
Dynamic Join Points:

Model and Interactions
by

Christopher J. Dutchyn

Bachelor of Science, (Mathematics (Honours)), University of Alberta, 1989

Master of Science, (Computing Science), University of Alberta, 2002

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

November 2006

© Christopher J. Dutchyn, 2006





Abstract

By modeling dynamic join points, pointcuts, and advice in a continuation-passing
style interpreter, we provide a fundamental account of these aop mechanisms. This
account frames interesting type-and-effect properties of the mechanisms, such as the
range of interactions between advised code and advice, and provides a general framework
for describing these aspect interactions.

ii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Plan of Presentation . . . . . . . . . . . . . . . . . . . . . . . . 4

I Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A Model for Dynamic Join Points, Pointcuts, and Advice . . 7

2.1 A Procedural Language – Direct Semantics . . . . . . . . . . . 8
2.2 A Procedural Language – Continuation Semantics . . . . . . . 9
2.3 Exposing Our AOP Constructs . . . . . . . . . . . . . . . . . . 14

iv



Contents

2.4 Comparison to Other Semantics . . . . . . . . . . . . . . . . . . 24
Aspect Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AspectScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PolyAML and uABC . . . . . . . . . . . . . . . . . . . . . . . . 26
Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Advice in Higher Order Languages . . . . . . . . . . . . . . . 29

3.1 AspectScheme Model . . . . . . . . . . . . . . . . . . . . . . . . 29
Background on the CEKS machine . . . . . . . . . . . . . . . . 30
Declaring Advice . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Function Equality . . . . . . . . . . . . . . . . . . . . . . . . . 33
Primitive Function Application . . . . . . . . . . . . . . . . . . 35
Regular Function Application . . . . . . . . . . . . . . . . . . . 37

3.2 AspectScheme with Cflow . . . . . . . . . . . . . . . . . . . . . 38
Cflow and Optimizations . . . . . . . . . . . . . . . . . . . . . 40

3.3 State Effects Cflow . . . . . . . . . . . . . . . . . . . . . . . . . 42
Regenerating Cflow . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Abstracting Pointcuts and Advice to Effects . . . . . . . . . . 53

4.1 Computational Effects . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Effect Analysis for PROC . . . . . . . . . . . . . . . . . . . . . 56

Effect Strings for Procedures . . . . . . . . . . . . . . . . . . . 56
Effect Strings for Dynamic Join Points . . . . . . . . . . . . . . 59
Effect Strings for Pointcuts . . . . . . . . . . . . . . . . . . . . 61
Pointcut Effect Reports . . . . . . . . . . . . . . . . . . . . . . 62
Effect Strings for Advice Bodies . . . . . . . . . . . . . . . . . . 64
Advice Effect Reports . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Exceptions and Threads . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Effect Analysis for AspectScheme . . . . . . . . . . . . . . . . . 70
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



Contents

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Classifying Pointcut and Advice Interactions . . . . . . . . . 75

5.1 Simple Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 76
Control Flow Categories . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Data Interaction Categories . . . . . . . . . . . . . . . . . . . . 78
Input (Output) Interactions . . . . . . . . . . . . . . . . . . . . 82
Exception Interactions . . . . . . . . . . . . . . . . . . . . . . . 84
Concurrency Interactions . . . . . . . . . . . . . . . . . . . . . 85
Summary of Interactions . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Compound Interactions . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Example Interactions and Reports . . . . . . . . . . . . . . . . 88

Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Move Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Exception Logging . . . . . . . . . . . . . . . . . . . . . . . . . 90
Runnable With Return . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Other Analyses and Related Work . . . . . . . . . . . . . . . . 92
Clifton et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Katz et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Dantas et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Extending and Formalizing . . . . . . . . . . . . . . . . . . . . 99
Object-Oriented Languages . . . . . . . . . . . . . . . . . . . . 101
An Effect Checking Tool . . . . . . . . . . . . . . . . . . . . . . 102

Works Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vi



Contents

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A AspectScheme CEKS Semantics . . . . . . . . . . . . . . . . . 119

A.1 Syntactic Categories . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B AspectScheme 2.3 Implementation . . . . . . . . . . . . . . . . 127

C PROC Implementation . . . . . . . . . . . . . . . . . . . . . . . 137

C.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.3 Elaborator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.4 Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.5 AOP Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.6 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.7 Top Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Citation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vii



Tables

1 Dynamic Join Points . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2 Dynamic Join Point Shadows . . . . . . . . . . . . . . . . . . . . . 61
3 Control Flow Interactions . . . . . . . . . . . . . . . . . . . . . . . 78
4 Data Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5 Input (Output) Interactions . . . . . . . . . . . . . . . . . . . . . . 83

viii





Figures

1 Proc Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Proc Big-step (Direct) Semantics . . . . . . . . . . . . . . . . . . . 9
3 Proc Shorthand Expressions . . . . . . . . . . . . . . . . . . . . . 10
4 Proc Small-step (cps) Semantics — Continuations . . . . . . . . . 11
5 Proc Small-step (cps) Semantics — Evaluator . . . . . . . . . . . 13
6 Proc Small-step (cps) Semantics — Primitives . . . . . . . . . . . 14
7 Proc Pointcuts — Abstract Syntax . . . . . . . . . . . . . . . . . . 16
8 Proc Pointcuts — Implementation . . . . . . . . . . . . . . . . . . 17
9 Proc Advice Declaration – Abstract Syntax . . . . . . . . . . . . . 18
10 Proc Before and After Advice . . . . . . . . . . . . . . . . . . . . 18
11 Proc Advice – Elaboration and Matching . . . . . . . . . . . . . . 20
12 Proc Advice – Frames . . . . . . . . . . . . . . . . . . . . . . . . . 21
13 Proc Advice – Weaving . . . . . . . . . . . . . . . . . . . . . . . . 22
14 Proc Advice – Invocation . . . . . . . . . . . . . . . . . . . . . . . 23
15 Proc Advice – Proceed . . . . . . . . . . . . . . . . . . . . . . . . 23
16 ceks Primitives Transitions . . . . . . . . . . . . . . . . . . . . . . 31
17 ceks Primitive Operations . . . . . . . . . . . . . . . . . . . . . . . 32
18 ceks Around Transition Rules . . . . . . . . . . . . . . . . . . . . . 33
19 ceks Equality Operation . . . . . . . . . . . . . . . . . . . . . . . . 35
20 ceks Primitive Application Transitions . . . . . . . . . . . . . . . . 36
21 ceks Application Transitions . . . . . . . . . . . . . . . . . . . . . 37
22 ceks Continuation Marking Application Rules . . . . . . . . . . . . 39
23 ceks Dynamic Join Point Construction 1 . . . . . . . . . . . . . . . 39
24 ceks Advice Weaving . . . . . . . . . . . . . . . . . . . . . . . . . . 40
25 ceks Cflow Pointcut Implementation . . . . . . . . . . . . . . . . . 41
26 Tail-recursive Factorial and Advice . . . . . . . . . . . . . . . . . . 42
27 ceks Application Rules 2 . . . . . . . . . . . . . . . . . . . . . . . 43
28 ceks Dynamic Join Point Construction 2 . . . . . . . . . . . . . . . 43
29 ceks Advice Weaving 2 . . . . . . . . . . . . . . . . . . . . . . . . 44
30 Cflow Model Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
31 Invalid Cflow Translation . . . . . . . . . . . . . . . . . . . . . . . . 45
32 Valid Cflow Translation . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



Figures

33 Expression Codewalker . . . . . . . . . . . . . . . . . . . . . . . . . 57
34 Shadow Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
35 Unfolding Expressions into cps Form . . . . . . . . . . . . . . . . . 58
36 cps Intermediate Language Effects . . . . . . . . . . . . . . . . . . 60
37 Inferred Pointcut Effects . . . . . . . . . . . . . . . . . . . . . . . . 62
38 Proceed Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
39 Expressions for Exceptions and Threads . . . . . . . . . . . . . . . 68
40 Orthogonal Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 79
41 Independent Interaction . . . . . . . . . . . . . . . . . . . . . . . . 80
42 Observation Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 80
43 Actuation Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 81
44 Influence Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 81
45 Interference Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 82
46 Multiple Advice at Dynamic Join Points . . . . . . . . . . . . . . . 87
47 Tracing Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 88
48 Move Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
49 Exception Logging Instrumentation . . . . . . . . . . . . . . . . . . 90
50 Runnable With Return . . . . . . . . . . . . . . . . . . . . . . . . . 91
51 Object-Oriented Dynamic Join Points . . . . . . . . . . . . . . . . . 101

xi



Preface

Mathematics holds elegance in high regard. From my undergraduate studies in
pure mathematics, I developed an appreciation that a simple, clear explanation
of existing results is not only a legitimate scientific advance in itself, but also
the engine that moves the discipline forward. With clarity comes insight — and
applicability.

This dissertation aims to provide a simple, clear presentation of dynamic join
points, pointcuts, and advice, based on fundamental principles in programming
languages theory. The highest accolade this work can garner was provided by
Varmo Vene during the summer of 2005, when he said to me: “Now I under-
stand what aspects are about”. If you, the reader, come to the conclusion of
this dissertation and say “but that’s obvious”, then I will have succeeded in my
endeavour.

From this clarity, will come two important insights. First, that pointcuts and
advice are natural for any dynamic semantics. Second, layering these kinds of
aspects is a challenging task; there is no single correct interaction. Programmers
must spell out their intentions, but we can help to highlight contentious places.

This dissertation is certainly not the last word on this subject. Indeed, this
presentation hints at a deeper understanding of the modularity offered by point-
cuts and advice. Just as classes classify class-instances (objects) which abstract
primitive values, there is a tantalizing parallel where dynamic aspects classify
aspect-instances which abstract continuation structure. Filinski’s categorical du-
ality between continuations and values may connect the two hierarchies together,
giving us a more unified theory of modularity over data and control.

As Gregor Kiczales once said, “the fun has just begun. . . ”[92].
Chris Dutchyn

Vancouver, Canada
November 6, 2006

xii





Acknowledgments

Portions of Chapter 2 originally appeared in Wand et al. [167, 168, 169]. Portions
of Section 3.1 were published as Dutchyn et al. [58]. Portions of section 3.2
appeared first in Masuhara et al. [113, 114].

Although only one name appears on the cover, this is not an individual effort.
Many people played large and small rôles in getting me here today:

1. Duane Szafron, for unflagging confidence from beginning to end, supple-
mented by regular doses of candor;

2. Kris de Volder and Hidehiko Masuhara for listening to my unsupported
rantings about programming languages, and setting me straight afterwards;

3. Norm Hutchinson, for stepping in for Gregor during his leave and helping
me connect with the right research community;

4. Tim Sheard, for guidance during my time of directionless drifting;

5. Richard Gabriel, for Patterns of Software — the impulse that got me back
to grad school;

6. Jonathan Sillito, Brian de Alwis, Andrew Eisenberg, and the other SPL

lab members, for lively discourse and papers;

7. Yvonne Coady and Jan Hanneman, for going first and showing me how to
graduate;

8. Holly Kwan, for good cheer no matter how dark the day seemed;

xiv



Acknowledgments

9. Will Evans and Alan Hu, for reading my error-ridden drafts and asking
tough questions;

10. Gail Murphy, for advising me, even though I wasn’t your student;

11. Dan Friedman, for the inspirations of eopl, Brown, and reflective monads;

12. Shriram Krishnamurthi, for inviting me into an enviable project; and, along
with Kathi Fisler, for advice in getting my career going;

13. Mitch Wand, for showing me how to read, understand, and write “Greek”
in the sense of Mattias Felleisen;

14. Last and most important, Gregor Kiczales, for ideas, words, tolerance, crit-
icism, and support over the long haul — your clarity and incisiveness in
writing, teaching, and thinking are a model for me.

As always, any errors that remain are mine alone.

xv



Dedication

for Mom, who never saw this completed. . .

xvi





Chapter 1

Introduction

Current programming languages offer many ways of organizing code into concep-
tual blocks, whether through functions, objects, modules, or some other mech-
anism. However, programmers often encounter features that do not correspond
well to these units of organization. Such features are said to scatter and tangle
with the design of a system, because the code that implements the feature ap-
pears across many program units. This scattering and tangling may derive from
poor modularization of the implementation; for example, as a result of maintain-
ing pre-existing code. Recent work [31; 52; 109; 152] shows that, in some cases,
traditional modularity constructs cannot localize a feature’s implementation. In
these cases, the implementation contains features which inherently crosscut each
other1. In a procedural language, such a feature might be implemented as parts
of disjoint procedures; in an object-oriented language, the feature might span
several methods or classes.

These crosscutting features inhibit software development in several ways. For
one, it is difficult for the programmer to reason about how the disparate pieces of
the feature interact. In addition, they compound development workload, because
features cannot be tested in isolation. Also, they prevent modular assembly: the

1. Strictly speaking, crosscutting is a three-place relation: we say that two concerns crosscut
each other with respect to a mutual representation. The less rigorous ’two concerns crosscut
each other’ means that they crosscut each other with respect to an implementation that closely
parallels typical executable code. Traditional modularity constructs, such as procedures and
classes, have a close parallel between source and executable code.

1



1. Introduction Motivation

programmer cannot simply add or delete these features from a program, since
they are not separable units.

1.1 Motivation

Recently, many researchers have proposed aspect-oriented software development
as a method for organizing crosscutting features [13; 26; 79; 94; 107; 124; 157]. In
particular, Kiczales et al. [94] have presented aspect-oriented programming (aop);
in this paradigm, the fragments of any given crosscutting feature precipitate
into a separate component, called an aspect. In addition to containing the code
necessary for a feature, the aspect must indicate how this code should combine
with other modules to provide the desired behavior.

Kiczales et al. also implemented a practical aspect-oriented extension to Java,
called AspectJ, which allows the programmer to define aspects [93]. One portion
of this implemented language provides dynamic aspects in the form of pointcuts
and advice. Simplistically, pointcuts identify dynamic join points — places where
features interact, and advice implement a feature relative to the join point.

Our task is to provide a formal model for these constructs: dynamic join
points, pointcuts, and advice; and, to explore how features implemented in this
way might interact.

Thesis

We claim that a model of dynamic join points, pointcuts, and advice based on
a continuation-passing style interpreter provides a fundamental account of these
aop mechanisms; and that this account frames interesting type-and-effect prop-
erties of the mechanisms, such as the range of interactions between advice and
advised dynamic join points, and provides a general framework for describing
these interactions.

