ip of M), etc.,
through counter (p, β). Then, when simulating the decrease of counter x in section jq of M , for
1 ≤ q ≤ β, instead, Mx decreases from counters (1, q) until empty, then (2, q), etc. until counter
(α, q) is empty.

The sequence of instructions ofMx in every accepting computation is therefore in d∗1 · · · d∗l , where
the sequence d1, . . . , dl is obtained from a1, . . . , an by replacing each occurrence of Cx at position
ip, 1 ≤ p ≤ α by C(p,1), . . . , C(p,β), and replacing each occurrence of Dx at position jq, 1 ≤ q ≤ β by
D(1,q), . . . , D(α,q).

Let w ∈ L(M) and consider an accepting computation on w. Then consider counter x with f(x)
as in Equation (1) and g(x) as in Equation (2). Let γip be the number of times that counter x is
increased in section ip, for 1 ≤ p ≤ α, in the accepting computation, and let θjq be the number of
times that counter x is decreased in section jq, for 1 ≤ q ≤ β in the accepting computation. Since
M is well-formed, γi1 + · · · + γiα = θj1 + · · · + θjβ . Then w can be accepted in Mx as follows: for
each section ip, for 1 ≤ p ≤ α, Mx adds to counters (p, 1), . . . , (p, β) by amounts γ(p,1), . . . , γ(p,β)

respectively (these amounts determined in the algorithm below), and for each section jq, for 1 ≤
j ≤ β, Mx subtracts from counter (1, q), . . . , (α, q) by amounts θ(1,q), . . . , θ(α,q) respectively, such
that, for each 1 ≤ p ≤ α, 1 ≤ q ≤ β, the following are true:

γip = γ(p,1) + · · ·+ γ(p,β), (3)
θjq = θ(1,q) + · · ·+ θ(α,q), (4)

γ(p,q) = θ(p,q).

If Equations (3) and (4) are true, then the simulation increases and decreases the same amount as
the computation of M and can therefore accept in Mx, but where each new counter is increased
and decreased in exactly one section.

Intuitively, the situation can be visualized as follows:

γi1 , . . . , γiα θj1 , . . . , θjβ
γ(1,1) γ(α,1) γ(1,1) · · · γ(1,β)
...

...
γ(1,β) γ(α,β) γ(α,1) · · · γ(α,β)

These amounts can be simulated in a “greedy” fashion, by the following algorithm where γ(p,q) is
the output, for all 1 ≤ p ≤ α, 1 ≤ q ≤ β:

let X(p) = γip , 1 ≤ p ≤ α; let Y (q) = θjq , 1 ≤ q ≤ β;1
let p = 1; q = 1; γ(p′,q′) = 0, ∀ p′, q′, 1 ≤ p′ ≤ α, 1 ≤ q′ ≤ β;2
while (p ≤ α and q ≤ β)3

γ(p,q) = min{X(p), Y (q)};4
X(p) = X(p)− γ(p,q);5
Y (q) = Y (q)− γ(p,q);6
if (X(p) = 0) then p+ +;7
if (Y (q) = 0) then q + +;8

8

In this algorithm, X and Y are initialized to hold γip and θjq , for each 1 ≤ p ≤ α, 1 ≤ q ≤ β.
And, as amounts from each are added to various “counters” γ(p,q) in line 4, these same amounts are
simultaneously reduced from X(p) and Y (q) in lines 5 and 6 until they are zero.

We will show by induction that each time line 3 is executed, X(p) = γip − γ(p,q−1) − · · · − γ(p,1)

and Y (q) = θjq − γ(p−1,q)− · · · − γ(1,q), and after line 6 is executed, X(p) = γip − γ(p,q)− · · · − γ(p,1)

and Y (q) = θjq − γ(p,q) − · · · − γ(1,q).
The base case, when p = 1 = q the first time line 3 is executed is true because X(1) = γi1 and

Y (1) = θj1 .
Assume it is true at some iteration when reaching line 3, with p ≤ α and q ≤ β. Then

γ(p,q) = min{γip − γ(p,q−1) − · · · − γ(p,1), θjq − γ(p−1,q) − · · · − γ(1,q)} in line 4. Assume the first is
minimal. Then, in line 4, X(p) = γ(p,q) = γip − γ(p,q−1) − · · · − γ(p,1), thus X(p) is now zero after
line 5, and indeed 0 = γip − γ(p,q) − · · · − γ(p,1), which is what we want by induction. Also, after
line 6, Y (q) = θjq − γ(p,q) − · · · − γ(1,q). Then, p is increased in line 7, and when reaching line 3,
X(p) (where p has been increased) is equal to γip which is what we want since γ(p,q−1), . . . , γ(p,1)

are all zero. Furthermore, Y (q) = θjq − γ(p−1,q)−· · ·− γ(1,q) since p was increased from line 6 of the
previous iteration. Similarly when the second case is minimal.

Since γi1 + · · · + γiα = θj1 + · · · + θjβ , and the same values are subtracted from some X(p)
and Y (q) at each step, all X(p) and Y (q) must decrease to 0, and the final iteration has to occur
when p = α, q = β, and in this case X(p) = Y (q). Further, for each p, q in the loop where
X(p) is set to 0, γip is the sum of γ(p,q), . . . , γ(p,1), and since p is increased and never decreased
again, γ(p,q+1), . . . , γ(p,β) are always 0. Thus, Equation (3) is true. Similarly when Y (q) hits zero
demonstrates that Equation (4) is true. Thus, since Mx simulates M with these values γ(p,q)

calculated nondeterministically, they can be set to the amounts calculated by this algorithm. Hence,
w ∈ L(Mx).

Let w ∈ L(Mx). Then, for counter x, the number of times counter (p, q) is increased is equal
to the number of times it is decreased. Furthermore, Mx increases counters (p, 1), . . . , (p, β) con-
secutively, for each p, 1 ≤ p ≤ α, which can be simulated in M by the construction, by increasing
counter x this many times in this section. Similarly, Mx decreases from counters (1, q), . . . , (α, q)
consecutively, for each q, 1 ≤ q ≤ β in the qth section, which can be simulated by M by the con-
struction, by decreasing counter x this many times. Furthermore, the sum that counter x increases
is the same as the amount that it decreases. Thus, w ∈ L(M).

Thus, L(M) = L(Mx). Continuing this procedure inductively for every counter y where either
Cy or Dy occurs more than once yields the result.

It is clear that the procedure works works identically for LBiLBd. For LBd, it is simpler, since
there is no restrictions on the increasing instructions, and similarly for LBi.

For LBiBDd, the process is similar but an extra step is involved. First, letters that repeat
multiple times in the letter-bounded increasing sections are eliminated one at a time according
to a similar procedure. For example, say the instruction language of M is a subset of the lan-
guage C∗1C∗2C∗1C∗3C∗2 (D1D2D1)∗(D2D3)∗(D1D3)∗. First, multiple copies of C1 say are eliminated
by introducing new counters (1, 1), (1, 2), (2, 1), (2, 2) as above, where the first coordinate is over
the number of occurrences of C1 in the increasing section, and the second coordinate is over the
number of words containing D1 in the decreasing section. Then, M is simulated by M1 using
the procedure above, where instead of increasing according to pattern C1 in the first section, M1

increases counter (1, 1), then nondeterministically switches to (1, 2). Then when simulating the
second section of C1, M1 increases counter (2, 1) then switches to (2, 2). Therefore, M1 is increas-
ing according to the pattern C∗(1,1)C

∗
(1,2)C

∗
2C
∗
(2,1)C

∗
(2,2)C

∗
3C
∗
2 . In the decreasing section, instead of

decreasing according to pattern (D1D2D1)∗(D2D3)∗(D1D3)∗, M1 decreases according to pattern

9

(D(1,1)D2D(1,1))
∗(D(2,1)D2D(2,1))

∗(D2D3)∗(D(1,2)D3)∗(D(2,2)D3)∗. Essentially, M1 is nondetermin-
istically guessing how much of counter 1 will be decreased in the various bounded sections.