Contributions

This research provides two semantic descriptions of dynamic join points, point-
cuts, and advice for procedural languages.

The first semantic specification, a dynamic semantics, moves from our pre-
viously published expression-oriented, big-step system to a novel continuation-

2



1. Introduction Motivation

based, small-step semantics. This translation yields an elegant model of dynamic
join points as principled program control points, pointcuts as identifiers of these
points, and advice as specializers of the behaviour of these control points. The
second semantic specification, a static semantics, captures the essential abstrac-
tion of continuations, that of computational effects, and develops an abstraction
of pointcuts and advice with regard to the effects they express. This abstraction
to effects supports and refines existing aspect classifications, yielding interesting
types-and-effects properties for dynamic joinpoints, pointcuts, and advice.

The specific contributions are:

1. A novel development of continuation-based dynamic semantics for dynamic
join points, pointcuts, and advice for a first-order, mutually-recursive pro-
cedural language showing that

a) Dynamic join points, pointcuts, and advice aspects can be modeled
directly in continuation semantics; without the need for labels or con-
tinuation marks,

b) Principled dynamic join points arise naturally, as continuation frames,
from describing programming languages in continuation semantics,
and

c) Advice acts as a procedure on these continuation frames, providing
specialized behaviour for them.

2. An application of this construction to a higher-order procedural language,
Scheme, yielding a semantic description of AspectScheme which includes
lexically-scoped and dynamically-scoped pointcuts and advice.

3. An implementation of AspectScheme, constructed as a language extension
to PLT Scheme [72], using macros and their language extension points, with
lexically-scoped and dynamically-scoped aspects, as well as the more usual
top-level (declarative) pointcuts and advice aspects.

4. A demonstration that cflow pointcuts, which identify dynamic join points
based on control flow context, break tail-call properties of programming
languages and add a state effect into the languages.

5. A static semantics that focuses on the key property of continuations: that
they carry computational effects. We

3



1. Introduction Plan of Presentation

a) characterize dynamic join point shadows by their input, output, state
access and state mutation regions;

b) associate dynamic join point effects with pointcuts, yielding reports
summarizing and contrasting these effects;

c) characterize advice bodies, describing their input, output and state
effects as well as repetition of join point behaviour.

6. An effect reporting algorithm that extends ones already accepted for aspect-
oriented languages. Ours includes

a) five control interaction classes that cover a broader range than the
existing classes,

b) six data interactions, including one missing from the existing analyses,

c) an alternate input (output) categorization with four categories

d) exception categorization that helped highlight an AspectJ/Java incon-
sistency, and

e) three simple concurrency interactions.

1.2 Plan of Presentation

This work proceeds in two major parts. The first part deals with dynamic seman-
tics. In Chapter 2 we introduce direct semantics for Proc, an eager, call-by-value,
first-order recursive procedural language. We then pass to the continuation-
passing style (cps) semantics, and characterize dynamic join points, pointcuts,
and advice in terms of these continuation structures. To emphasize the generality
of our construction, we provide a second account in Chapter 3 where we identify
dynamic join points, pointcuts, and advice in a core implementation of Scheme,
a higher-order procedural language.

The second part deals with static semantics. In Chapter 4 we present com-
putational effects and show how to abstract effect descriptions for our pointcuts
and advice. In Chapter 5, we demonstrate the utility of these effect abstractions
by classifying them in a taxonomy that extends the existing formulations for rea-
soning about dynamic aspects. Last, in Chapter 6, we summarize the work and
consider some avenues for additional research.

4



Part I

Dynamic Semantics

5





Chapter 2

A Model for Dynamic Join Points,

Pointcuts, and Advice

principle /’prinsip( e)l/ n.

1. a fundamental truth or law as the basis
of reasoning or action.

2. a) a personal code of conduct.
b) (in pl.) such rules of conduct.

3. a general law in physics etc.

4. a law of nature forming the basis for the
construction or working of a machine
etc.

5. a fundamental source; a primary
element.

principled /'prinsip( e)ld/ adj. based on or having
(esp. praiseworthy) principles of behaviour.

The Concise Oxford Dictionary, 8ed. [6]

This chapter comprises the core of our dissertation. We give a formal model of
dynamic join points, pointcuts, and advice built on the well-understood processes
of conversion to continuation-passing-style, and defunctionalization. We demon-
strate that dynamic join points arise naturally in this formulation, as continuation
frames. Therefore, advice can specialize their behaviour directly in our construc-
tion. Furthermore, we demonstrate that, in our model, cflow corresponds to a
continuation context, and interacts poorly with tail-call optimizations.

7



2. A Model for DJPs, PCs, and Advice PROC – Direct Semantics

(define-struct PROG (decls body)) ;; <(id * decl). . . * exp>

(define-struct LIT (val)) ;; literal value
(define-struct VAR (id)) ;; variable
(define-struct IFX (test then else)) ;; conditional <exp * exp * exp>
(define-struct APP (id rands)) ;; application <id * exp. . . >

(define-struct PROC (ids body)) ;; <id. . . * exp>
;;; primitives are procedures

Figure 1: Proc Abstract Syntax

2.1 A Procedural Language – Direct Semantics

As with other semantics presentations [56; 57; 169], we choose to work with a
first-order, mutually recursive procedural language, Proc. In the next chapter,
we will re-examine this construction for a core higher-order procedural language.
Throughout this chapter, our systems are given as definitional interpreters, as
introduced by Reynolds [135, 137], in the style of Friedman et al. [74]. This
interpreter-based approach to modeling various aop mechanisms originated with
our work in the Aspect Sandbox [56; 57] and related papers [113; 114; 167; 168;
169], and was later adopted by others, including Filman [69].

We begin with the usual syntax and direct-style, big-step semantics, given in
Figure 1 and Figure 2 respectively. Programs comprise a set of named mutually-
recursive, first-order procedures, and a closed, top-level expression. We assume
programs and terms are well-typed. Environments are standard.

One important feature of this definition is that we do not specify the order
of evaluation for procedure operands. In particular, we use the Scheme map
procedure to explicitly provide this non-deterministic behaviour [91].

We should point out that several usual constructs are lacking from our lan-
guage; but this does not impair its expressiveness. In particular, the usual con-
structs are

• (SEQ x 1. . .) which evaluates each sub-expression in left-to-right order,
yielding the value of the last expression, and

• (LET ([i1 x 1]. . .) x ) which evaluates the body x in an environment enriched
with variables in bound to the values of the corresponding expressions xn.

8



2. A Model for DJPs, PCs, and Advice PROC – Continuation Semantics

;;; values :: integers, booleans

;;; evaluator
(define (eval x r)

(cond [(LIT? x ) (LIT-val x )]
[(VAR? x ) (lookup r (VAR-id x ))]
[(IFX? x ) (let ([v (eval (IFX-test x ) r)])

(eval ((if v IFX-then IFX-else) x ) r))]
[(APP? x ) (let ([vs (map (λ (x ) (eval x r)) (APP-rands x ))])

(let ([p (lookup-proc/prim (APP-id x ))])
(cond [(PROC? p) (eval (PROC-body p)

(bind (PROC-ids p) vs empty))]
[(procedure? p) (p vs)])))]))

(define ∗procs∗ ‘([+ . ,(λ (vs) (+ (car vs) (cadr vs)))]
[display . ,(λ (vs) (display (car vs)) 0)]
[newline . ,(λ (vs) (newline) 0)]))

(define (run s)
(let ([g (parse-prog s)])

(set! ∗procs∗ (cons (PROG-decls g) ∗procs∗))
(eval (PROG-body g) empty)))

Figure 2: Proc Big-step (Direct) Semantics

As usual in the literature, these can be denoted in our language by the addition
of helper procedures as seen in Figure 3. For the sequel, we will employ these
notational shorthands.

2.2 A Procedural Language – Continuation

Semantics

In order to identify dynamic join points in a principled way, we need to
move to a continuation-passing style (cps) implementation. Continuations, also
known as goto’s with arguments, were first identified by Landin [102] and Strachey
[155] to model control flow in programs. Later, Reynolds [136] applied them to
ensure that semantics given by definitional interpreters yields a formal model
independent of the defining language control constructs.

9



2. A Model for DJPs, PCs, and Advice PROC – Continuation Semantics

(SEQ x1) ≡ x1

(SEQ x1 x2 . . .) ≡ (APP foo i . . . x1)
with helper procedure

(foo . (PROC (i . . . ) (SEQ x2 . . .)))
where foo is fresh, and each i . . . are the free variables of the subsequent expres-
sions x2 . . .

(LET () x) ≡ x
(LET ([i1 x1] . . . [in xn]) x) ≡ (APP foo i . . . x1 . . . xn)

with helper procedure
(foo . (PROC (i . . . i1 . . . in) x))

where foo is fresh, and each i . . . are the free variables of the body x excluding
i1 . . . in.

Figure 3: Proc Shorthand Expressions

The cps transformation [48] of our interpreter is systematic, following closely
that of Hatcliff and Danvy [82]. In essence, we treat each of the let expressions in
the direct eval semantics as a monadic let [119; 120]. These lets express a bind
operation between the computation of an operand and the computation awaiting
that value. Continuations explicitly sequence these bind operations, and reify the
computation awaiting the value.

Usually continuations are presented as closures [45], but Ager et al. [5] pro-
vide a systematic defunctionalization of these closures into tagged structures and
an apply procedure that gathers the operations of each closure. Each tagged
structure must contain the values for each variable that the closures reference.
The continuation structures required for our small-step interpreter are given in
Figure 4.

As usual in operational semantics, we introduce two auxiliary continuations,
ARG and CONS , to support multiple arguments to procedures2. These two con-
tinuations provide a strict right-to-left evaluation order for procedure operands.
This choice is arbitrary. We could have supplied a non-deterministic ordering in
the cps semantics, but that would distract us from our focus. The essential no-
tion is that these supporting continuations have no basis in the direct semantics:

2. We refer to continuations which arise from the cps transformation and provide sequencing
which is unspecified in the big-step semantics as auxiliary.

10



2. A Model for DJPs, PCs, and Advice PROC – Continuation Semantics

;;; frames
(define-struct TEST (env then else)) ;; < env * exp * exp> ` ¬boolean
(define-struct CALL (id)) ;;<id> ` ¬val. . .
(define-struct EXEC (args)) ;; <val. . . > ` ¬proc
(define-struct ARG (env exp)) ;;<env * exp> ` ¬val. . .
(define-struct CONS (vals)) ;; <val. . . > ` ¬val

;;; continuations :: frm. . .
(define (push f k)

(cons f k))

(define ((pop end step) k)
(if (null? k)

(end)
(step (car k) (cdr k))))

Figure 4: Proc Small-step (cps) Semantics — Continuations

they serve only to bridge the gap between the big-step and small-step systems.
Some formalisms avoid this work by silently introducing products or tuple

values. Then a polyadic procedure actually accepts a single tuple argument, and
explodes the tuple before evaluation of the body. Similarly, procedure applica-
tions would contain a hidden tupling action; paralleling our CONS continuation
behaviour.

Formal, lambda-calculus approaches eliminate the auxiliary continuations by
currying procedures and replace polyadic applications with multiple applications.
This simplifies the underlying formalism, allowing development of the soundness
proofs of the cps transformation; Thielecke [159] provides the details.

For our restricted procedural language, the full power of the λ-calculus is
not required. Indeed, in the λ-calculus, the TEST continuation is unnecessary
as well. A simple syntactic transformation makes the consequent clauses into
thunks (parameterless closures [47]). True and False become binary procedures
that simply apply one or the other thunk. In summary, we characterize ARG ,
CONS , and TEST as auxiliary continuations3.

3. These should not be confused with serious and trivial continuations [135; 137], nor with
administrative continuations [73]. Serious continuations are ones which may not terminate,
i.e. they may lead to recursion or other indefinite stack growth. Procedure application contin-
uations are serious. Trivial continuations are ones which perform some trivial (i.e. known to
terminate) operation on the values at hand, and then call their continuation. Administrative

11



2. A Model for DJPs, PCs, and Advice PROC – Continuation Semantics

The defunctionalized cps definition of our interpreter is given in Figure 5.
Our construction is standard, except in three respects. First, we extend

Agere’s construction to explicitly linearize the continuation. In Agere’s construc-
tion, each continuation structure, representing a suspended operation awaiting
the value of some expression, would contain the rest of the continuation as a field.
Only a halt continuation would not have this, as it has nowhere to continue to.

In our construction, we represent the entire continuation as a list of frames. A
frame is a single element in the list representation of the continuation; it indicates
the immediate action when this continuation is activated. The remainder of the
continuation is in the tail of the list.

• push :: frm * frm. . .→ frm. . . — extends an existing continuation with
another frame.

• pop :: ((→ unit) * ((frm * frm. . . ) → unit)) → frm. . .→ unit — takes a
continuation, and either

– applies the first procedure (end) because the continuation is empty, or

– applies the second procedure (step) to the top continuation frame and
the rest of the continuation.

In our case, the halt continuation is represented by the empty list.
Second, our implementation lifts primitives from the direct interpreter to take

the existing continuation as an additional argument. This allows us to provide
flow control operations, such as Felleisen’s abort [61; 63], as primitives. This is
seen in Figure 6.

Third, our implementation distinguishes the lookup of procedures into a sep-
arate continuation, EXEC . Ordinarily, we would require only one continuation,
CALL, to await the evaluation of the operands into argument values. That single
continuation would be responsible for locating the desired procedure and initiat-
ing the evaluation of it’s body-expression with the desired bindings.

Examining the direct semantics closely, we can see that there are two let

expressions present in the case of an APP expression. Other one-step [50] and

continuations are those which can be automatically reduced during the cps transformation. For
example, translating a let into a procedure application yields an administrative continuation
where the closure is immediately applied; the continuation that performs the application can be
administratively reduced. This leads to A-normal forms, the subject of Flanagan et al. [73].

12



2. A Model for DJPs, PCs, and Advice PROC – Continuation Semantics

;;; values :: integers, booleans

;;; evaluator
(define (eval x r k)

(cond [(LIT? x ) (apply (LIT-val x ) k)]
[(VAR? x ) (apply (lookup r (VAR-id x )) k)]
[(IFX? x ) (eval (IFX-test x )

r
(push (make-TEST r IFX-then IFX-else) k))]

[(APP? x ) (evlis (APP-rands x )
r
(push (make-CALL (APP-id x )) k))]))

(define (evlis xs r k)
(if (null? xs)

(apply ’() k)
(evlis (cdr xs)

r
(push (make-ARG r (car xs)) k))))

(define ((step/prim v) f k)
(cond [(TEST? f ) (eval ((if v TEST-then TEST-else) f )

(TEST-env f )
k)]

[(CALL? f ) (apply (lookup-proc/prim (CALL-id x ))
(push (make-EXEC v) k))]

[(EXEC? f ) (cond [(PROC? v) (eval (PROC-body v)
(bind (PROC-ids v)

(EXEC-args f )
empty)

k)]
;; primitives now take args and cont
[(procedure? v) (apply (v (EXEC-args f ) k))])]

[(ARG? f ) (eval (ARG-exp f ) (ARG-env f )
(push (make-CONS v) k))]

[(CONS? f ) (apply (cons v (CONS-vals f )) k)]))

(define (halt v)
(display v) (newline))

(define (apply/prim v k)
((pop (halt v)

(step/prim v))
k))

(define apply apply/prim)

Figure 5: Proc Small-step (cps) Semantics — Evaluator 13



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; primitives
(define ((lift p) vs k)

(apply (p vs) k))

;;; lifted primitives
(define ∗procs∗ ‘([+ . ,(lift (λ (vs) (+ (car vs) (cadr vs))))]

[display . ,(lift (λ (vs) (display (car vs)) 0))]
[newline . ,(lift (λ (vs) (newline) 0))]
[abort . ,(λ (vs k) (apply (car vs) ’()))]))

(define (run s)
(let ([g (parse-prog s)])

(set! ∗procs∗ (cons (PROG-decls g) ∗procs∗))
(eval (PROG-body g) empty)))

Figure 6: Proc Small-step (cps) Semantics — Primitives

A-normal [73; 140] transformations optimize portions of this transformation, usu-
ally the inner let. Our more näıve approach allows us to expose the two separate
operations, which will be valuable as we extend the system to incorporate dy-
namic join points, pointcuts, and advice.

2.3 Exposing Our AOP Constructs

With these preliminaries, we are prepared to expose dynamic join points in Proc,
and provide syntax to denote pointcuts and advice. We need to describe three
items:

1. dynamic join points — “principled points in the execution” [94]. These
will be states in the interpreter where values are applied to non-auxiliary
continuation frames.

2. pointcuts — “a means of identifying join points”4. These will be syntax
for predicates over the value and continuation frame content.

3. advice — “a means of affecting the semantics at those join points”5. This is
implemented as the advice body as a procedure applied to the continuation
frame.

4. ibid
5. ibid

14



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

Dynamic Join Points

Dynamic join points are the first abstraction in our model. Other semantic
models provide a list of dynamic join points separately. For us, join points are
activations of certain continuation frames. Recall that we introduced additional
auxiliary frames to support our eager, left-to-right evaluation order in the cps

semantics. Therefore, we adopt the following principle:

Principle. A dynamic join point is modeled as a state in the interpreter where
values are applied to a non-auxiliary continuation.

Therefore, we have two frames corresponding to dynamic join points:

• CALL (id ` ¬val. . . ) — consumes a list of values and emits an EXEC
continuation frame with the identifier of the procedure to execute,

• EXEC (val. . .` ¬proc) — consumes a procedure and evaluates its body
with identifiers bound to the stored values.

The type signatures indicate the type of the information stored in the contin-
uation frame before the turnstile (`) and the type of the expected value to be
consumed by the continuation after the ¬. Jouvelot and Gifford [86] and Murthy
[122] originated the use of ¬ types; Thielecke [159] explores this in detail.

Therefore, our dynamic join points are simply the activation of either of these
continuation frames. In each case, a dynamic join point has two items available:

1. a procedure, either by name (in the case of CALL) or as an actual structure
(in the case of EXEC ),

2. a list of values corresponding to the arguments to the procedure.

.
In our model, dynamic join points make accessible the latent control struc-

ture of the language semantics. Dynamic join points correspond to continuation
frames, and are modeled by states within the interpreter. If the semantics of
the language change, through the addition of new constructs or a change in the
semantic equations such as explicitly partially-evaluating some terms, the set of
dynamic join points would be expected to change.

Our dynamic join points systematically align with points in the model that
are well-accepted as being semantically meaningful. Our principle defines this

15



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; natural pointcuts
(define-struct CALLPC (pname anames)) ;<id id. . . >
(define-struct EXECPC (pname anames)) ;<id id. . . >

;;; combinational pointcut
(define-struct ORPC (pc1 pc2 )) ;<pc pc>

Figure 7: Proc Pointcuts — Abstract Syntax

systematic alignment. In other models, some have framed dynamic join points
as program rewrite points [11; 139]. Other accounts have dynamic join points
appear as an ad-hoc list, including in our earlier work [169].

Pointcuts

The second abstraction we must add to our model is pointcuts. Pointcuts are
syntax that provide a means to identify our dynamic join points. We have a
pointcut for identifying call dynamic join points, and another for identifying exec
dynamic join points. We adopt the following syntax for pointcuts. It contains
two structures, one for each kind of dynamic join point.

We have chosen a direct pointcut syntax, where the procedure name and
the argument names are given directly in the pointcut. In the next section,
we will use the argument names to offer access to the arguments in the advice.
The semantics of a pointcut is to examine whether the current interpreter state
matches the identified continuation frame – both in kind and content – and the
current value. This is seen in Figure 8.

In the case of a CALLPC pointcut, we ensure that the frame is a CALL
frame, and that it holds a procedure name equal to the one given in the pointcut.
For a EXECPC pointcut, we ensure that the frame is an EXEC frame and that
the supplied value is a procedure whose name is equal to the one given in the
pointcut.

We also include one combinational pointcut. It is ORPC , which matches any
dynamic join point which matches the first subpointcut; or, failing that, matches
the second subpointcut. This allows us to abstract a concern that cuts across
multiple procedures. For example, one might consider two displayX procedures,
each with a different output format, to be a single display concern.

16



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; pointcut matching – returns #f or ids
(define ((match-pc p) v f )

(cond [(CALLPC? p) (and (CALL? f )
(string=? (CALLPC-pname p)

(CALL-id f ))
(CALLPC-ids p))]

[(EXECPC? p) (and (EXEC? f )
(eq? v (lookup/proc (EXECPC-pname p)))
(EXECPC-ids p))]

[(ORPC? p) (or ((match-pc (ORPC-p1 p)) v f )
((match-pc (ORPC-p2 p)) v f )))))

Figure 8: Proc Pointcuts — Implementation

This combinational pointcut provides a simple specialization ordering to point-
cuts; and, by extension, advice. Any given pointcut, A, is more specialized than
ORPC (A B) for any distinct B pointcut. Pointcuts do not have a unique total
ordering, only a partial order. They can be totally ordered using the standard
topological sort. By extension, advice can be ordered by this total pointcut order.

If a pointcut matches the top continuation frame, the list of identifiers from
the pointcut is returned. If a match is not found, #f (Scheme false) is returned.
In our implementation, matching against an ORPC pointcut yields the identifiers
for the matching sub-pointcut. This means that each sub-pointcut must provide
the same identifiers.

One important property of pointcuts is that they identify dynamic join points,
but do not alter their semantic behaviour. It provides a clear distinction among
the rôles assigned to each construct. This matches our intuition about pointcuts.
For example, consider the case of advice which simply proceeds; there should be
no effect regardless of what the pointcut attached to the advice body. The effect
of a piece of advice should be determined by the advice body, not the pointcut.

Principle. Pointcuts identify dynamic join points; they do not do not alter the
semantic behaviour of the identified dynamic join points.

This will have repercussions when we consider the cflow pointcut found in As-
pectJ and other languages. That pointcut is responsible for identifying dynamic
join points that occur during the control flow of another dynamic join point.

17



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

(define-struct ADVICE (pc body)) ;; <pointcut expression>

Figure 9: Proc Advice Declaration – Abstract Syntax

(BEFORE pc x) ≡ (AROUND pc (SEQ x proceed))

(AFTER pc x) ≡ (AROUND pc (APP foo (proceed)))
with fresh helper procedure

(foo . (PROC (v) (SEQ x v)))

Figure 10: Proc Before and After Advice

In our model, pointcuts are first-order predicates for dynamic join points. In
this general view, we are no different from other accounts of dynamic join points,
pointcuts, and advice aop. However, dynamic join points are continuation frames
at which advice bodies are to operate. Hence, we can view advice as extending
and specializing the behaviour of control points in programs.

Advice

Now we come to the third feature of our model — advice. A piece of advice
needs to specify a means of affecting the semantics at join points. Syntactically,
it contains two parts:

1. a pointcut — which indicates which dynamic join points are to be affected

2. an advice body — an expression

The new syntax element for advice declarations is given in Figure 9. Advice
are declarations in our model, just like procedures. Therefore, they will have
identifiers bound to them, just as procedures do.

In our system, all advice in our system is around advice. That is, it has
control over, and alters the behaviour of, the underlying dynamic join point. Our
advice may proceed that dynamic join point zero, one, or many times. This does
not restrict the generality of our model, as common before and after advice are
two possible orderings of the advice body and proceed , as shown in Figure 10.

18



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

Semantically, an advice resembles a procedure. The pointcut part identifies
the affected dynamic join points, and provides binding names for the arguments
of the dynamic join point. In our model, the advice body acts like a procedure
body, but its locus of application differs.

A procedure is usually applied to some values to yield another value. For
example, the procedure pick in the following code:

(define (pick x ) (if x 1 2))

(+ (pick #t) 3)

is applied to #t to yield a new value 1. Filinski [65] first recognized that pick
transforms the continuation of the procedure application from

(λ (n) ; await number, add three, halt
(+ n 3)

to
(λ (b) ; await boolean

(let ([n (if b 1 2)]) ; select number
((λ (n) (+ n 3)) ; original continuation
n))) ; given the selected number

One way to discern this different mode of application is to consider the types
of the elements involved. Jouvelot and Gifford [86] recognized that the type of the
original continuation is ¬number (read as consumes number), and that applying
pick has extended the continuation to consume a boolean (typed ¬boolean). Pick
has type boolean → number when considered as a value transformer, and has type
¬number → ¬boolean as a continuation transformer.

In Filinski’s symmetric lambda calculus [65], procedures could be applied in
either way: to values, yielding new values; or to continuations, yielding new
continuations. In our model, advice provides this similar procedure application
to continuations. We present our semantics in five parts – advice elaboration and
matching, altered step/prim to support advice execution, a new step/weave to
weave advice into the execution of the program, advice invocation, and last, the
proceed expression.

First, we recognize that advice is a declaration; hence we need to elaborate
the advice declarations, in the same trivial way we did for procedure declarations.
This is displayed in Figure 11.

19



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; advice elaboration
(define ∗advice∗ #f)

(define (run s)
(let ([g (parse-prog s)])

(set! ∗procs∗ (cons (collect (λ (d)
(PROC? (cdr d)))

(PROG-decls g))
∗procs∗))

; collect advice declarations
(set! ∗adv∗ (collect (λ (d)

(ADVICE? (cdr d)))
(PROG-decls g)))

(eval (PROG-body g) empty)))

;;; advice matching
(define-struct MATCH (ids adv))

(define (collect-matches v f )
(collect (λ (a)

(let ([ids (match-pc (ADVICE-pc a) v f )])
(if ids

(make-MATCH ids a)
#f)))

∗advice∗))

Figure 11: Proc Advice – Elaboration and Matching

Matching is also shown in Figure 11. We simply walk the elaborated list of ad-
vice, comparing the pointcuts and returning a MATCH containing the pointcut-
match identifiers and the advice itself.

We need to have a new continuation frame to support advice execution. We
also will end up needing a special marker frame to disable matching in the case
that we have proceeded to the actual dynamic join point itself. These frames
are called ADVEXEC and APPPRIM , shown in Figure 12. The extensions to
step/prim are shown in that figure as well. For simplicity, we make the final
element of the matches be a representation of the original dynamic join point:
for a CALL dynamic join point we store the procedure name, for an EXEC
dynamic join point we store the PROC or procedure.

20



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; advice continuation frames
(define-struct ADVEXEC (matches)) ;<match. . . | id | PROC | procedure>
(define-struct APPPRIM ()) ;indicates call step/prim rather than step – administrative

;;; step/prim contains original step
(define ((step/prim v) f k)

(cond ;. . . ;original content unchanged
[(ADVEXEC? f ) (invoke/adv (ADVEXEC-matches f ) v k)]
[(APPPRIM? f ) (apply/prim v k)]))

Figure 12: Proc Advice – Frames

Pointcuts not only provide parameters at the application site, but also auto-
mate the application of advice to all matching dynamic join points. This universal
application of advice extends the semantics of matching dynamic join points to
contain additional behaviour. We need to implement a weaver that determines
applicable advice at each dynamic join point. We implement step/weave and use
it to re-define apply in our system. The implementation is shown in Figure 13.

Execution of advice is displayed in Figure 14. This figure shows that advice
invocation parallels that of procedure execution.

A subtle difference is that advice can extend the behaviour of a join point,
by calling proceed , a new expression in our Proc language. It takes a set of
arguments and passes them on to the next advice, or the underlying dynamic
join point if all advice has been invoked. The syntax for proceed , as well as the
extension of eval is given in Figure 15.

In order for proceed to work, we need to provide the remaining matched
advice, and a representation of the original join point. This is done by binding a
special variable, %proceed into the environment for the advice6. It contains the
remaining advice, if any, and the original procedure name (in the case of a CALL
dynamic join point), the original PROC or procedure (in the case of an EXEC
dynamic join point).

Recalling our principle that dynamic join points correspond to frame activa-
tions, we recognize that our new frame, ADVEXEC defines a new set of dynamic
join points that may be matched against. By construction, all of our declara-

6. Note that the shorthand expressions (Figure 3) must carry this additional variable into
helper procedures if they contain proceed. This is a trivial operation.