Then, after re-numbering these new counters to be consecutive numbers, and repeating this
procedure for every counter where some Cx occurs multiple times, results in an instruction language
where each Ci occurs exactly once (although running this procedure amplifies the number of each
Di symbols within the bounded words).

To remove multiple copies of each letterDx that occurs multiple times within the words, consider
a machine M which satisfies I = C∗i1 · · ·C

∗
ik
w∗1 · · ·w∗m, where each element of ∆(k,c) occurs exactly

once in Ci1 , . . . , Cik , wi ∈ ∆+
(k,d), 1 ≤ i ≤ m and some Dx occurs multiple times in w1, . . . , wm. We

will eliminate multiple copies of Dx for each counter x, one at a time. Then we createMx as follows:
if Dx occurs β > 1 times (where Dx occurring multiple times within a single word counts as multiple
occurrences) within the words w1, . . . , wm, then introduce counters (x, 1), . . . , (x, β). Instead of
increasing from counter x (which only happens in one section), Mx increases from counter (x, 1),
then nondeterministically switches to (x, 2), etc. until counter (x, β). Intuitively, Mx is guessing
how much of counter x will be decreased by the pth occurrence of Dx in w1, . . . , wm. Then, when
simulating the decrease of counter x, Mx decreases according to the pattern w′1, . . . , w′m, where each
w′i is obtained from wi by replacing the pth occurrence of Dx with D(x,p). (Mx must remember the
words w′1, . . . , w′m in the finite control and keep track of which word w′i and the position within w′i it
is currently simulating in order to decrease the counters in the appropriate order.) For example, if
M is decreasing according to w1 = (D1D1)∗, then when increasing according to the pattern C∗1 , M1

uses counter (1, 1), then switches to (1, 2). Then when decreasing, Mx decreases according to the
pattern (D(1,1)D(1,2))

∗ (which it can do by remembering (D(1,1)D(1,2)) in the finite control). Thus,
during the increase,M1 is guessing how much will be consumed by the first and second occurrence of
D1 and then decreasing the appropriate counters. Hence, L(NCM(LBiBDd)) = L(NCM(LBiBDd)).

Similarly with BDiLBd.

The next goal is to separate some families of NCM languages with different instruction languages.
A (quite technical) lemma that is akin to a pumping lemma is proven, but is done entirely on

derivations rather than words, so that it can be used twice starting from the same derivation within
Proposition 5.

First, we require the following definition. Given an NCM machine M , a derivation of M ,
(p0, w0, c0,1, . . . , c0,k) `t1M · · · `

tm
M (pm, wm, cm,1, . . . , cm,k), is called collapsible, if there exists i, j, 0 ≤

i < j ≤ m such that pi = pj , wi = wj , and ci,l = cj,l, for all l, 1 ≤ l ≤ k, and non-collapsible oth-
erwise. It is clear that given any accepting computation, there is another that can be constructed
that is non-collapsible, simply by eliminating configurations from the original.

Lemma 2. Let M = (k,Q,Σ,�, δ, q0, F) be a well-formed k-counter machine in NCM(LBid) over
a distinct-letter-bounded instruction language. Consider any non-collapsible accepting derivation

(p0, w0, c0,1, . . . , c0,k) `t1M · · · `
tm
M (pm, wm, cm,1, . . . , cm,k),

where p0 = q0, c0,j = cm,j = 0, 1 ≤ j ≤ k, pm ∈ F,wm = λ. Assume that there exists x, y,
0 < x ≤ y ≤ m such that px−1 = py, and this state occurs at least |Q|+ 2 times in px−1, px, . . . , py,
and |hΣ(tx · · · ty)| > 0, h∆(tx · · · ty) ∈ C∗i ∪ D∗i , for some i, 1 ≤ i ≤ k. Then at least one of the
following are true:

1. there exists r, s with x ≤ r ≤ s ≤ y and an accepting derivation on transition sequence
t1t2 · · · tr−1(tr · · · ts)2ts+1 · · · tm, with |hΣ(tr · · · ts)| > 0,

10

2. h∆(tx · · · ty) ∈ C+
i and there exists r, s with x ≤ y ≤ r ≤ s and k1, k2 > 1 such that the

sequence
t1t2 · · · tx−1(txtx+1 · · · ty)k1ty+1 · · · tr−1(trtr+1 · · · ts)k2ts+1 · · · tm,

is an accepting computation, and h∆(tr · · · ts) ∈ D+
i ,

3. h∆(tx · · · ty) ∈ D+
i and there exists r, s with r ≤ s ≤ x ≤ y and k1, k2 > 1 such that the

sequence
t1t2 . . . tr−1(trtr+1 · · · ts)k1ts+1 · · · tx−1(txtx+1 · · · ty)k2ty+1 · · · tm,

is an accepting computation, and h∆(tr · · · ts) ∈ C+
i .

Proof. Consider a derivation as above, satisfying the stated assumptions. Let q = px−1 = py be the
state, and i the counter.

Between any two consecutive occurrences of q in the subderivation tx, . . . , ty, if counter i does
not change, then at least one input letter must get read since this derivation is non-collapsible
(and since only counter i can change in this sequence). Furthermore, repeating this sequence of
transitions between q and itself twice must be an accepting computation, since the state repeats,
the counters have not changed, and at least one extra input letter is read. In this case, 1) is true.

Otherwise, between every two consecutive occurrences of q in the subderivation tx, . . . , ty,
counter i must change (and either an input letter is read, or not). Thus, between the first and
last occurrence of q in tx, . . . , ty, at least one input letter is read (by assumption), and the counter
must change at least |Q|+ 1 times (since q occurs |Q|+ 2 times in the sequence), either increasing
if h∆(tx · · · ty) ∈ C+

i , or decreasing if h∆(tx · · · ty) ∈ D+
i .

For the first case, assume h∆(tx · · · ty) ∈ C+
i . Within tx · · · ty, counter i increases by z say, where

z > |Q|. Hence, counter i must decrease by z as well since M is well-formed. Since the instruction
language is in LBid, all the decreasing of counter i must be within the derivation where no other
counter is changed. When counter i decreases, there must also be a state p that appears twice with
at least one decrease in between this repeated state since z > |Q|. Let z′ > 0 be the amount the
counter is decreased between p and itself. That is, there must exist r ≤ s such that pr−1 = p = ps
and counter i is decreased by z′ > 0 within this part of the derivation.

Then, create a derivation from the derivation above where, during the cycle that increases
counter i by z, we increase by z + zz′ (by iterating this cycle 1 + z′ = k1 > 1 times), and during
the cycle that decreases counter i by z′, we instead decrease the counter by z′ + zz′ (by iterating
this cycle 1 + z = k2 > 1 times). This new computation must accept and 2) is true.