21



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;;step/weave weaves advice based on matches
(define ((step/weave v) f k) ;; step with advice weaving

(let ([ms (collect-matches v f )])
(if (null? ms)

((step/prim v) f k)
(invoke-adv (append ms ;more advice

(cond [(CALL? f ) (CALL-id f )] ;final proceed
[(EXEC? f ) v ]
[(ADVEXEC? f ) (ADVEXEC-matches f )))

(cond [(CALL? f ) v ] ; arguments to advice
[(EXEC? f ) (EXEC-args f )]
[(ADVEXEC? f ) v ])

k))))

(define (apply/weave v k)
((pop (halt v)

(step/weave v))
k))

(define apply apply/weave)

Figure 13: Proc Advice – Weaving

tions are bound to identifiers, advice declarations will also have names. Hence,
we can easily provide an advice-execution dynamic join point, and its associated
matching operation. By construction, all activations of ADVEXEC frames are
processed by step/weave, so the weaving of additional behaviour is automatic.
We simply need to have invoke/adv recognize that if the last element in the match
is a list, then we are back to proceeding the original advice. The call structure
that makes this so is:

• apply calls step/weave

• step/weave looks for matching advice

– if there is none, step/prim provides the fundamental behaviour of the
dynamic join point

– if there is a match, invoke/adv is called to evaluate arguments and
push an advice execution dynamic join point

22



2. A Model for DJPs, PCs, and Advice Exposing Our AOP Constructs

;;; advice invocation
(define (invoke/adv ms vs k)

(let ([m (car ms)])
(cond [(symbol? m) (apply vs ;proceed to CALL

(push (make-APPPRIM )
(push (make-CALL m)

k)))]
[(PROC? m) (apply vs ;proceed to EXEC PROC

(push (make-APPPRIM )
(push (make-EXEC m)

k)))]
[(procedure? m) (apply vs ;proceed to EXEC prim

(push (make-APPPRIM )
(push (make-EXEC m)

k)))]
[(list? m) (apply vs ;proceed to ADVEXEC

(push (make-APPPRIM )
(push (make-ADVEXEC m)

k)))]
[(MATCH? m) (eval (ADVICE-body (MATCH-adv m))

(bind (cons ’%proceed (MATCH-ids m))
(cons (cdr ms vals))
empty)

k)]

Figure 14: Proc Advice – Invocation

;;; proceed expression
(define-struct PROCEED (rands)) ;<exp. . . >

(define (eval x r k)
(cond ;. . . ;original cases unchanged

[(PROCEED? x ) (evlis (PROCEED-rands x )
r
(push (make-ADVEXEC (lookup ’%proceed r))

k))]))

Figure 15: Proc Advice – Proceed

23



2. A Model for DJPs, PCs, and Advice Comparison to Other Semantics

• proceed expressions call invoke/adv to extract the next advice or the final
dynamic join point and initiate it’s execution.

In our model, an advice body provides new behaviour for each dynamic join
point (control point) identified by the pointcut associated with that advice. This
new behaviour extends the original because advice may contain additional pro-
gram operations. This new behaviour specializes the original because the original
behaviour is available through the proceed expression.

2.4 Comparison to Other Semantics

We compare our dynamic join point schema to those of other semantic models.
The first two are semantic models developed as joint work between this author
and others.

Aspect Sandbox

In joint work, Dutchyn et al. [56, 57] and Wand et al. [167], we developed a num-
ber of semantic models of aspect-oriented programs, both for object-oriented and
procedural languages. The culmination of that work, Wand et al. [169] provides a
model of a first-order, mutually-recursive procedural programming language. In
that semantic model, three kinds of dynamic join points were constructed ex ni-
hilo: pcall , pexecution, and aexecution. This work develops the principle behind
the intuition of those three dynamic join point kinds.

Our model also eliminates some of the irregularities in these other implemen-
tations. For instance, because Wand et al. [169] implements a direct semantics,
it maintains a separate stack of dynamic join points rather than relying on struc-
tured continuations to do this. Further, it relies on thunks to delay execution of
proceed ; in our semantics, this arises from the continuation structure.

We focus on the core semantic model for our system, therefore we have avoided
the more extensive pointcut languages found in mainstream languages. We adopt
conventions from early versions of AspectJ [93]. The current version of AspectJ
provides a pointcut calculus with separate binding combinators (e.g., args, and
target), as well as pattern matching and other features. We also avoid within,
a pointcut that identifies dynamic join points based on lexical structure. In our

24



2. A Model for DJPs, PCs, and Advice Comparison to Other Semantics

model, && provides no additional expressive power, so we do not include it. In
summary, our pointcut language provides a reasonable fit for our model approach.

Another sort of pointcut is also part of the Aspect Sandbox: cflow . In some
sense, it is the dynamic equivalent of within: it identifies dynamic join points
which are within the control flow context of another dynamic join point. As this
pointcut matches dynamic join points based on their dynamic context, it has sub-
tle interaction with tail-call optimization. Furthermore, because it motivates the
second part of the dissertation on effects, we defer its discussion until Section 3.2.

Wand et al. [169] chooses to statically weave execution dynamic join points
into the procedure declarations. In the case of multiple proceed calls, this can
lead to code bloat, as the body of the procedure is replicated. They also need to
ensure freshness of variables, as inserting a let around a proceed can cause acci-
dental capture. Our implementation avoids this duplication of code and maintains
existing lexical structures.

AspectScheme

Our model provides a straightforward way to implement dynamic join points,
pointcuts, and advice languages. We attempted this with Scheme, yielding As-
pectScheme. A semantic description of AspectScheme, based on our principle of
dynamic join points as continuation frames, is given in the next chapter.

This author contributed the semantic description of AspectScheme [58] and
the online implementation [55]. AspectScheme models join points as procedure
applications in the context of other in-progress procedure applications. It depends
on novel continuation marks to express the structure of the continuation stack,
and relies on macros to provide weaving whenever a procedure is applied. This is
a practical solution for extending Scheme where continuations are available only
as opaque procedures—their structure cannot be examined. This work simplifies
the AspectScheme semantic presentation to recognize that continuation marks
are not required, provided Ager et al. [5]’s defunctionalized continuation model
is available.

AspectScheme offers only a single kind of dynamic join point, a procedure
application in the context of pending procedures. This corresponds to our EXEC
dynamic join point, but with additional context. However, because dynamic join
points are first-class objects, namely temporally ordered lists of procedures and
arguments in AspectScheme, the programmer can extend the set of pointcuts by

25



2. A Model for DJPs, PCs, and Advice Comparison to Other Semantics

writing their own. This expressiveness is put to good use in showing practical
applications of advice.

The published AspectScheme language provides some other pointcuts, one of
these is cflow(pc). This walks the context of pending procedures to see if the
desired one is encountered. Unfortunately, to support the expected semantics,
general tail-call optimization in Scheme must be discarded, as we will see in the
next chapter.

PolyAML and µABC

Dantas et al. [41] provide PolyAML, a polymorphic aspect-oriented programming
language. It is implemented in two levels, a polymorphic surface syntax, which is
translated into a monomorphic dynamic semantics, FA. Their focus is on type-
checking, and around aspects are incompatible with that goal. They can only
support oblivious [70] aspects, which must be before and after only. A later
paper [42] solves the typing difficulties with around advice, using novel local type
inference techniques.

Their monomorphic machine is described in terms of context semantics [4].
Briefly, a context is an expression with a hole, which the current redex will plug,
once it reduces to a value. The machine shifts into deeper and deeper contexts
until values can be directly computed, either as literals or variable references.
Once all the holes are plugged in a redex, it is reduced to a value and plugged
into its pending context. Danvy et al. investigated the equivalence between con-
text semantics and continuation semantics. PolyAML’s label method for pro-
viding aspects in monomorphic context semantics appears to be equivalent to
AspectScheme’s continuation marks in a continuation semantics.

It would be interesting to attempt to remove the labels from their FA core
calculus by reifying the actual continuation structures. We expect that the prin-
cipled set of dynamic join points would again become apparent, rather than
imposed externally.

Bruns et al. [20] provides an untyped core calculus for aspects. As Dantas
et al. [41] note, this core calculus strongly resembles their FA monomorphic con-
text semantics. Again, labels are used to annotate a context and provide an
understanding of dynamic join points. They support full around advice, but
make no attempt to supply static type checking or inference.

26



2. A Model for DJPs, PCs, and Advice Summary

Other Related Work

Several other semantic formulations for aspects have been offered.
Douence et al. [53] considers dynamic join points as events, and provides

oblivious aspects. This is done by providing a custom sequencing monad that
recognizes computations, and wraps them with the additional behaviour of the
advice. Unfortunately, this is insufficient to allow around advice to alter the
parameters of the wrapped computation. Only the option to proceed with the
original arguments is available.

Andrews [8] provides a process-calculus description of aspects. Oblivious
aspects are provided. Constrained by encapsulated processes, full around aspects
are not possible.

2.5 Summary

In summary, our work provides a well-founded implementation of aspects with
three key properties:

1. Dynamic join points, pointcuts, and advice aspects are modeled directly in
continuation semantics; without the need for labels or continuation marks,

2. Principled dynamic join points arise naturally, as continuation frames, from
describing programming languages in continuation semantics, and

3. Advice acts as a procedure on these continuation frames, providing special-
ized behaviour for them.

27





Chapter 3

Advice in Higher Order Languages

In this chapter, we apply our framework to Scheme, a higher-order language,
making pointcuts and advice accessible to the programmer. We present the dy-
namic semantics of this language, AspectScheme, in terms of a ceks machine.
This framework will enable us to make precise statements about properties of
dynamic join point, pointcut, and advice languages. In particular, we will inves-
tigate the cflow pointcut, including two different potential formal models. From
this, we will recognize state, the computational effect inherent in this pointcut.

3.1 AspectScheme Model

The AspectScheme programming language is described in Dutchyn et al. [58]; the
dynamic semantics given here draw heavily on that published presentation. One
focus of the published presentation, scoping of dynamic join points, pointcuts,
and advice aspects [54; 55], is not examined in detail here; but informs our
understanding of the interactions of these kinds of aop.

We begin by laying out the semantics for a functional language which ex-
presses dynamic join points, pointcuts, and advice. We first give a primer on
the machine model which we use to define our operational semantics. Subse-
quent sections then explain some key rules, including those for declaring these
constructs, testing function equality, and applying functions. Last, we informally
sketch the connection between the implementation, given in Appendix B and the

29



3. Advice in Higher Order Languages AspectScheme Model

operational semantics.

Background on the CEKS machine

We use a variation on the ceks machine [62] as the model for our semantics.
We have three reasons for using the ceks machine in defining our semantics.

1. Pointcuts identify points in the computation; the structure of our defunc-
tionalized continuations give us this concrete representation.

2. Because the machine uses an environment to maintain variables, we can
easily add a second environment to keep track of aspects in scope.

3. Programmers often use side-effects in writing useful aspects (e.g. logging,
tracing, error reporting); hence, we include a model that contains an ab-
stract store.

The ceks model defines program behavior by a transition relation from one
program state to the next. Transitions that key on an expression correspond to
eval clauses; and, transitions that key on a value correspond to apply clauses.
We distinguish these transitions by differing arrows,

B for eval transitions and

I for apply transitions.

The ceks machine adds two more pieces of information to the state of a
computation. First, it pairs each control string with an environment that maps
variable names to locations in an abstract store. Second, each state has an
abstract store that maps locations to value-environment pairs. Formally, we
represent the state of a computation with a triple of the following form:

1. The control string (C) and its environment (E).

2. The current continuation (K).

3. The current store (S).

In order to use a ceks machine, we must describe how to initiate a com-
putation, and to recognize when it has terminated. Given a program, a closed

30



3. Advice in Higher Order Languages AspectScheme Model

〈〈(o M1 . . .Mn), E〉,K, S〉
Bprim 〈〈M1, E〉, 〈op-k o, 〈〉, 〈〈M2, E〉, . . . , 〈Mn, E〉〉,K〉, S〉

〈VCm, 〈op-k o, 〈VCm−1, . . . ,VC1〉, 〈MCm+1, . . . ,MCn〉,K〉, S〉
Iprim 〈MCm+1, 〈op-k o, 〈VCm, . . . ,VC1〉, 〈MCm+2, . . . ,MCn〉,K〉, S〉

〈VCn, 〈op-k o, 〈VCn−1, . . . ,VC1〉, 〈〉,K〉, S〉 Iprim 〈δ(o,VC1, . . . ,VCn),K, S〉

Figure 16: ceks Primitives Transitions

top-level expression M , the machine is initialized with the triple:

〈〈M,E0〉,mt-k, S0〉

where E0 ≡ x 7→ error is the initial environment that binds no variables, and
S0 ≡ ` 7→ error is the initial store that binds no locations. The machine steps
through transitions until a terminal state 〈〈V,E〉,mt-k, S〉 is reached, whereupon
V is the final value of the program.

During the execution of the ceks machine, various primitive operations must
be performed. In our case, we provide a minimal sufficient set for manipulating
the list values we support: empty? , cons, first , and rest . The transition rules are
given in Figure 16.

In this formal system, VC = 〈V,E〉 represents a closure of a value over an
environment. Operands are evaluated left-to-right; with administrative continu-
ation frame 〈op-ko,VC . . . ,MC . . . , .〉 The δ function receives the resulting value
closures, and implements the actual primitives. Specifically, we define δ in Fig-
ure 17.

Declaring Advice

To declare advice, we use around and fluid-around expressions to expose the
continuation structure of a functional programming language.

(around pc adv body)

31



3. Advice in Higher Order Languages AspectScheme Model

δ(empty? ,VC ) = 〈true, E0〉 if VC = 〈empty, E〉
= 〈false, E0〉 otherwise

δ(cons,VC1,VC2) = 〈(cons VC1 VC2), E0〉

δ(first , 〈(cons VC1 VC2), E〉) = VC1

δ(rest , 〈(cons VC1 VC2), E〉) = VC2

Figure 17: ceks Primitive Operations

(fluid-around pc adv body)

We will first describe the semantics of around; the semantics of fluid-around

is nearly identical.
When the programmer declares an advice via around, the machine may

later access the advice during function application. This situation resembles the
use of variables: the programmer declares them with lambda or let, and later
accesses them by variable references. Drawing on this analogy, we add a second
environment to our machine—one for storing advice. The reduction rules for our
model will be similar to those for the ceks machine, except that closures now
include both a variable environment and an advice environment. The template
for a reduction rule now includes advice environments, Ai, in closures:

〈〈C1, E1, A1〉,K1, S1〉 ⇒ 〈〈C2, E2, A2〉,K2, S2〉

where 〈C,E,A〉 is either a value closure (C = V ) , abbreviated as V C, or an
expression closure (C = M) , abbreviated as MC. We provide A0 ≡ ∅ as the
initial, empty advice environment.

The evaluation of around has three reduction rules, given in Figure 18.

1. The first rule moves evaluation to the pointcut, Mpc, while remembering
that the declaration was for a static advice.

2. The second rule says that once the pointcut computes to a value (VCpc),
evaluate the advice (MCadv) next.

32



3. Advice in Higher Order Languages AspectScheme Model

〈〈(around Mpc Madv M), E, A〉,K, S〉
Baround 〈〈Mpc, E, A〉, 〈around1-k static, 〈Madv, E, A〉, 〈M,E,A〉,K〉, S〉

〈VCpc, 〈around1-k scope,MCadv,MC ,K〉, S〉
Iaround 〈MCadv, 〈around2-k scope,VCpc,MC ,K〉, S〉

〈VCadv, 〈around2-k scope,VCpc, 〈M,E,A〉,K〉, S〉
Iaround 〈〈M,E,A ∪ {〈scope,VCpc,VCadv〉}〉,K, S〉

〈〈(fluid-around Mpc Madv M), E, A〉,K, S〉
Bfluid−around 〈〈Mpc, E, A〉, 〈around1-k dynamic, 〈Madv, E, A〉, 〈M,E,A〉,K〉, S〉

Figure 18: ceks Around Transition Rules

3. The third rule applies after both the pointcut and advice become values.
The rule moves evaluation to the body of the around expression, but with
an extended advice environment. We add the triple 〈scope,VCpc,VCadv〉
to the advice environment; that is, the scope tag (static for around), the
pointcut value (VCpc), and the advice value (VCadv).

To support fluid-around, we simply add a rule similar to the first one for
around, except that its scope tag is dynamic.

In short, the semantics of advice declaration say to evaluate the pointcut and
advice, then add them (along with the appropriate scope tag) to the advice envi-
ronment when evaluating the body. The continuation frames 〈around1-kscope,VC ,MC , 〉
and 〈around2-k scope,VC ,MC , 〉 are administrative.

Function Equality

Next we address the issue of function identity in a higher-order language. In
AspectScheme, a pointcut can refer to one or more procedures; for example,
the pointcut (call open-file) denotes dynamic join points representing calls to

33



3. Advice in Higher Order Languages AspectScheme Model

the function open-file. Thus, at each function application, we must determine
whether the function being applied is open-file. In a language like Java, this
would be an easy test—we just use string equality to compare the name open-file
with the name of the method being invoked. In a functional language, how-
ever, two problems arise. First, the term in the function position need not be a
variable name—it may be an arbitrary expression that evaluates to a function.
Second, even if the function is the variable open-file, we cannot tell by its name
whether this was the open-file in scope when the advice was defined. Consider
the following expression:

(let ([open-file (λ (f ) . . . )])
(around (call open-file) trace-advice

(let ([open-file (λ (f ) . . . )])
(open-file "vancouver"))))

In this example, should the call to open-file invoke the advice body? The answer
is no—because the open-file in the pointcut really refers to the outer open-file,
while the function application refers to the inner open-file.

To cope with this challenge of function equality, we will borrow the definition
of equality used in Scheme [91]. The predicate eq? in Scheme can be used to
compare functions. One interpretation of function eq? -ness is:

Two function closures are equal if they have the same textual source
location and their environments are identical.

To capture this meaning, we assume that each lambda expression in the source
program is labeled with a unique location identifier and each environment is
labeled with a unique store location when it is constructed. In order to do this,
we must extend our definition of environment to include a store location tag,
E :: 〈`, x 7→ `〉 with E0 = 〈`0, x 7→ error〉 , and store to include the set of locations
allocated to environments, S :: 〈{`}, ` 7→ VC 〉 with S0 = 〈{`0}, ` 7→ error〉 where
`0 is initially allocated to E0. This construction is similar to that given for R5RS
Scheme [91] in order to meet a minimal specification for eq? .

Two function closures are then eq? if and only if both location identifiers are
the same and both environment locations are equal. An additional case for the δ

function illustrates this definition, given in Figure 19.
This definition does not identify all functions that are observationally equal,

but it is a conservative approximation of that relation that is both useful and can

34



3. Advice in Higher Order Languages AspectScheme Model

δ(eq? , 〈(λ (x) M)t, 〈`, e〉, A〉, 〈(λ (x′) M ′)t′ , 〈`′, e′〉, A′〉)
= 〈true, E0, A0〉 if t = t′ and ` = `′

= 〈false, E0, A0〉 otherwise

Figure 19: ceks Equality Operation

be computed in constant time.

Primitive Function Application

Our language has two constructs for function application: the default application
rule, which injects advice into the computation, and a “primitive” application
(named app/prim), which does not observe advice. As we saw earlier, we use
app/prim mainly to model AspectJ’s proceed calls from within the body of an
advice.

The semantics of app/prim are the same as that of application in the original
ceks machine, save for the question of how to handle the advice environment.
With regular (variable) environments, we have two choices:

1. We can use static scoping—we evaluate the body of the procedure using
the environment from its definition site.

2. We can use dynamic scoping—we evaluate the body of the procedure using
the environment from its application site.

Since we support simultaneous static and dynamic advice, we use some advice
from both advice environments. Specifically, we evaluate the body of the function
using static advice from the site of definition, and dynamic advice from the site
of application.

The evaluation of primitive application comprises three reduction rules, given
in Figure 20.

1. The first rule moves evaluation to the function position, Mfun, and keeps
track of the static advice from the aspect environment at the application
site.

35



3. Advice in Higher Order Languages AspectScheme Model

〈〈(app/prim Mfun Marg), E, A〉,K, S〉
Bapp/prim 〈〈Mfun, E, A〉, 〈appprim1-k 〈Marg, E, A〉, A, K〉, S〉

〈VCfun, 〈appprim1-k MCarg, Aapp,K〉, S〉
Iapp/prim 〈MCarg, 〈appprim2-k VCfun, Aapp,K〉, S〉

〈VCarg, 〈appprim2-k 〈(λ (x ) M )t, E, Afun〉, Aapp,K〉, S〉
Iapp/prim 〈〈M,E′, A′〉,K, S′〉
where

〈E′, S′〉 = 〈E,S〉+ {x 7→ VCarg}
A′ = Aapp|dynamic ∪ Afun|static

Figure 20: ceks Primitive Application Transitions

2. The second rule moves evaluation to the argument position, once the func-
tion is fully evaluated.

3. The third rule performs the actual application. It moves evaluation to
the body of the lambda expression, extends the environment and store to
reflect the parameter binding, and combines the two advice environments
as described above.

To extend an environment and store with a variable and value, we use the
following definition:

〈〈`, e〉, 〈L, s〉〉+ {x 7→ VC} ≡ 〈〈`e, e[x 7→ `v]〉, 〈L ∪ {`e}, s[`v 7→ VC ]〉〉

where `e, `v /∈ L ∪ dom(S)

where e[x 7→ `] and s[` 7→ VC ] employ the usual function extension.
These reduction rules for primitive application only differ from the original

ceks machine in one respect: they create the appropriate advice environment
before evaluating the body of the function.

36



3. Advice in Higher Order Languages AspectScheme Model

〈〈(Mfun Marg), E, A〉,K, S〉
Bapp 〈〈Mfun, E, A〉, 〈app1-k 〈Marg, E, A〉, E, A,K〉, S〉

〈VCfun, 〈app1-k MCarg, Eapp, Aapp,K〉, S〉
Iapp 〈MCarg, 〈app2-k VCfun, Eapp, Aapp,K〉, S〉

Figure 21: ceks Application Transitions

Regular Function Application

Three transition rules dictate the evaluation of function application, given in
Figure 21. The first two steps are standard, because we do not invoke advice until
the function and its argument are evaluated. The first rule moves evaluation to
the function position, remembering the advice environment from the application
site. The second rule moves evaluation to the argument position. We now come
to the heart of our semantics: the mechanism for invoking advice during function
application.

Three things must happen during advice invocation. First, we must generate
a dynamic join point representing the application; second, we must test and apply
any advice transforming the dynamic join point; and third, we must allow the
transformed dynamic join point to execute.

In our original publication of AspectScheme [58], dynamic join points were
the application of a procedure to arguments. However, we also chose to adorn
the dynamic join point with its context of pending procedure applications. In
order to provide this context, we needed to provide a special continuation mark
continuation frame to store each procedure while it was executing. This technique
made cflow7 pointcuts more direct, but made Scheme’s tail-call optimizations
unsound.

For many languages, tail-call optimization is permissible. For example, the
Java programming language [78] explicitly supports tail optimization as discussed
for the StackOverflowException class. The C and C++ programming languages

7. Recall that cflow pointcuts enable dynamic join points to be identified within the control-
context of another dynamic join point.

37



3. Advice in Higher Order Languages AspectScheme with Cflow

specifications are silent about tail call optimization, and several popular imple-
mentations, including the gnu compiler suite include support for this feature.
Therefore, presuming upon a semantics that omits tail-call optimization is unac-
ceptable.

In the presence of tail-call optimizations, a central theme of this chapter is
to recognize that cflow has a control effect. Therefore, we consider two imple-
mentations of dynamic join points. The first implementation corresponds to the
original AspectScheme specification, where dynamic join points are given in con-
text made available by continuation marks. In this first case, we identify the
unsound optimizations mandated by the Scheme standard [91]. The second im-
plementation relies on the aspect programmer to accumulate context. In this
second case, we note that tail-call optimizations are sound, and recognize that a
state effect is entailed.

3.2 AspectScheme with Cflow

The first step in applying advice is to generate dynamic join points. The definition
of dynamic join points is given via the JJ•K function, shown in Figure 23. It’s
purpose is to examine the defunctionalized continuation and extract the parts of
interest. In this section, the parts of interest are procedure applications which are
in-progress, along with the procedure being applied and the argument values at
that application site. In order to retain the information about the pending calls,
we extend the continuation with an additional frame to store the procedure and
the arguments it is being applied to. When the body of the procedure completes,
the result value is applied to the continuation-mark frame, which simply applies
the result value to the next frame in sequence. This is formally expressed in
Figure 22.

This continuation-traversing implementation of J is given in Figure 23.
The second step in applying advice is to match the advice pointcut against

the dynamic join point and weave as appropriate. We do this for each advice in
the advice environment,

A = {〈scope, pci, adv i〉 | i = 1, . . . , | A |}.

This entails applying pci to the dynamic join point in context (jp∗). If this returns
false, we return the original (untransformed) procedure. Otherwise, the pointcut

38



3. Advice in Higher Order Languages AspectScheme with Cflow

〈VCarg, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp,K〉, S〉
Iapp 〈〈M ′, E′, Aapp〉,K ′, S′〉
where

M ′ = (app/prim W J| Aapp |K arg)

K ′ = 〈markapp-k 〈(λ (x ) M )t, Efun, Afun〉,VCarg,K〉

〈E′, S′〉 = 〈Eapp, S〉
+ {fun 7→ 〈(λ (x ) M )t, Efun, Afun〉, arg 7→ VCarg, jp∗ 7→ JJK ′K}
+ {pci 7→ VCpci , adv i 7→ VCadvi | 〈scope,VCpci ,VCadvi〉 ∈ Aapp}

〈VC , 〈markapp-k VCfun,VCarg,K〉, S〉 Imark 〈VC ,K, S〉

Figure 22: ceks Continuation Marking Application Rules

JJmt-kK = 〈empty, E0, A0〉
JJ〈markapp-k VCfun,VCarg,K〉K = 〈(cons (cons VCfun, VCarg), JJKK), E0, A0〉

JJ〈. . . , K〉K = JJKK otherwise

Figure 23: ceks Dynamic Join Point Construction 1

will have returned a list of context arguments. We apply the corresponding
advice adv i to the context arguments to yield a procedure transformer. That
transformer is applied to the original function yield a new, advised function.
The transformation, W , with base case of the original function, fun, is given in
Figure 24.

Notice the following points about W :

1. If no advice exists, it simply returns the original function, which will be
applied, using app/prim, to the argument.

2. It applies each pointcut to the dynamic join point.

39



3. Advice in Higher Order Languages AspectScheme with Cflow

W J0K = fun
W JiK = (app/prim (λ (f ) (let ([a (app/prim pci jp∗)])

(if a
((app/prim adv i f ) a)
f )))

W Ji− 1K) for i > 0

Figure 24: ceks Advice Weaving

3. If no pointcut holds, again it returns the original function.

4. If some pointcuts hold, then it uses app/prim to apply the final trans-
formed procedure to the original argument. Note that applications in the
body of the transformed procedure may also invoke advice.

Third, we take the procedure resulting from all applicable advice transforma-
tions and app/prim it to the original argument, yielding a new expression for
this function application:

M ′ = (app/prim W J| Aapp |K arg)

The third transition rule applies advice as described above, binding the var-
ious variables for the function, fun, the argument, arg , dynamic join point, jp∗,
and all advice components (pci and adv i) in the environment and store. Evalu-
ation moves to the new M ′, carrying the dynamic advice environment Aapp for
use within M ′, but the static advice environment remains available as part of the
fun closure.

Cflow and Optimizations

With the entire pending call structure available through JJ•K, implementing the
cflow pointcut is straightforward, as seen in Figure 25. The J dynamic join point
constructor has supplied a list of the in-progress calls in the continuation. We
simply traverse the list, looking for matches.

40



3. Advice in Higher Order Languages AspectScheme with Cflow

(define ((cflow pc) jp∗)
(and (not (empty? jp∗))

(or (app/prim pc jp∗)
(app/prim (app/prim cflow pc) (rest jp∗)))))

Figure 25: ceks Cflow Pointcut Implementation

Our implementation has eliminated Scheme’s tail-call optimizations. In the
standard, Scheme implementations are required to be “properly tail-recursive”,
meaning that “an infinite number of active tail calls” must be supported [30; 91].
However, our implementation cannot do this because every active tail call accu-
mulates additional continuation frames. Fortunately, we have no other option,
because we must carry the additional continuation-mark frames; otherwise the
behaviour of the program in Figure 26 is incorrect. We expect that program to
print

(4 1) (3 4)
(3 4) (2 12)
(2 12) (1 24)

Without the context contained in the continuation-mark frames, each recursive
call to fact is a tail call and the enclosing call is optimized off the continuation
stack. Hence, with tail call optimization, we would get no printed output. Tail
call optimization is unsound if dynamic join points include context.

Because we (intentionally) destroy tail-call optimization, our approach suf-
fers from a run-time penalty. Given that cflow and cflowbelow pointcuts can
discriminate the number and order of calls, it is straightforward to see that this
cannot be improved to full tail-call optimization. In languages like AspectJ (sans
args except for the top-most dynamic join point), the entire range of interest-
ing continuation-mark sequences is known in advance. In that case, a regular
automaton can recognize the dynamic join points [144], and the actual continu-
ation marks need only denote the current automaton state. Thus, phased imple-
mentations like ajc [84], and abc [12], can restore tail-recursive optimizations for
procedure calls which do not alter the automaton state; the process is similar to
that described by Clemens and Felleisen [24; 25].