The case is similar if h∆(tx · · · ty) ∈ D+
i , with 3) being true.

The next result follows from Lemma 1 and this new pumping lemma.

Proposition 4. {anbncn | n > 0} /∈ L(NCM(LBid)).

Proof. Assume otherwise. Let L be the language in the statement, and let M be a well-formed
k-counter machine accepting L, over a distinct-letter-bounded instruction alphabet where each
character of ∆k occurs exactly once, I ⊆ a∗1 · · · a∗2k, which is enough by Lemma 1. Let Q be the
state set of M .

Let n = (|Q| + 1)(|Q| + 2)(2k + 1). Then, on input w = anbncn, consider a non-collapsible
accepting computation on transition sequence t1t2 · · · tm of M ; that is,

(p0, w0, c0,1, . . . , c0,k) `t1M · · · `
tm
M (pm, wm, cm,1, . . . , cm,k),

where p0 = q0, c0,j = 0 = cm,j , 1 ≤ j ≤ k, pm ∈ F,wm = λ, and w = w0.

11

Then, when reading the a’s there must exist x′, y′, 0 < x′ ≤ y′ ≤ m such that h∆(tx′ · · · ty′) ∈
{Ci, Di}∗, for some i, 1 ≤ i ≤ 2k, such that |hΣ(tx′ · · · ty′)| ≥ (|Q| + 1)(|Q| + 2) (at least (|Q| +
1)(|Q|+2) a’s are read while increasing or decreasing counter i). Then, at least this many transitions
are applied during this sequence of transitions. Then, some state q occurs at least |Q| + 2 times
in this subderivation, with at least one input letter read between the first and last occurrence of q.
Hence, Lemma 2 must apply.

If case 1 is true, this produces a word with more a’s than b’s.
If case 2 is true, then (using the variables in the Lemma 2 statement), this derivation has more

than n a’s since k1 > 1 and |hΣ(tx · · · ty)| > 0, and therefore hΣ(tr · · · ts) would need to consist of
both b’s and c’s, otherwise words would be produced with more b’s than c’s, or more c’s than b’s.
But then, there are words that are not in a∗b∗c∗, a contradiction.

If case 3 is true, then this produces a word with more a’s than b’s and c’s.

In addition, the following can be shown with Lemma 1 and two applications of the pumping
lemma.

Proposition 5. {anbncldl | n, l > 0} /∈ L(NCM(LBiLBd)).

Proof. Assume otherwise. Let L be the language in the statement, and let M be a well-formed k-
counter machine accepting L, over a distinct-letter-bounded instruction alphabet where each letter
of ∆k occurs exactly once, I ⊆ a∗1 · · · a∗2k, which is enough by Lemma 1. Let Q be the state set of
M .

Let n = (|Q| + 1)(|Q| + 2)(2k + 1). Then, on input w = anbncndn, consider a non-collapsible
accepting computation on t1t2 · · · tm of M accepting w; that is,

(p0, w0, c0,1, . . . , c0,k) `t1M · · · `
tm
M (pm, wm, cm,1, . . . , cm,k),

where p0 = q0, c0,j = 0 = cm,j , 1 ≤ j ≤ k, pm ∈ F,wm = λ, and w = w0.
Then, when reading the a’s there must exist x′, y′, 0 < x′ ≤ y′ ≤ m such that h∆(tx′ · · · ty′) ∈

{Ci, Di}∗, for some i, 1 ≤ i ≤ 2k, such that |hΣ(tx′ · · · ty′)| ≥ (|Q| + 1)(|Q| + 2) (at least (|Q| +
1)(|Q|+2) a’s are read while increasing or decreasing counter i). Then, at least this many transitions
are applied during this sequence of transitions. Then, some state q occurs at least |Q| + 2 times
in this subderivation, with at least one input letter read between the first and last occurrence of q.
Hence, Lemma 2 must apply.

If case 1 is true, this produces a word with more a’s than b’s.
If case 3 is true, then this produces a word with more a’s than b’s.
Assume for the rest of this proof then that case 2 is true. Then, there exists r, s with x ≤ y ≤

r ≤ s and k1, k2 > 1 such that the sequence

t1t2 · · · tx−1(txtx+1 · · · ty)k1ty+1 · · · tr−1(trtr+1 · · · ts)k2ts+1 · · · tm,

is an accepting computation, and h∆(tr · · · ts) ∈ D+
i . The word accepted, has more than n a’s, n′

say, since k1 > 1 and |hΣ(tx · · · ty)| > 0, and the only way to not obtain a contradiction would be if
hΣ(tr · · · ts) consists of only b’s such that the resulting input word reading during this derivation also
has n′ b’s. Also, because h∆(tr · · · ts) ∈ D+

i , it follows that a counter has already started decreasing
while reading the b’s. Therefore, after this point of the derivation, no counter can increase again
since M ∈ NCM(LBiLBd).

Although this new derivation is potentially collapsible (since new transitions were added in from
t1 · · · tm), as mentioned earlier, it is possible to obtain a non-collapsible derivation from this new
derivation simply by removing configurations (entirely in the new sections added while reading

12

a’s and b’s). Then, a new derivation can be obtained on transition sequence s1 · · · sm′ accepting
an
′
bn
′
cndn.

Then consider this non-collapsible accepting derivation and consider the subsequence when read-
ing the c’s. There must exist x′′, y′′, 0 < x′′ ≤ y′′ ≤ m′ such that h∆(tx′′ · · · ty′′) ∈ {Dj}∗, for some
i, 1 ≤ j ≤ k, such that |hΣ(tx′′ · · · ty′′)| ≥ (|Q|+ 1)(|Q|+ 2) (it must be Dj since this derivation has
already started decreasing while reading the b’s). Then, at least this many transitions are applied
during this sequence of transitions. Then, some state q′ occurs at least |Q| + 2 times in this sub-
derivation, with at least one input letter read between the first and last occurrence of q′. Hence,
Lemma 2 must again apply.

If case 1 applies, then this produces a word with more c’s than d’s, as does case 3, and case 2
cannot apply since the derivation has already started decreasing. Thus, we obtain a contradiction.

Therefore, the following is immediate:

Proposition 6. L(NCM(LBiLBd)) (L(NCM(LBid)) (L(NCM(BDid)).

Proof. The inclusions follow from the definitions. Strictness of the first inclusion follows from
Proposition 5, as {anbncldl | n, l > 0} ∈ L(NCM(LBid)) by making a 2-counter machine that reads
a’s and adds the number of a’s to the first counter, then reads b’s while verifying that this number
is the same, and then reads c’s while adding the number of c’s to the second counter, then reads d’s
while decreasing the second counter, verifying that the number is the same.

Strictness of the second inclusion follows by Proposition 4 as {anbncn | n > 0} ∈ L(NCM(BDid))
by building a 2-counter machine that adds 1 to counter 1 then 2 repeatedly for each a read, then
verifies that the contents of the first counter is the same as the number of b’s, then verifies that the
contents of the second counter is the same as the number of c’s.

4 Generators for the Families

We will go through certain families individually while creating a more restricted set of generators
than is provided by Proposition 3.

First, we will give two characterizations of L(NCM(LBid)).