AspectScheme supports capturing arguments from cflow dynamic join points;
therefore a regular automaton no longer suffices: a push-down automaton is

41



3. Advice in Higher Order Languages State Effects Cflow

;; accumulator-style tail recursive factorial
(define (fact n a)

(if (zero? n)
a
(fact (− n 1) (∗ n a))))

(let ([(((adv proceed) n1 a1 ) n a)
(print (n1 a1 ) (list n a))
(newline)
(app/prim proceed n a)])

(around (&& (&& (cflowbelow (call fact))
args)

(&& (exec fact) args))
adv

(fact 4 1)))

Figure 26: Tail-recursive Factorial and Advice

required. Now, there clearly is context building up and tail-call optimization is
manifestly impossible in the general case.

3.3 State Effects Cflow

In this section, we pare our dynamic join point model back to that of Chapter 2.
That is, we eliminate context from a dynamic join point and show that tail-call
optimization is restored. Then, we show how to recover cflow constructs using
state effects. Again, we examine the three steps for applying advice:

1. generate the dynamic join point,

2. match it to the pointcut, and

3. apply the advice body as appropriate.

The first step in applying advice is to generate dynamic join points. In this
implementation, the dynamic join point does not carry context. Therefore, the
continuation K does not need to be extended with a continuation mark. Also,
the JJ•K function is considerably simpler, needing only to examine the closure in
the top continuation frame, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp, 〉and the
applied value. This is illustrated in Figure 27.

42



3. Advice in Higher Order Languages State Effects Cflow

〈VCarg, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp,K〉, S〉
Iapp 〈〈M ′, E′, Aapp〉,K, S′〉
where

M ′ = (app/prim W J| Aapp |K arg)

〈E′, S′〉 = 〈Eapp, S〉
+ {fun 7→ 〈(λ (x ) M )t, Efun, Afun〉, arg 7→ VCarg, jp 7→ JJ(λ (x ) M )tK}
+ {pci 7→ VCpci , adv i 7→ VCadvi | 〈scope,VCpci ,VCadvi〉 ∈ Aapp}

Figure 27: ceks Application Rules 2

JJfK = f

Figure 28: ceks Dynamic Join Point Construction 2

It is important to note that the continuation stack is strictly smaller in this
implementation of application, yielding the needed tail-call behaviour.

The simpler implementation of J is given in Figure 28. It declares that a
dynamic join point is only the current function to be applied. We no longer need
to traverse each continuation frame to accumulate dynamic join point context.

The second step in applying advice is to match the advice pointcut against
the dynamic join point and weave as appropriate. We do this for each advice in
the advice environment,

A = {〈scope, pci, adv i〉 | i = 1, . . . , | A |}.

This entails applying pci to the dynamic join point in context (jp). If this returns
false, we return the original (untransformed) procedure. Otherwise, the pointcut
will have returned a pair comprising the function and the argument. We apply
the corresponding advice adv i to these values to yield a procedure transformer.
That transformer is applied to the original function yield a new, advised function.
The transformation, W , with base case of the original function, fun, is given in

43



3. Advice in Higher Order Languages State Effects Cflow

W J0K = fun
W JiK = (app/prim (λ (f ) (if (app/prim pci jp)

(app/prim adv i f )
f ))

W Ji− 1K) for i > 0

Figure 29: ceks Advice Weaving 2

Figure 29.
This weaver differs from the previous one only in that context arguments are

no longer provided and applied as part of the transformation process. This is as
expected, given that cflow is not available natively.

The third step is to take the procedure resulting from all applicable advice
transformations and app/prim it to the original argument, yielding a new ex-
pression for this function application:

M ′ = (app/prim W J| Aapp |K arg)

The third transition rule applies advice as described above, binding the var-
ious variables for the function, fun, the argument, arg , dynamic join point, jp,
and all advice components (pci and adv i) in the environment and store. Evalu-
ation moves to the new M ′, carrying the dynamic advice environment Aapp for
use within M ′, but the static advice environment remains available as part of the
fun closure.

Regenerating Cflow

Now we turn our attention to providing the equivalent functionality that cflow
gave us originally. We offer two distinct techniques for doing this, each embodied
as a translation of cflow into this simpler AspectScheme dialect. By examining
these translations, we will identify the control effect that cflow engenders.

In this section, we consider a pointcut containing cflow . Without loss of
generality, it is structured as (&& (cflow PCC) PC), where PC may be empty.
Our model advice is given in Figure 30.

44



3. Advice in Higher Order Languages State Effects Cflow

(around (&& (cflow PCC) PC)
(λ (argsC)

(λ (jp)
(λ (args)

body)))
. . .)

Figure 30: Cflow Model Advice

(around PCC

(λ (jpC)
(λ (argsC)

(fluid-around PC
(λ (jp)

(λ (args)
body))

(app/prim jpC argsC))))
. . .)

Figure 31: Invalid Cflow Translation

Cflow by Dynamic Advice Introduction

One potential translation of cflow is given in Figure 31.
The idea behind this implementation is that a cflow pointcut specializes an

advice so as to have different behaviour inside and outside a matching dynamic
join point. Unfortunately, cflow only recognizes the closest enclosing dynamic
join point. So, for a simple example:

(define (cf-fun x )
(if (= x 0)

(cf-fun (− x 1)))
(fun))

(define (fun) (display ’fun))

45



3. Advice in Higher Order Languages State Effects Cflow

(around (&& (&& (cflow (call cf-fun))
(args))

(call fun))
(λ (x )

(λ (jp)
(λ (#;no-args)

(display x )
(app/prim jp))))

(cf-fun 1))

the displayed result will be

0 1 fun 1 fun

rather than

0 fun 1 fun

What has happened is that two advice are applied in the translated version,
whereas only one is applied in the original AspectScheme semantics. In order
for this to work, some sort of search cut operation for nesting related advice is
required. The following, correct, translation captures this cut as a state effect.

Cflow by Effects

Masuhara et al. [114] identified another translation of the stack-crawling imple-
mentation of cflow . In that paper, we used partial-evaluation to validate a model
where each cflow pointcut is represented as a separate context stack. We show
the AspectScheme variation of this in Figure 32.

Our model accounts for this optimization. It recognizes that the behaviour
is to restore tail-call optimizations by incorporating a side-effected stack and the
necessary operations around each dynamic dynamic join point matching the cflow
pointcut argument.

In the original AspectScheme implementation, every procedure application
needed to mark the continuation to ensure that the calling structure was available
for cflow pointcuts to match against. In practice, however, only a subset of the
procedure calls actually required this breaking of proper tail-recursion. In this
translation, only those calls matching PCC have this improper tail recursion.
Advice has altered their behaviour to incorporate additional behaviour, (set! stk
(cdr stk)), which mutates a cell in the store.

46



3. Advice in Higher Order Languages State Effects Cflow

(let ([stk ’()])
([adv (λ (jp)

(λ (args)
(if (null? stk)

(app/prim jp args)
(let ([argsC (car stk)])

body))))])
(around PCC

(λ (jpC)
(λ (argsC)

(set! stk (cons argsC stk))
(app/prim jpC argsC)
(set! stk (cdr stk))))

(around PC2

adv
. . .)))

Figure 32: Valid Cflow Translation

This translation technique also clarifies one difficult situation for cflow iden-
tified in our AspectScheme article [58].

(let ([f (λ (g)
(let ([h (λ () 1)])

(around (&& (call h)
(cflow (call g)))

(λ (jp)
(λ ()

(+ 1 (jp))))
(h))))])

(f f ))

The application of f to itself makes the cflow (call g) pointcut true. Therefore,
the advice within f should be applied, requiring us to remember the calling con-
text even in the absence of any advice at the time of the call to f . AspectScheme,
as given in Section 3.2 maintains the entire calling context, and therefore does ap-
ply the advice. The translated version would need the let ([stk . . . ]) to be hoisted
outside the call (f f ) making it explicit that it covers the entire expression.

47



3. Advice in Higher Order Languages Related Work

3.4 Related Work

Two groups have explored the idea of aspects in higher-order languages, specifi-
cally the ML family [118].

One group has developed Aspectual CaML [115] which incorporates aspects
for pointcuts and advice, and intertype declarations into the ML [118] fragment
of Ocaml. They support similar dynamic join points to AspectScheme, as well
as ones related to structure creation and matching. Although Ocaml is a higher-
order language, pointcuts and advice are not higher-order in their variant. They
work from an expression-based (syntax-derived) understanding of aspects, and
implement the weaver as compile-time rewriting. This differs from our work where
we recognize the semantic foundations of aop, built on structured continuations.
They also omit the thorny issue of cflow , only providing the lexical version,
within. They do tackle one challenging problem, that of inferring and statically
checking types for aspects, which our latently-typed system ignores.

The MiniAML system [165], discussed earlier, also provides a higher-order
language with pointcuts and advice aspects. Their system translates a stripped-
down functional fragment of ML into a lower-level system, FA. In this target
language, labeled evaluation contexts correspond to our marked continuations.
Pointcuts are higher-order label matchers; advice inserts additional behaviour.
However, they only support before and after advice. Hence, cflow and more gen-
eral aspects are not included. This simplifies their static analysis, which focuses
on type-inference and checking. Surprisingly, they comment that polymorphic
around advice appears to be intractable.

Both ML-based systems provide aspects for the expression-based core lan-
guage, ignoring the modules and functors part of the standard. We also ignore
modules for AspectScheme, because there is currently no standard.

Another system, SteamLoom [18], provides facilities similar to our higher-
order pointcuts and advice. It is an extended Java virtual machine that supports
dynamic aspect instantiation and execution. Our AspectScheme implementa-
tion provides a similar facility by allowing pointcuts and advice to be passed as
arguments, and installed dynamically.

48



3. Advice in Higher Order Languages Summary

3.5 Summary

This concludes our dynamic semantics account of dynamic join points, point-
cut, and advice. In a first-order procedural framework, we moved from an
expression-based understanding of dynamic join points, pointcuts, and advice, to
a continuation-based understanding of these constructs. In doing so, our model
supports a principle for dynamic join points, elevating them from “well-defined”
points in an execution to “principled” points. This has enabled us to directly ex-
pose well-founded dynamic join points, pointcuts, and advice within a standard
language, Scheme, and to identify and resolve issues regarding aspect scoping and
tail-call optimization.

Our investigation of optimizations has given us a glimpse of the next part
the dissertation, where we try to understand the static semantics of dynamic join
points, pointcuts, and advice aop. In particular, our implementation of cflow
identifies state as the fundamental effect that its advice must supply.

49





Part II

Static Semantics

51





Chapter 4

Abstracting Pointcuts and Advice

to Effects

A value is, a computation does.

Paul Blain Levy
Call-By-Push-Value [104]

In the preceding part of this dissertation, we have presented a novel dynamic
semantic construction for dynamic joinpoints, pointcuts, and advice. Our goal in
this part is to examine the corresponding static semantics. This examination is
divided across two chapters. This chapter describes an effect analysis [125]8 for
the Proc language, especially the novelty of effect descriptions for pointcuts. The
next chapter will apply these analyses to characterize the interaction of pointcuts
and advice, and compare our results to similar work.

Static Semantics Static semantic descriptions are focussed on providing an
abstraction of program constructs, which can be applied to one of three main
goals:

optimize compilation — identify and validate compilation optimizations, such
as code inlining, closure conversion, code motion, and dead-code elimina-
tion;

8. Also referred to as behaviour analysis.

53



4. Abstracting PCs and Advice to Effects Computational Effects

optimize execution — identify and validate runtime optimizations, such as
stack allocation instead of heap allocation of variables, and elimination of
dynamic type tests (especially in latently typed languages);

validate intent — document, and validate programmer intent; including check-
ing type annotations, and inferring types and computational effects.

In this work we are focused on the third goal, for which the dynamic semantics
presented in Chapter 2 is well suited.

We will also restrict our attention to expressing computational effects rather
than on type inference and checking. Type inference and checking of dynamic join
points, pointcuts, and advice is certainly a fruitful endeavour; Walker et al. [165]
and Dantas et al. [41, 42] have closely investigated this subject, and recently
discovered sophisticated local and global type-inference algorithms that make
inference work. Effect checking has not received the same attention in the research
community.

Furthermore, our novel semantic description highlights the understanding of
dynamic join points as activations of continuation frames — constructs that have
an effect as well as a type. Just as reasoning about continuations led to effect
analysis (c.f. Jouvelot and Gifford [86] and Sabry and Felleisen [141]), we believe
pointcuts and advice naturally admit an effect-based description. In the next
chapter, we examine the additional insight that develops from characterizing
dynamic join points, pointcuts, and advice in terms of effects.

4.1 Computational Effects

Before we develop our effect analysis, it is instructive to briefly describe compu-
tational effects. Below, we enumerate a number of fundamental computational
effects which various researchers have identified and studied. Based on work be-
ginning with Moggi [120] and continuing to recent work [143; 163; 164], we adopt
the monadic taxonomy of effects.

State — captured by monad Ta = a ∗ v, the product type-constructor; where a

is the original computation and v is a value containing the desired state.

Exception — captured by monad Ta = a+e, the disjoint sum type-constructor;
where a is the original computation and e represents exceptions.

54



4. Abstracting PCs and Advice to Effects Computational Effects

Concurrency — captured by monad Ta = [a], the list type-constructor; pro-
viding multiple a computations interleaved by bind and return.

Nondeterminism — captured by the monad Ta = [a], the list type-constructor;
providing multiple a computations executed in-order by bind and return.

All of these effects correspond to a restricted subset of global program transfor-
mations. The restriction is that the transformation can be abstracted into an
execution monad 〈Ta, return, bind〉 as outlined in Wadler [160]. The essential
idea of a monad is that return provides an effect-free computation, and bind
sequences two computations so that their effects are ordered properly.

Two or more effects can be combined in either simple or complex ways. For
example, combining two state monads in the obvious way is isomorphic to pro-
viding a single state monad where v is a pair. Input/output can also be modeled
as a combination of two state monads, but with a stronger coupling: all output
computations that appear before an input computation must be sequenced to
complete before the input computation. This provides the expected interactive
behaviour.