Proposition 7. L(NCM(LBid)) is the smallest full trio containing all distinct-letter-bounded lan-
guages of the form {ai11 · · · aimm | aj = Cl, an = Dl imply ij = in}, where a1, . . . , am is a permutation
of ∆k such that aj = Cl, an = Dl implies j < n.

Proof. It follows from Lemma 1 that every language in L(NCM(LBid)) can be obtained by an
instruction language in I, where I is the distinct-letter-bounded subset of LBid. Thus, L(NCM(I)) =
L(NCM(LBid)). From Proposition 2, it follows that L(NCM(I)) is the smallest full trio containing
Ieq. Furthermore, Ieq is equal to the languages in the proposition statement.

A similar characterization can be obtained with a single language for each k.

Proposition 8. Let k ≥ 1, and let LLBid
k = {ai11 a

i2
2 · · · aimm | {a1, . . . , am} is a permutation of ∆k,

and (Cj = al, Dj = an implies both l < n and il = in), for each j, 1 ≤ j ≤ k}.
Then L(NCM(LBid)) is the smallest full trio containing LLBid

k , for each k ≥ 1.

Proof. It is clear that LLBid
k is the finite union of languages of the form of Proposition 7, and

since this family is closed under union by Proposition 3, then LLBid
k ∈ L(NCM(LBid)). Further, all

13

bounded languages I of the form of Proposition 7 can be obtained by intersecting LLBid
k with the

regular language a∗1 · · · a∗m.

Next, we will give characterizations for L(NCM(LBiLBd)), whose proof is similar to Proposition
7.

Proposition 9. L(NCM(LBiLBd)) is the smallest full trio containing all distinct-letter-bounded
languages of the form {al11 · · · a

lk
k b

j1
1 · · · b

jk
k | ai = Cm, bn = Dm imply li = jn}, where a1, . . . , ak is a

permutation of ∆(k,c) and b1, . . . , bk is a permutation of ∆(k,d).

This can similarly be turned into one language for each k, as follows with a proof similar to
Proposition 8:

Proposition 10. Let k ≥ 1, and let LLBiLBd
k = {al11 · · · a

lk
k b

j1
1 · · · b

jk
k | a1, . . . , ak is a permutation

of ∆(k,c), b1, . . . , bk is a permutation of ∆(k,d), and (Cm = ai, Dm = bn implies li = jn), for each
j, 1 ≤ j ≤ k}.

Then L(NCM(LBiLBd)) is the smallest full trio containing LLBiLBd
k , for each k ≥ 1.

Next, we will provide an alternate interesting characterization for both families using properties
of semilinear sets. Let m ≥ 1. A linear set Q ⊆ Nn0 , n ≥ 1, is m-bounded if the periodic vectors of Q
have at most m non-zero coordinates. (There is no restriction on the constant vector.) A semilinear
set Q is m-bounded if it is a finite union of m-bounded linear sets.

Let L ⊆ a∗1 · · · a∗n, a1, . . . , an ∈ Σ be a distinct-letter-bounded language. L is called a distinct-
letter-bounded 2-bounded semilinear language if there exists a 2-bounded semilinear set Q such
that L = {ai11 · · · ainn | (i1, . . . , in) ∈ Q}. L is called a distinct-letter-bounded 2-bounded overlapped
semilinear language if there exists a 2-bounded semilinear set Q with the property that in any of
the linear sets comprising Q, there are no periodic vectors v with non-zero coordinates at positions
i < j, and v′ with non-zero coordinates at positions i′ < j′ such that 1 ≤ i < j < i′ < j′ ≤ n, and
L = {ai11 · · · ainn | (i1, . . . , in) ∈ Q}. (They overlap in the sense that, for any such Q, v, i, j, v′, i′, j′,
then the interval [i, j] must overlap with [i′, j′].)

As above, we can also define distinct-letter-bounded 1-bounded semilinear languages. Clearly,
these languages are regular and, hence, contained in any nonempty full trio family [2]. For 2-
bounded, the following is true:

Proposition 11.

1. L(NCM(LBid)) is the smallest full trio containing all distinct-letter-bounded 2-bounded semi-
linear languages.

2. L(NCM(LBiLBd)) is the smallest full trio containing all distinct-letter-bounded 2-bounded over-
lapped semilinear languages.

Proof. For Part 1, let Q ⊆ Nn0 be a 2-bounded semilinear set. It will be shown that L =
{ai11 · · · ainn | (i1, . . . , in) ∈ Q} is accepted by an M ∈ NCM(LBid). It is sufficient prove the case
when Q is a linear set by Proposition 3. For ease in notation, we illustrate the construction of M
with an example, which is easy to generalize. Let

Q = {(5, 4, 2, 0, 0, 3) + i(1, 0, 3, 0, 0, 0) + j(2, 3, 0, 0, 0, 0) + k(0, 4, 0, 2, 0, 0)
+m(1, 0, 6, 0, 0, 0) + n(0, 0, 2, 0, 7, 0) + r(0, 0, 0, 0, 2, 0) + s(0, 0, 0, 0, 0, 8) | i, j, k,m, n, r, s ≥ 0}.

Then L = {a5+i+2j+mb4+3j+4kc2+3i+6m+2nd0+2ke0+7n+2rf3+8s | i, j, k,m, n, r, s ≥ 0}.

14

Let a0, a1, a2, a3, b0, b1, b2, c0, c1, c2, c3, d0, d1, e0, e1, e2, f0, f1 be distinct symbols. Let

L′ = {a5
0a
i
1a

2j
2 a

m
3 b

4
0b

3j
1 b

4k
2 c

2
0c

3i
1 c

6m
2 c2n

3 d0
0d

2k
1 e

0e7n
1 e2r

2 f
3
0 f

8s
1 | i, j, k,m, n, r, s ≥ 0}.

Thus L′ ⊆ a∗0a
∗
1a
∗
2a
∗
3b
∗
0b
∗
1b
∗
2c
∗
0c
∗
1c
∗
2c
∗
3d
∗
0d
∗
1e
∗
0e
∗
1e
∗
2f
∗
0 f
∗
1 . M ′ will have counters Ci, Cj , Cm, Ck, Cn. It is

straightforward to construct M ′ to accept L′ whose counter behavior is contained in the language
C∗i C

∗
jC
∗
mD

∗
jC
∗
kD
∗
iD
∗
mC
∗
nD
∗
kD
∗
n. (Note that M ′ does not need counters to check the constants and

to check the 2r and 8s portions. As usual, we assume that for any symbol x, x0 = λ.)
Let h be a homomorphism which maps a0, a1, a2, a3 to a; b0, b1, b2 to b; c0, c1, c2, c3 to c; d0, d1

to d; e0, e1, e2 to e; f0, f1 to f . Then L = h(L′).
The construction above is easy to generalize. For each position p (e.g., position 1), we split the

symbol in that position (e.g., a) into 1 plus the number of periodic vectors with non-zero values
in position p (e.g., a is split into split- symbols a0, a1, a2, a3). Then these symbols are assigned
exponents that represent the number of times the corresponding non-zero values need to be repeated
(e.g., a5

0, a
1×i
1 , a2×j

2 , a1×m
3 , where 5 is the non-zero value at position 1 in the constant vector, and 1,

2, 1 are the non-zero values at position 1 in the periodic vectors with parameters i, j,m representing
the number of times the corresponding non-zero values have to be repeated). Then a counter is
assigned to a split-symbol at position p if and only if there there is a periodic vector with non-zero
values at positions p and q with p < q. (For example, counter Ci is assigned to symbol a1, Cj
is assigned to a2, Cm is assigned to am, Ck is assigned to b2, Cn is assigned to c3. However, no
counters are assigned to a0, b0, c0, d0, e0, f0 because they correspond to the constant vector, and no
counters are assigned to e2 and f1.) Then one can easily determine the counter behavior pattern
which would guide the computation of the NCM(LBid) machine.

Conversely, L(NCM(LBid)) is the smallest full trio containing all distinct-letter-bounded lan-
guages of the form of Proposition 9, by that proposition. Further, all of these are distinct-letter-
bounded 2-bounded semilinear languages. Thus, Part 1 follows.

The proof for Part 2 is similar to the above proof.

Next we will give a characterization of the smallest full trio containing all bounded L(CFL) lan-
guages. For that, we consider instruction family StLBid. An example of an StLBid language (counter
behavior) is C∗1C∗2C∗3D∗3C∗2D∗2C∗1D∗1. But the counter behavior C∗1C∗2C∗3D∗3C∗2D∗2C∗1D∗2C∗1D∗1 is not
an StLBid language since C2 appears, then C1, then D2, then D1, violating the StLBid definition.

The next results show that L(NCM(StLBid)) is the smallest full trio containing all bounded
context-free languages. It has previously been found that there is no principal full trio (ie. generated
by a single language [2]) accepting these languages [11] (this paper does not use the ‘principal’
notation). Our proof uses a known characterization of distinct-letter-bounded context-free languages
(CFLs) from [3].

Proposition 12. L(NCM(StLBid)) is the smallest full trio containing all bounded context-free lan-
guages.

Proof. First we show containment. For every bounded L ∈ L(CFL), L ⊆ w∗1 · · ·w∗n, for distinct
a1, . . . , an, then L′ = {ai11 · · · ainn | w

i1
1 · · ·winn ∈ L} must also be in L(CFL) by using a finite

transducer that reads wi and outputs ai, as L(CFL) is closed under finite transductions [2]. Then
since L(NCM(StLBid)) is a full trio, it is sufficient to show that every distinct-letter-bounded L(CFL)
L′ ⊆ a∗1 · · · a∗n can be accepted by an NCM(StLBid), as L = h(L′) for a homomorphism h that outputs
wi from ai.

Assume that n ≥ 2. (The case n = 1 is trivial, since L is regular.)

15

We will prove the claim by induction on n. The result holds for n = 2, since it is known that
for every L(CFL) L ⊆ w∗1w∗2 (where w1, w2 ∈ Σ+), L can be accepted by an NCM(1, 1), hence by an
NCM(StLBid) [8].

Now suppose n ≥ 3. The following characterization is known [3]. For all Σ = {a1, . . . , an},
n ≥ 3, then each L(CFL) L ⊆ a∗1 · · · a∗n is a finite union of sets of the following form:

M(D,E, F) = {ai1xya
j
n | ai1a

j
n ∈ D,x ∈ E, y ∈ F},

where D ⊆ a∗1a∗n, E ⊆ a∗1 · · · a∗q , F ⊆ a∗q · · · a∗n, 1 < q < n, are in L(CFL), and conversely, each finite
union of sets of the form M(D,E, F) is a L(CFL) L ⊆ a∗1 · · · a∗n.

By this, D can be accepted by an NCM(StLBid) M1 with 1 counter. By the induction hypothesis,
E and F can be accepted by NCM(StLBid)s M2 with k2 andM3 with k3 counters, respectively, since
they are over smaller alphabets.

Since L(NCM(StLBid)) is closed under union, it is sufficient to build an NCM(StLBid) M accept-
ing M(D,E, F). Then M has k2 + k3 + 1 counters. On a given input, M starts by simulating M1,
and while still reading a1’s, it remembers the current state of M1 in the finite control, and starts
simulating M2. (The point when M starts simulating M2 is nondeterministically chosen, as long
as the input head of M has not gone past the a1’s.) After M2 accepts, M starts simulating M3.
(Again, the point when M starts simulating M3 is nondeterministically chosen.) When M3 accepts,
M continues the simulation of M1 from the state it remembered until the string is accepted.

Conversely, let L be any language accepted by an NCM(StLBid) with k counters. As usual,
all counters are zero on acceptance. We construct an NPDA M ′ that accepts L. M ′ has stack
alphabet {Z0, C1, . . . , Ck}, where Z0 denotes the bottom of the stack which is never altered. The
stack containing only Z0 indicates that it is empty. M ′ accepts on empty stack and final state. Let
I = a∗1 · · · a∗m ∈ StLBid be a superset of the instructions of M . Then M ′ simulates M faithfully but
uses the stack to simulate the counters as follows (noting that a counter Ci is zero if and only if the
stack is empty or the top of the stack is not Ci):

– If M increments counter i, M ′ pushes Ci on the stack.
– If M decrements counter i, M ′ pops Ci from the stack.

Note that because I is an StLBid instruction, in any accepting computation, when M decrements
counter i, the top of the stack must be Ci.

When M accepts (with all counters zero, corresponding to the stack of M ′ being empty), M ′

accepts.

From this, the following can be determined:

Corollary 3.

1. L(NCM(StLBid)) (L(NCM(LBid)).

2. L(NCM(StLBid) and L(NCM(LBiLBd)) are incomparable.

Proof. Obviously, L(NCM(StLBid) is contained in L(NCM(LBid)). To show proper containment,
let L = {aibjcidj | i, j ≥ 1}. Clearly, L can be accepted by an NCM(LBid) with counter behav-
ior C∗1C∗2D∗1D∗2, but L is not a context-free language. The result follows since every language in
L(NCM(StLBid) is a context-free language.

For Part 2, L is in L(NCM(LBiLBd)) but is not a L(CFL). Now let L′ = {aibicjdj | i, j ≥ 1}. L′
is a L(CFL), but this is not in L(NCM(LBiLBd)) by Proposition 5.

Next, we will show that all bounded Ginsburg semilinear languages are in two of the language
families (and therefore in all larger families).

16

Lemma 3. All bounded Ginsburg semilinear languages are in L(NCM(BDiLBd)), L(NCM(LBiBDd)).

Proof. By [7], it is enough to show for all distinct-letter-bounded semilinear languages. And since
both families are closed under union, by Proposition 3, and since every semilinear set is the finite
union of linear sets, it is enough to show for all distinct-letter-bounded semilinear languages induced
by a linear set Q.

Let Q ⊆ Nk0 be the linear set with constant vector ~v0 and periods ~v1, . . . , ~vn. We will create a
machine M where input is of the form w = ai11 · · · a

ik
k , each ai is distinct, and M accepts w if and

only if (i1, . . . , ik) ∈ Q. We will start with the case for BDiLBd.
Then M first adds v0(i) to counter i, for each i from 1 ≤ i ≤ k, on λ transitions. Then M does

the same for ~v1 arbitrarily many times, then the same for ~v2, etc. This insertion pattern is in the
bounded language

C∗1 · · ·C∗k(C
~v1(1)
1 C

~v1(2)
2 · · ·C ~v1(k)

k)∗ · · · (C ~vn(1)
1 C

~vn(2)
2 · · ·C ~vn(k)

k)∗.