Different effects can also be combined in different ways; and the order of com-
bination can yield dramatic differences. For example, combining exceptions and
state can yield two different behaviours. If exceptions wrap a stateful computa-
tion (i.e. Ta = (a∗ s) + e), then an exception will drop state changes, resulting in
transaction-like behaviour. Most imperative programming languages wrap state
around exceptions (i.e. Ta = (a+e)∗s), retaining state changes in the event of an
exception. Exceptions and concurrency also combine in two different layerings.
If concurrency wraps exceptions, then exceptions are isolated to each thread and
do not impact the other threads. Alternately, exceptions wrapping concurrency
supports an exception aborting all threads.

Our Proc language provides an effect model summarized as

Ta = (([(a + e)] ∗ sglobal) + eabort) ∗ output

State is global only. Exceptions do not reset global state nor output; and abort

discards all execution but leaves output intact.

55



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

This is essentially the effect model of Java9, summarized as

Ta = (([(a + e)] ∗ sglobal) + eabort) ∗ output

Exceptions are isolated to individual threads. Global state is shared across all
threads, but is not preserved if the entire system is aborted. Last, output is
preserved even if the program is aborted.

The goal of our effect analysis is to supply a report of the effects of procedures,
pointcuts, and advice. From these reports, programmers may identify unexpected
pointcut properties and unusual interactions between program code and advice.

4.2 Effect Analysis for Proc

First, we provide a basic behaviour analysis for Proc, predicated on our contin-
uation-based dynamic semantics. That system captures input/output, state, and
sequencing provided respectively the read and display primitives, the get and set
expressions, and the seq expression. Later, we extend it with additional effects,
namely exceptions and threads, in order to provide a more robust set of effect
descriptions.

As we are working with continuations, we use a continuation-passing style
intermediate language. This construction originated with with Appel [10], and
was applied by Shivers [147] as the basis for control- and data-flow analysis in
Scheme. Contemporaneously, Harrison [81] inaugurated procedure string to an-
notate the abstract effects of procedures. Our effect string descriptions will be a
variation of these procedure strings.

Effect Strings for Procedures

We begin by computing effect descriptions of procedures. We provide a straight-
forward implementation of behaviour analysis. Continuations are abstracted into
pureS , representing pure computations, bindS , representing sequencing of two
potentially effect-ful expressions, and a variety of expression-specific abstract
continuations. This unfolding operation relies on a standard codewalker, shown
in Figure 33.

9. Note that slocal is provided indirectly; each thread-local variable exists as a Map data struc-
ture, with values keyed by thread objects.

56



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

(define (walk f x )
(f (cond [(litX? x ) x ]

[(varX? x ) x ]
[(ifX? x ) (make-ifX (walk f (ifX-test x ))

(walk f (ifX-then x ))
(walk f (ifX-else x )))]

[(seqX? x ) (make-seqX (map (λ (x ) (walk f x ))
(seqX-exps x )))]

[(letX? x ) (make-letX (letX-ids x )
(map (λ (x ) (walk f x ))

(letX-rands X ))
(walk f (letX-body x )))]

[(getX? x ) x ]
[(setX? x ) (make-setX (setX-id x )

(walk f (setX-rand x )))]
[(appX? x ) (make-appX (appX-id x )

(map (λ (x ) (walk f x ))
(appX-rands x )))]

[(pcdX? x ) (make-pcdX (map (λ (x ) (walk f x ))
(pcdX-rands x )))]

[else (error ’parse "not an exp: ˜a" s)])))

Figure 33: Expression Codewalker

;;; shadow frames – abstraction of continuations
;; auxiliary shadow frames
(define-struct pureS [val ])
(define-struct bindS [1st 2nd ])
(define-struct bind2S [1st 2nd 3rd ])

;; join point shadow frames
(define-struct getS [id ])
(define-struct setS [id ])
(define-struct callS [id ]) ; includes exec

;; for advice analysis
(define-struct pcdS [rands]))

Figure 34: Shadow Frames

57



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

(define (unfold x )
(walk (λ (x )

(cond [(litX? x ) (make-pureS )]
[(varX? x ) (make-pureS )]
[(ifX? x ) (make-bindS (ifX-test x )

(make-bind2S (ifX-then x )
(ifX-else x )))]

[(seqX? x ) (let loop ([exps (seqX-exps x )])
(cond [(null? exps) (make-pureS )]

[(null? (cdr exps)) (car exps)]
[else (make-bindS (car exps)

(loop (cdr exps)))]))]
[(letX? x ) (foldr make-bindS

(letX-body x )
(letX-rands x ))]

[(getX? x ) (make-getS (getX-id x ))]
[(setX? x ) (make-bindS (setX-rand x ))

(make-setS (setX-id x )))]
[(appX? x ) (foldr make-bindS

(make-appC (appX-id x ))
(appX-rands x ))]

[(pcdX? x ) (foldr make-bindS
(make-pcdC (pcdX-rands x ))
(pcdX-rands x ))]

[else (error ’parse "not an exp: ˜a" s)]))
x )

Figure 35: Unfolding Expressions into cps Form

The unfold operation terminates, yielding a structure abstracting the se-
quence of effect-ful operations comprising the expression. For procedure declara-
tions, we abstract their procedure body expressions and compress this sequence
into a procedure string [81]. Compression is done by walking the cps intermediate
language and accumulating the effects present. This yields a tuple

〈I, O, G, S〉

describing

58



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

I — input effect (read primitives),

O — output effect (display and newline primitives),

G — state access (getS abstract frames),

S — state mutation (setS abstract frames).

In the case of the latter two items, sets of globals that are read and mutated are
kept. These sets are simple instances of regions; attributes of effects that detail
limitations of effects. In this case, the region indicates the subset of the entire
store. We will denote the effect string for a pure computation as

E0 = 〈#f,#f, ∅, ∅〉

Last, we combine the effects of procedure calls. We walk the cps intermedi-
ate form for each procedure declaration repeatedly, constructing more complete
values for ED by taking the union of the original procedure’s tuple and each
called procedure’s tuple. This iterative process will terminate, because the effect
combination is idempotent.

Theorem. The translation to cps intermediate form and the calculation of effect
strings terminates.

Proof Sketch: Translation strictly monotonically reduces the number of sub-
expressions remaining. The process of iteratively combining effect strings strictly
monotonically increases the number of procedure declarations subsumed into each
procedure string. Since these are finite, termination is assured.

Effect Strings for Dynamic Join Points

We have kept all of this simple, because our attention is not on developing new
effect analyses, but on dynamic join points, pointcuts, and advice. Therefore,
within this framework, we extend the effect analysis to the three aspect-oriented
constructs in our language, beginning with dynamic join points, shown in Table 1.

Dynamic join points are not actually present in our cps intermediate lan-
guage; only their shadows are. Dynamic join point shadows are the static ab-
straction of dynamic join points. These shadows appear as our abstract (shadow)
frames in the cps intermediate language. Auxiliary frames correspond to bindS

59



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

ED(i) = ESJbodyK
where

(i (proc ids body)) is a procedure declaration

ESJ(pureS v . . .)K = E0

ESJ(bindS x 1 x 2)K = ESJx1K + ESJx2K
where

〈I1, O1, G1, S1〉+ 〈I2, O2, G2, S2〉
≡ 〈I1 | I2, O1 | O2, G1 ∪G2, S1 ∪G2〉

ESJ(bind2S x 1 x 2 x 3)K = ESJx1K + ESJx2K + ESJx3K

ESJ(getS i)K = 〈#f,#f, i, ∅〉
ESJ(setS i)K = 〈#f,#f, ∅, i〉
ESJ(callS i)K = EP (i)
ESJ(execS i)K = EP (i)

EP (readprim) = 〈#t,#f, ∅, ∅〉
EP (displayprim) = 〈#f,#t, ∅, ∅〉
EP (newlineprim) = 〈#f,#t, ∅, ∅〉

EP (iprim) = E0 for other primitives
EP (iproc) = ED(i) for user-declared procedures

Figure 36: cps Intermediate Language Effects

Dynamic Join

(loc ig) I (getF )
(loc ig) I (setF val)

(val . . .) I (callF ip)
(proc ip) I (execS val . . .)

Table 1: Dynamic Join Points

and bind2S abstract frames. The other frames that are activated at a dynamic
join point are represented individually:

60



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

• getS – for getF dynamic join points

• setS – for setF dynamic join points

• callS – for callF and execF dynamic join points.

The correspondence is shown in Table 2.
In rare circumstances, a shadow may correspond to one dynamic join point;

but, they usually abstract many dynamic join points. To see this, consider a
recursive procedure call. The recursive call expression will be cps-translated into
a single callS shadow. At execution, each recursive call will generate a new callF
continuation frame; activating each of these frames is a new dynamic join point.

Dynamic join points in Proc are get and set of global variables, or call and
exec of procedures; reified as applications of values to the appropriate continu-
ation frames. Each of these dynamic join points has a well-known effect given
either as the state operation and associated region (in the case of getF and setF )
or the effect computed for the procedure (in the case of callF and execF ). There-
fore, we can attach these effects to the shadows as well10. We will use these to
determine an effect description of pointcuts.

Effect Strings for Pointcuts

Although pointcuts do not have effects, they identify dynamic join points which
do have effects. In the case of pointcuts, we do not have a single procedure string
representing the pointcut effect. Instead, because pointcuts may correspond to
multiple dynamic join point shadows, we maintain a list of the effects correspond-
ing to the shadows. Also, for use later in advice bodies, we also maintain a list

Dynamic Join Point Shadow

(loc ig) I (getF ) (getS ig)
(loc ig) I (setF val) (setS ig)

(val . . .) I (callF ip) (callS ip)
(proc ip) I (execS val . . .) (callS ip)

Table 2: Dynamic Join Point Shadows

10. Note that the effects associated with arguments to procedure calls and global sets are
not included in the effect of the dynamic join point. This matches the behaviour of the CPS
semantics, where evaluation of arguments is not part of the dynamic join point.

61



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

ECJ(getC ig)K = (ESJ(getS ig)K, ∅)
ECJ(setC ig iv)K = (ESJ(setS ig)K, {iv})

ECJ(callC ip i . . .)K = (ESJ(callS ip)K, {i . . .})
ECJ(execC ip i . . .)K = (ESJ(callS ip)K, {i . . .})

ECJ(notC pc)K = (E0, ∅)
ECJ(orC pc1 pc2)K = ((E1 ∪ E2), A1)

where
〈(E1, A1)〉 = ECJpc1K
〈(E2, A2)〉 = ECJpc2K

Figure 37: Inferred Pointcut Effects

of argument names from the pointcut. Therefore, the effect string for a pointcut
is an ordered pair (E, V ) where

E — is a list of the original four-tuples 〈I, O, G, S〉, one for each matched point-
cut,

V — is the list of variable names to be bound from the dynamic join point11

Therefore, by examining dynamic join point shadows and the pointcut, we can
associate effect descriptions with pointcuts, as displayed in Figure 37.

Pointcut Effect Reports

The first benefit of this effect analysis is now at hand. Our analysis allows us
to report an effect description of pointcuts to the programmer – essentially a
summarization of the effects expected at all the dynamic join points that match
the pointcut.

One would expect that often these dynamic join point effects would be con-
sistent. Since pointcuts match multiple dynamic join points, and an advice ap-
plies at all of those dynamic join points, it seems reasonable that the dynamic

11. We assume well-formed programs, hence the variable names are consistent across sub-
pointcuts.

62



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

join point effects would be consistent. It appears unusual to have dramatically
different behaviour among the dynamic join points identified by the pointcut.
Furthermore, the effects of those dynamic join points would be expected to have
similar effect annotations. For example, an advice designed to maintain consis-
tency in a model-view-controller design would have pointcuts identifying changes
to state variables in the model, and advice informing the view to update. The
altered behaviour manifested by the advice must provide some new effect that
suits all of the identified dynamic join points.

For each pointcut, we summarize the following global properties:

• whether all, some, or none of the sub-pointcuts’ effect strings contain the
input effect,

• whether all, some, or none of the sub-pointcuts’ effect strings contain the
output effect,

• the common region for state access effects — the global variables which are
accessed in all sub-pointcuts,

• the common region for state mutation effects — the global variables which
are mutated in all sub-pointcuts.

For each pointcut, we report

• the region of state access effects,

• the region of state mutation effects;

excluding the common region in each case. One avenue of research which we have
only begun to pursue is to compare across sub-pointcuts; leading to abstractions
such as “each sub-pointcut accesses and mutates a region disjoint from the other
sub-pointcuts.” This would seem more useful in a language with more structure
to the global variables; for example, one designed to force programs to obey
a Law of Demeter [107; 108]. This is because our language has no concept of
limited knowledge about other units; the address space is a single, flat, global
store. With more structure to the global store, e.g. partitioning into individual
objects, then well-founded disjoint regions would appear. Then we could apply
the Law of Demeter to these.

63



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

The report supplies the effect description for the pointcut and the effect de-
scriptions for the various dynamic join point shadows. This contains enough
information to highlight two unexpected situations:

1. Inconsistent effects at different dynamic join point shadows: that is the
dynamic join points separate into sets with substantially different effects.
This may be a situation where the programmer has advised superfluous
dynamic join points.

2. Incomplete dynamic join point shadow sets: other dynamic join point shad-
ows in the program may have the substantially the same effect, but are not
identified by the pointcut. This may be a situation where the programmer
has incorrectly omitted dynamic join points that ought to be advised.

It is important to stress that this analysis is unique for providing effect de-
scriptions for pointcuts alone. No previous research offers this abstraction of
pointcuts. We will examine this in more detail when we apply the effect analysis
and compare/contrast with others’ work in the next chapter.

Effect Strings for Advice Bodies

We now turn our attention to determining the effect behaviour of advice bodies.
An advice body is superficially similar to a procedure body; but, it contains
an additional kind of abstract frame, pcdS for representing pcdF applications
generated by proceed expressions. Therefore, in addition to composing effects
at the dynamic join point, advice bodies permit the same dynamic join point to
proceed

• zero times,

• once,

• or more than once;

and these proceed points can be conditional or unconditional.
Our procedure string for advice bodies must recognize these unique capabil-

ities. Hence, we provide two additional elements in the procedure string repre-
senting the effect of the advice body:

1. Nu — the number of unconditional proceed calls in the advice body, and

64



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

2. Nc — the number of contingent proceed calls in the advice body.

These are simple counting operations implemented for the codewalker, shown in
Figure 38. Conditional proceeds occur within the consequents of an ifX expres-
sion; unconditional ones occur do not. If an ifX expression contains unconditional
proceeds in both consequents, the minimum count will be carried forward as un-
conditional proceeds for the entire expression.