Then the counter contents are in the linear set without having read any input. Then it verifies
that the input is equal to the counter contents one counter at a time, and therefore M accepts the
distinct-letter-bounded language induced by Q. So the decreasing pattern is D∗1D∗2 · · ·D∗k which is
letter-bounded.

For LBiBDd, this pattern is inverted, and M starts by placing ij in counter j, for 1 ≤ j ≤ k,
according to the letter-bounded pattern D∗1 · · ·D∗k. Then, M subtracts from the counters with the
same pattern that it increased from the counters in the case above, which is in the bounded language
(replacing all C’s with D’s). M accepts if all counters reach zero in this fashion.

From the definition, it is immediate that if I ⊆ I ′, then L(NCM(I)) ⊆ L(NCM(I ′)). It is clear
that all of LBid,BDiLBd, LBiBDd are a subset of BDid. We will show that three of these counter
families coincide.

Proposition 13. L(NCM(BDiLBi)) = L(NCM(LBiBDd)) = L(NCM(BDid)) is the smallest full
trio containing all bounded Ginsburg semilinear languages, and the smallest full trio containing all
bounded Parikh semilinear languages.

Proof. All of the families are full trios by Proposition 1. All must contain all bounded Ginsburg
semilinear languages by Lemma 3, and therefore all bounded bounded Parikh semilinear languages
[7].

To complete the proof, we will now show that all languages in L(NCM(BDid)) can be obtained
from the bounded Parikh (which are then bounded Ginsburg) semilinear languages using full trio
operations.

Let I = BDid. By Proposition 2, L(NCM(BDid)) is the smallest family of languages containing
Ieq = {I | I = {w = w∗1 · · ·w∗m | |w|Ci = |w|Di , for each 1 ≤ i ≤ k, all Ci’s appear before any Di’s},
wi ∈ ∆∗k, k ≥ 1}. But every Ieq ∈ Ieq is a bounded Parikh semilinear language. Thus the statement
follows.

Corollary 4. For all I ∈ {BDiLBd, LBiBDd,BDid, LBd, LBi, LB∪,ALL}, then L(NCM(I)) contains
all bounded Ginsburg semilinear languages, and all bounded languages in L(NCM).

Next, we establish two simple sets of generators for L(NCM(BDid)). These languages will there-
fore be a simple mechanism to show whether or not a full trio L contains every bounded Ginsburg
semilinear language, and therefore has exactly the same bounded languages as NCM, and has all
bounded languages contained in any semilinear trio.

17

Proposition 14. For k ≥ 1, let

LBDiLBd
k = {wx11 · · ·w

xm
m Dy1

1 · · ·D
yk
k | wj ∈ ∆+

(k,c), xj > 0, 1 ≤ j ≤ m,
for 1 ≤ i ≤ k, |w1w2 · · ·wm|Ci = 1,
(Ci ∈ alph(wj) implies yi = xj)},

LLBiBDd
k = {Cy11 · · ·C

yk
k w

x1
1 · · ·w

xm
m | wj ∈ ∆+

(k,d), xj > 0, 1 ≤ j ≤ m,
for 1 ≤ i ≤ k, |w1w2 · · ·wm|Di = 1,
(Di ∈ alph(wj) implies yi = xj)}.

Then L(NCM(BDiLBd)) = L(NCM(LBiBDd)) = L(NCM(BDid)) is the smallest full trio containing
LBDiLBd
k , for each k ≥ 1, and also the smallest full trio containing LLBiBDd

k , for each k ≥ 1.

Proof. The equality of the families follows from Proposition 13. First, we will consider LLBiBDd
k .

To show this language is in L(NCM(LBiBDd)), notice that LLBiBDd
k ∩ C∗1 · · ·C∗kw∗1 · · ·w∗m is clearly

in this family for fixed words w1, . . . , wm, where |w1 · · ·wm|Di = 1 for each i. Furthermore, there
are a finite number of combinations of such words, and L(NCM(LBiBDd)) is closed under union by
Proposition 3, therefore LLBiBDd

k is in this family.
From Lemma 1 and Proposition 2, it follows that L(NCM(LBiBDd)) is the smallest full trio

containing (LBiBDd)eq.
First consider a slight variant of LLBiBDd

k ,

Lk = {Cy1i1 · · ·C
yk
ik
wx11 · · ·w

xm
m | wj ∈ ∆+

(k,d), xj > 0, 1 ≤ j ≤ m,
Ci1 , . . . , Cik is a permutation of ∆(k,c),

for 1 ≤ l ≤ k, |w1w2 · · ·wm|Dl = 1,
(Dil ∈ alph(wj) implies yl = xj)}.

Then every language I ∈ (LBiBDd)eq over ∆∗k for some k ≥ 1 is equal to

{w = Cy1i1 · · ·C
yk
ik
wx11 · · ·w

xm
m | xj = yl if Dil ∈ alph(wj) > 0},

where Ci1 , . . . , Cik is a permutation of ∆(k,c), wj ∈ ∆+
(k,d), and each letter of ∆(k,d) occurs exactly

once in w1w2 · · ·wm. In this case, I = Lk ∩ C+
i1
C+
i2
· · ·C+

ik
w+

1 · · ·w+
m. Furthermore, consider the

homomorphism that maps Cil to Cl, and Dil to Dl. Then,

I = h−1(LBDiLBd
k ∩ C+

1 C
+
2 · · ·C

+
k h(w1)+ · · ·h(wm)+).

The case is similar for LBDiLBd
k .

Then, by Proposition 13, Proposition 14, and [7], the following is true:

Proposition 15. Let L be a full trio. Then, the following are equivalent:

• L contains all bounded Ginsburg semilinear languages,

• L contains all distinct-letter-bounded Ginsburg semilinear languages,

• L contains all bounded Parikh semilinear languages,

• L(NCM)bd(= L(DCM)bd = L(NCM(BDid))
bd) is contained in L,

• L(NCM(BDiLBd))(= L(NCM(LBiBDd)) = L(NCM(BDid))) is contained in L,
• L contains LBDiLBd

k , for each k ≥ 1,

18

• L contains LLBiBDd
k , for each k ≥ 1.

Furthermore, if L is also semilinear, then these conditions are equivalent to Lbd = L(NCM)bd =
L(DCM)bd.

By Proposition 4 and Proposition 15, the following is immediate:

Corollary 5. NCM(LBid) and L(NCM(LBiLBd)) do not contain all bounded Ginsburg semilinear
languages, or all bounded Parikh semilinear languages.

There is another simple equivalent form of the family L(NCM(BDid)). Let SBDid be the subset
of BDid that is the family

{I | k ≥ 1, I = w∗1 · · ·w∗m, wi ∈ ∆+
k , |wi| ≤ 2, 1 ≤ i ≤ m}.

Proposition 16. L(NCM(SBDid)) contains all bounded Ginsburg semilinear languages. Hence,
L(NCM(SBDid)) = L(NCM(BDid)).

Proof. We need only show that every distinct-letter-bounded Ginsburg language induced by a linear
set Q is in L(NCM(SBDid)) as this family is clearly closed under union. We illustrate with an
example, which can easily be generalized.

Let Q = {(2, 0, 3, 1) + (4, 2, 3, 6)i + (3, 5, 1, 0)j + (1, 0, 0, 0)k + (0, 7, 0, 2)m | i, j, k,m ≥ 0}.
The distinct-letter-bounded language L = {a2+4i+3j+kb2i+5j+7mc3+3i+jd1+6i+2m | i, j, k,m ≥ 0} is
induced by this linear set.

Let a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, d0, d1, d2 be new symbols, and let

L′ = {a2
0a

4i
1 a

3j
2 a

k
3b

0
0b

2i
1 b

5j
2 b

7m
3 c3

0c
3i
1 c

j
2d

1
0d

6i
1 d

2m
2 | i, j, k,m ≥ 0}.

L′ can be accepted by an NCM M with counters C1, C2, C3, C4, C5, C6, C7, C8 which operates as
follows when given input w:

– reads the first input segment and verifies that it is a2
0.

– reads a4i
1 and stores i in (C1, C2).

– reads a3j
2 and stores j in (C3, C4).

– reads the next input segment ak3.
– reads the next input segment b00.
– reads the next input segment and verifies that it is b2i1 by decrementing C1

while incrementing C5.
– reads the next input segment and verifies that it is b5j2 by decrementing C3.
– reads b7m3 and stores m in C6.
– reads the next input segment and verifies that it is c3

0.
– reads the next input segment and verifies that it is c3i

1 by decrementing C2.
– reads the next input segment and verifies that it is cj2. by decrementing C4.
– reads the next input segment and verifies that it is d1

0.
– reads the next input segment and verifies that it is d6i

1 by decrementing C5.
– reads the next input segment and verifies that it is d2m

2 by decrementing
C6.

Then M satisfies (C1C2)∗(C3C4)∗(D1C5)∗D∗3C
∗
6D
∗
2D
∗
4D
∗
5D
∗
6. Hence, M is in NCM(SBDid). Now

define a homomorphism on L(M) which maps a0, a1, a2, a3 to a and b0, b1, b2 to b, c0, c1, c2 to c, and
d0, d1, d2 to d. Then L = h(L(M)) is also in L(NCM(SBDid)).

19

Thus, SBDid is enough to generate all bounded Ginsburg semilinear languages, whereas LBid is
not.

Next, we will explore the language families NCM(LBd) and NCM(LBi).

Proposition 17. L(NCM(LBd)) is the smallest full trio containing, for each k ≥ 1, (here, w0 ∈
∆∗(k,c), and wk ∈ D

∗
k),

LLBd
k = {w0w1 · · ·wk | wi ∈ {Ci+1, Ci+2, . . . , Ck, Di}∗, 0 ≤ i ≤ k,

|w0w1 · · ·wj−1|Cj = |wj |Dj > 0, 1 ≤ j ≤ k} ⊆ ∆∗k.

Proof. First, LLBd
k can be accepted by M ∈ NCM(LBd) by guessing a partition into w0w1 · · ·wk,

and while reading wi, verify it is in {Ci+1, Ci+2, . . . , Ck, Di}∗, incrementing counter j for every Cj
read, and decrementing counter i for every Di read, finishing with all counters empty.

From Lemma 1 and Proposition 2, it follows that L(NCM(LBd)) is the smallest full trio containing
all I ⊆ ∆∗k, k ≥ 1 such that

I = {w | w ∈ Y Z, Y = ∆∗(k,c), Z = D∗i1 · · ·D
∗
ik
, Di1 , . . . , Dik is a permutation

of ∆(k,d), |w|Ci = |w|Di > 0, all Ci’s appear before any Di’s,
for 1 ≤ i ≤ k}.

Notice, every such I can be obtained from

I ′ = {w | w ∈ Y Z, Y = ∆∗(k,c), Z = D∗1 · · ·D∗k, |w|Ci = |w|Di > 0, all
Ci’s appear before any Di’s, for 1 ≤ i ≤ k}.

via homomorphisms that permute elements of ∆(k,d) such that h(Di) = Dj implies h(Ci) = Cj .
Notice that there is only one such I ′ for each k, and it is equal to LLBd

k .

The next proposition follows with a similar proof.

Proposition 18. L(NCM(LBi)) is the smallest full trio containing, for each k ≥ 1, (here, w0 ∈ C∗1 ,
and wk ∈ ∆∗(k,d)),

LLBi
k = {w0 · · ·wk | wi ∈ {D1, . . . , Di, Ci+1}∗, 0 ≤ i ≤ k,

|wj−1|Cj = |wjwj+1 · · ·wk|Dj > 0, 1 ≤ j ≤ k} ⊆ ∆∗k.

5 Applications To Existing Families

We will apply the results of this paper to quickly characterize the bounded languages inside known
language families. It has been recently shown that finite-index ET0L languages contain all bounded
Ginsburg semilinear languages [7]. This implies L(NCM(BDid)) ⊆ L(ET0Lfin) (the family of finite-
index ET0L languages, which is a full trio [12]; we refer to this paper for the formal definitions of
ET0L systems and languages), and the bounded languages within DCM,NCM, and ET0Lfin coincide
by Proposition 15. Here, we strengthen this result. First, it is shown that each LLBd

k and LLBi
k is in

L(ET0Lfin).

Lemma 4. For each k ≥ 1, LLBd
k , LLBi

k ∈ L(ET0Lfin).

Proof. Let k ≥ 1. We can create an ET0L system of index k + 1 to accept LBDd
k as follows. Let

G = (V,P, S,∆k). G has production tables and productions defined as follows (in the productions,
Cj and Dj are terminals, and it is assumed that Cj → Cj and Dj → Dj are in every table):

20

• PS contains S → S0S1 · · ·Sk.
• P ij for all 0 ≤ i < j ≤ k, contains

– Sl → Sl, for all l ∈ {1, . . . , k} − {i, j}
– Sj → DjSj ,
– Si → CjSi.

• PF contains Sl → λ, for all l, 0 ≤ l ≤ k.

We will prove that L(G) = LLBd
k .

“⊆” Let w ∈ L(G). Thus, there exists a sequence of production tables PS , P i1j1 , . . . , P
in
jn
, PF , such

that S ⇒PS x0 ⇒P
i1
j1

x1 · · · ⇒P injn
xn ⇒PF w, and x0 = S0 · · ·Sk. It is clear that x0, . . . , xn all have

S0, . . . , Sk as the sequence of nonterminals. Let wj be the sequence of terminals derived from Sj
in w. Then only wj can contain Dj by the productions, and wj can only contain Cj+1, . . . , Ck and
not C1, . . . , Cj by the productions. Furthermore, for every Dj derived using table P ij say (implying
i < j), only one other nonterminal, Si, can derive a new symbol from ∆(k,c), and it must be Cj
which must get added to wi, i < j. Hence, w = w0w1 · · ·wk ∈ LBd

k .
“⊇” Let w ∈ LLBd

k . Then w = w0 · · ·wk, wi ∈ {Ci+1, . . . , Ck, Di}∗, 0 ≤ i ≤ k, |w0 · · ·wj−1|Cj =
|wj |Dj > 0, 1 ≤ j ≤ k. We will show by induction that there is a sequence of word sequences (setting
n = |w|/2) for 0 ≤ i ≤ n, αi = (wi,0, . . . , wi,k), where wi,j is a prefix of wj , w0,j = λ, for 1 ≤ j ≤ k,
α contains the same number of Cj ’s as Dj ’s, for 1 ≤ j ≤ k, and αi+1 differs from αi in exactly two
positions, 0 ≤ l < j ≤ k, wi+1,j = wi,jDj , wi+1,l = wi,lCj .

The base case, i = 0, is true since w0,j = λ is a prefix of wj trivially for each j, 0 ≤ j ≤ k.
Assume there exists αi, i < n, where wi,j is a prefix of wj for all 0 ≤ j ≤ k, and αi contains the
same number of Cj ’s as Dj ’s, for 1 ≤ j ≤ k. Since i < n, there must exist some j′ maximal, where
wi,j′ is not equal to wj′ . Then the “next letter” of wj′ (ie. (wi,j′)

−1wj′) must be Dj′ , otherwise
it is Cx, for some x > j′, but then one copy of Dx would yet to have been generated by the
inductive hypothesis as Dx would need to occur in wx, but wi,x = wx, by the maximality of j′, a
contradiction. Let l′ be the largest number less than j′ such that the next letter of wl′ , (wi,l′)

−1wl′ is
in ∆(k,c), say Cy, y > l′. We will argue this must exist, otherwise all of w0 would have been already
consumed, as w0 only contains symbols from ∆(k,c), therefore all D1’s would have been consumed
by the inductive hypothesis. But then w1 must have been consumed, since the next letter does
not start with a letter from ∆(k,c) and it does not contain D1. Then, the first letter remaining
in any of w0, . . . , wl′−1 must be from ∆(k,d), and therefore does not match a symbol from ∆(k,c), a
contradiction. Then, the remaining part of wl′ must start with Cz for some z > l′, and then wz must
start with Dz since it does not start with any symbol of ∆(k,c). Hence, the induction follows. Hence,
S ⇒PS w0,0S0 · · ·w0,kSk ⇒P

l1
j1

· · · ⇒
P lnjn

wn,0S0 · · ·wn,kSk ⇒PF wn,0wn,1 · · ·wn,k = w0w1 · · ·wk =

w, where αi+1 differs from α in positions li and ji, li < jk, for all i, 0 ≤ i < n.
For LLBi

k , this follows since it can be obtained by reversal and homomorphism from LLBd
k , and

finite-index ET0L is closed under these operations [12].

It was also shown that that there are L(ET0Lfin) languages that are not in L(NCM) [7]. Then,
this sub-family of L(NCM) is strictly contained in L(ET0Lfin).

Proposition 19. L(NCM(LB∪)) (L(ET0Lfin), and L(ET0Lfin)bd = L(DCM)bd.

Proof. Inclusion follows directly from Proposition 17 and Lemma 4, and since L(ET0Lfin) is a
semilinear full trio [12]. Strictness follows from [7]. The fact that bounded languages are the same
follows from Proposition 15.

21

We leave as an open problem whether there are languages accepted by NCM that cannot be
generated by a finite-index ET0L system. We conjecture that over Σk = {a1, . . . , ak}, {w | |w|a1 =
· · · = |w|ak} is not in L(ET0Lfin), for some k. One might think that the (non-finite-index ET0L)
one-sided Dyck language on one letter is a candidate witness, but this language is not in L(NCM)
[4].

Next, the class of TCA machines are Turing machines with a one-way read-only input tape, and
a finite-crossing1 read/write worktape. This language family is a semilinear full trio [5]. Therefore,
L(TCA)bd ⊆ L(NCM)bd. To show that there is equality, we will simulate NCM(BDiLBd). Let M be
a well-formed k-counter machine satisfying instruction language I ⊆ w∗1w

∗
2 · · ·w∗lD∗i1 · · ·D

∗
in
, wi ∈

∆∗(k,c), 1 ≤ i ≤ l,Dj ∈ ∆(k,d), 1 ≤ j ≤ n. Then we build a TCA machine M ′ with worktape alphabet
∆k that, on input w, simulates a derivation of M , whereby, if M increases from counters in the
sequence Cj1 , . . . , Cjm , M ′ instead writes this sequence on the worktape. Then, M ′ simulates the
decreasing transitions of M as follows: for every section of decreases in D∗ij , for 1 ≤ j ≤ n, M ′

sweeps the worktape from right-to-left, and corresponding to every decrease, replaces the next Cij
symbol with the symbol Dij (thereby marking the symbol). This requires n sweeps of the worktape,
and M ′ accepts if all symbols end up marked and the simulated computation is in a final state.

Proposition 20. L(NCM(BDiLBd)) ⊆ L(TCA), and L(TCA)bd = L(DCM)bd.

Next, the family of multi-push-down automata and languages has been introduced [1]. We letMP
be these machines. They have some number k of pushdowns, and allow to push to every pushdown,
but only pop from the first non-empty pushdown. This can clearly simulate every machine in
NCM(LBd) (distinct-letter-bounded, which is enough to accept every language in L(NCM(LBd)) by
Lemma 1). Furthermore, it follows from results within [1] that L(MP) is closed under reversal (since
it is closed under homomorphic replication with reversal, and homomorphism). Therefore, L(MP)
also contains L(NCM(LB∪)). Also, this family only contains semilinear languages [1]. Therefore,
the bounded languages within L(MP) coincide with those in L(NCM) and L(DCM).

Proposition 21. L(NCM(LB∪)) ⊆ L(MP), L(MP)bd = L(DCM)bd.

References

[1] L. Breveglieri, A. Cherubini, C. Citrini, and S.C. Reghizzi. Multi-push-down languages and
grammars. International Journal of Foundations of Computer Science, 7(3):253–291, 1996.

[2] S Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland
Publishing Company, Amsterdam, 1975.

[3] Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc.,
New York, NY, USA, 1966.

[4] S. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theoretical
Computer Science, 7:311–324, 1978.

[5] Tero Harju, Oscar Ibarra, Juhani Karhumäki, and Arto Salomaa. Some decision problems con-
cerning semilinearity and commutation. Journal of Computer and System Sciences, 65(2):278–
294, 2002.

1There is a fixed c such that the number of times the boundary between any two adjacent input cells is crossed is
at most c.

22

[6] J E Hopcroft and J D Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

[7] O.H. Ibarra and I. McQuillan. On bounded semilinear languages, counter machines, and finite-
index ET0L, 2016. accepted to the 21st International Conference on Implementation and
Application of Automata (CIAA).

[8] O.H. Ibarra and B. Ravikumar. On bounded languages and reversal-bounded automata. In-
formation and Computation, 246(C):30–42, 2016.

[9] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978.

[10] Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilinear languages
by one-way and two-way deterministic machines. International Journal of Foundations of
Computer Science, 23(6):1291–1306, 2012.

[11] J. Kortelainen and T. Salmi. There does not exist a minimal full trio with respect to bounded
context-free languages. In G. Mauri and A. Leporati, editors, Lecture Notes in Computer
Science, volume 6795 of 15th International Conference on Developments in Language Theory,
DLT 2011, Milan, Italy, pages 312–323, 2011.

[12] G. Rozenberg and D. Vermeir. On ET0L systems of finite index. Information and Control,
38:103–133, 1978.

23

	Introduction
	Preliminaries
	Instruction NCM Machines
	Generators for the Families
	Applications To Existing Families