Our effect string for advice bodies is given by:

EBJbodyK = 〈I,O,G, S, Nu, Nc〉

where

〈I,O,G, S〉 = ESJbodyK

The discrimination among number of proceeds is informative of the behaviour
of the advice.

• Only conditional proceeds suggests that the effects of the dynamic join
point are being masked by the advice body. Other portions of the program
code that rely on the effects caused by the dynamic join point may become
inoperative.

• A single unconditional proceed suggests that the advice body exists solely
to compose additional effects at the dynamic join point. This causes the
advice effects and the dynamic join point effects to be fused into a larger
composed effect; these probably correspond to before or after advice in
AspectJ.

• Multiple proceeds indicates that dynamic join point effects are occurring
multiple times; this is significant for dynamic join points with output or
state mutation effects.

The next chapter will utilize these reported values to characterize classes of point-
cut and advice interactions.

Advice Effect Reports

Now that we have effect strings for pointcuts and for advice bodies, we can
inform the programmer about the interaction behaviour between the advice and
the control flow points identified by the pointcut.

65



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

(define (sum-proceeds c1 c2 )
(let-values ([(c1u c1c) c1 ]

[(c2u c2c) c2 ])
(values (+ c1u c2u)

(+ c1c c2c))))
(define (count-proceeds-helper x )

(cond [(litX? x ) (values 0 0)]
[(varX? x ) (values 0 0)]
[(ifX? x ) (let-values ([(tu tc) (ifX-then x )]

[(eu ec) (ifX-else x )])
(sum-proceeds (ifX-test x )

(let ([n (min tu eu)])
(values n

(max (+ (− tu n) tc)
(+ (− eu n) ec))))))]

[(seqX? x ) (foldr sum-proceeds
(values 0 0)
(seqX-exps x ))]

[(letX? x ) (foldr sum-proceeds
(letX-body x )
(letX-rands x ))]

[(getX? x ) (values 0 0)]
[(setX? x ) (setX-rand x )]
[(appX? x ) (foldr sum-proceeds

(values 0 0)
(appX-rands x ))]

[(pcdX? x ) (foldr sum-proceeds
(values 1 0)
(pcdX-rands x ))]

[else (error ’count-proceeds "not an exp: ˜a" x )]))

(define (count-proceeds x )
(walk count-proceeds-helper x ))

Figure 38: Proceed Counting

66



4. Abstracting PCs and Advice to Effects Effect Analysis for PROC

Our effect string for advice combines the pointcut and the advice body effect
strings:

EAJ(advice pc body) = 〈IC , OC , GC , SC , VC , IB, OB, GB, SB, C〉

where
ECJpcK = (〈IC , OC , GC , SC〉, VC)

EBJbodyK = 〈IB, OB, GB, SB, Nc, Nu〉
C = 〈Nc, Nu, P 〉

and

(i (advice pc body)) is an advice declaration

where P indicates whether all proceeds will be called with the original values
from the dynamic join point. This latter item utilizes information from the point-
cut and the advice body. From the pointcut, we generate the list of identifiers
just as in match-pc. In the advice body we check that the operands to each pcdS
shadow are the same variables bound by the pointcut.

This data-flow analysis is simple and conservative; we could sharpen it to
recognize cases such as:

• identical operand values returned by both branches of if,

• operand values that are stored into a global and then accessed from that
global variable without mutation,12

• operand values that are rebound in a let and returned from that rebound
variable,

• operand values that are returned as the last expression of a seq ,

• application of procedures that would return the correct operand value un-
changed,

and other typical situations. For our purposes, a more sophisticated data-flow
analysis serves only to obscure the fundamental property that we want to high-
light: whether the dynamic join point would proceed with the same arguments.

With this effect string, we answer the following questions:

12. This case would be unsafe if concurrency is permitted.

67



4. Abstracting PCs and Advice to Effects Exceptions and Threads

1. How many times is the dynamic join point proceeded conditionally?

2. How many times is the dynamic join point proceeded unconditionally?

3. Are the arguments to any proceed changed from the original values bound
by the pointcut at the dynamic join point?

4. What is the overlap between the pointcut-common state-effect regions and
the advice body state-effect regions?

5. What advice-body state-effect regions are disjoint from the corresponding
pointcut state-effect regions?

The first two questions are answered directly from the advice body analysis.
The remaining items result from combining properties of the pointcut and the
advice body. The third question is answered by the previously noted data-flow
analysis. The last two questions are answered by comparing the access and
mutation regions for the pointcut and the advice body. If these are disjoint, then
the advice interacts with the program in simple ways, as we will see in the next
chapter. Alternately, if these regions have substantial overlap, then advice and
dynamic join point effects are tangled together and may be difficult to reason
about.

4.3 Exceptions and Threads

We extended the Proc language with exceptions to provide additional effects for
analysis. This implementation is straightforward in a cps framework, and follows
the standard literature [14]; see Figure 39. Exceptions are denoted by identifiers;

(define-struct tryX [body id hdlr ]) ; — TRY exp id exp
(define-struct raiX [id ]) ; — RAISE id

(define-struct frkX [thr ]) ; — FORK exp

Figure 39: Expressions for Exceptions and Threads

fork supplies a new empty continuation to the sub-expression. Concurrency is
supplied by a round-robin scheduler and related code shown in Appendix C.

68



4. Abstracting PCs and Advice to Effects Exceptions and Threads

For our behaviour analysis, we need to extend the effect string to capture
these additional effects. For exceptions, we add the following fields to the effect
string:

X — the set of exceptions that might escape from this construct

Y — the set of exceptions that cannot escape from this construct

Clearly the existing frame shadows leave this new field unchanged13; but the
new try expression and raise expression add and remove the exception identifier
from X, respectively. In addition, we keep track of the covered exceptions, Y to
identify which exceptions may be masked. To support thread-based concurrency,
we twin the effect string, so that it now contains duplicate fields for effects that
appear in another thread (i.e. arise from sub-expression to fork).

Our effect reports now encompass this additional information.

• Pointcut reports now identify whether all, some, or none of the dynamic
join points might throw some common or individual set of exceptions.

• Advice reports now identify exceptions that can no longer escape; providing
information about effect masking [86]. Similarly with state effects, we can
report effect isolation, where state is related only to a particular advice;
reducing the cognitive load for programmers.

• Advice also reports effects that occur in the main and the secondary thread.

Proceed interacts in interesting ways with fork . For example, in the following
program the exception effect is pushed into a different thread which crashes with

(((thrower proc ()
(throw checked))

(adv advise (call thrower ())
(fork (proceed ()))))

(call thrower))

an un-handled exception.

13. Compressing the bind2S shadow simply merges the sets; our analysis does the same for
both sub-effect strings.

69



4. Abstracting PCs and Advice to Effects Effect Analysis for AspectScheme

When we were first exploring the feasibility of effect analyses for advice lan-
guages, we hand-examined a number of test cases in AspectJ. We tried the cor-
responding test case, where the advice does not annotate the checked exception
in AspectJ. Surprisingly, it was not refused by the static type-checker, despite
Java’s static typing rules enforcing that all checked exceptions must be anno-
tated. We discovered that AJDT 1.1.10 compiles to the Java virtual machine
specification, which does not enforce exception annotations. Therefore, this pro-
gram was not rejected by Java’s static type-checking. Our principled semantic
exploration of effects in dynamic join points, pointcuts, and advice languages has
helped discover a subtle bug in a mainstream aspect language.

The results of our effect analysis allow us to highlight advice with unexpected
behavioural interactions, including the following:

1. advice which push an exception into another thread, and out of the control
flow of an exception handler,

2. advice which introduce new un-handled exceptions into a control flow,

3. advice which push state mutation into a new thread, allowing control flow
to return before the expected update completes.

4.4 Effect Analysis for AspectScheme

Although this chapter uses Proc as the model for applying behaviour analysis,
our extended language, AspectScheme is also amenable to this kind of analysis.
Here we discuss which parts are tractable.

The problem of determining effects in Scheme is much more difficult than in
our Proc language. In particular, control flow analysis is difficult to formulate
when procedures are first-class. Shivers [147, 148] shows how to braid data flow
and control flow analyses together to provide a tractable and useful effect analysis
for Scheme. That same analysis can be extended to AspectScheme by recognizing
advice as higher-order procedures.

Dynamic join points and pointcuts are more difficult to analyse in AspectScheme.
Instead of simply providing a declarative language for identifying continuation
structure, pointcuts in AspectScheme are higher-order user-defined procedures.
They can inspect continuation marks as well as examine and mutate other pro-
gram state. Hence the set of dynamic join points which a pointcut might iden-

70



4. Abstracting PCs and Advice to Effects Related Work

tify is not computable in general. If we restrict ourselves to applications of the
system-provided, pure pointcuts, call , exec, and adv-exec, then dynamic join
point shadows are identifiable for AspectScheme. In this case, pointcuts support
the same analysis that our model language, Proc, does.

Other imperative languages, such as C, Java, C++, etc. also include aliasing
effects because values can be passed by reference (e.g. objects). Various existing
data flow analyses [17; 125; 142] have been developed for these situations; and
more research is continuing. Applying these is out-of-scope for this dissertation:
it distracts us away from the static analysis of pointcuts and advice.

4.5 Related Work

Our effect analysis system draws heavily on three main sources: previous work
on cps-based program representations, previous work with effect analyses based
on procedure strings, and the general body of types-and-effects analysis.

Our work is distinguished by our exploitation of cps. Our static semantics is a
direct abstraction of our dynamic semantics – the cps frames translate to shadow
frames, and dynamic join points lead to dynamic join point shadows. This gives
a firm foundation to our analysis, and serves to develop our understanding of
dynamic join point shadows.

Brooks et al. [19]; Steele [153] initiated the development of cps-based compi-
lation techniques, and introduced the first cps intermediate language. Contem-
poraneously, Wand and Friedman [166] also investigated the utility of cps for
compilation. Shivers [147] used this facility to show that control flow analysis
in the cps frame work was tractable and useful. From there, many additional
papers applying this framework have been written [77; 133; 134]. Flanagan et al.
[73] has reduced the cps intermediate language to A-normal forms and shown
that many of the original analyses carry over. Most recently, Might and Shivers
have re-examined the cps intermediate forms to solve the environment problem
and provide more powerful inter-procedural optimizations. Sabry [140] offers
A-normal forms which, as noted in Chapter 2, eliminate some of the dynamic
join points that aspect-oriented programming wishes to identify. Doing behav-
iour classification with a cps intermediate language is novel; but it allows us
to directly extend the analysis to support new control flow capabilities, such as
threads and exceptions, that pointcuts and advice can manipulate.

71



4. Abstracting PCs and Advice to Effects Summary

Procedure string analysis was developed by Harrison [81]. His goal was to
analyse Scheme programs, identifying inter-procedural optimizations and auto-
mate code parallelization. Many of the interactions that reduce opportunities for
concurrency are the ones which our reports endeavour to highlight. Might and
Shivers [117] extend these procedure strings to frame strings, as they move into
a cps intermediate language. Loucassen [110] and related papers [86; 111; 116]
explore the effect behaviour supported by continuations, and consider various op-
timizations facilitated by this analysis. In particular, they developed the idea of
effect masking, one of the obvious applications of dynamic join points, pointcuts,
and advice.

Nielson et al. [125] are the primary reference for types and effects analysis.
They provide a variety of data-flow, control-flow, and effect analyses over a simple
procedural language similar to our Proc. The idea of regions for state effects is
lifted directly from their model state analysis. These techniques are beginning to
be applied to object-oriented languages; Skalka et al. [151] has recently provided
a type-and-effect analysis for featherweight Java. A full Java language system is
still unavailable. Lam et al. [99, 100] combine a number of pluggable analyses to
provide control- and data-flow analyses, which they have applied to Java code.

Effects, as the awkward squad [129], are explicit in languages such as Haskell [83].
Therefore, they have encountered a wide variety of effects as monadic compu-
tations [105; 131; 162]. The various combinations have been explored in this
monadic framework by a number of researchers: Espinosa [60], Steele [154], King
and Wadler [95], and Jones and Duponcheel [85]. But they all relate back to
Moggi’s continuation-backed monadic models [119; 120], as described in a nice
series of papers [46; 66; 67; 68] and by Wadler [161]. We lifted our range of
computational effects from these sources.

Overall, our cps intermediate language, and the abstraction to effects is a
instantiation of Cousots’ non-standard abstract interpretation framework of pro-
gram analysis [32; 33; 34; 35; 36].

4.6 Summary

In this chapter, we have described our effect analysis implementation for Proc,
supporting state and input/output effects, and an extended version that supports
additional effects—exceptions and concurrency. By abstracting the cps dynamic

72



4. Abstracting PCs and Advice to Effects Summary

semantics to a static cps-based intermediate language we provide a natural de-
velopment of dynamic join point shadows from the translation of continuation
frames to shadow frames.

Our static semantics focuses on the novel property of continuations: that they
carry computational effects. We

• characterize dynamic join point shadows by their input, output, state access
and state mutation regions;

• associate dynamic join point effects with pointcuts, yielding reports sum-
marizing and contrasting these effects;

• characterize advice bodies, reporting their input, output and state effects
as well as repeated proceeding of dynamic join points

• compare and contrast the effects of pointcuts and advice by reporting the
overlap between regions for each part.

Our effect analysis is conservative, losing precision compared to a collecting
(execution) semantics. These include

• we compress effect strings for entire procedures, losing details about effect
sequencing;

• we combine effect strings for both branches of a ifX , losing precision about
path-dependent effects;

• we over-estimate the number of proceeds in an advice body by assuming
the maximum;

• we partition concurrent effects into only two categories: this thread and all
other threads.

Some restrictions, such as compressing effect strings, are necessary to ensure ter-
mination of our analysis. Others are mandated by working in a static framework
where values which determine program flow are unavailable.

Our analysis is also for a simple language. An implementation for a main-
stream language should include:

• input/output regions — represented by sets of channels or file handles; our
language only has one input and output channel;

73



4. Abstracting PCs and Advice to Effects Summary

• data-flow analysis clarifying variable aliases — objects are a prime example
of call-by-reference behaviour.

There is potential for robust research into this area. Supporting these additional
analyses does not provide fundamentally new capabilities for effect analysis of
aspect-oriented constructs; just more precision.

In the next chapter, we look closely at the reports generated by our effect
analysis, and compare them with other aop analyses.

74



Chapter 5

Classifying Pointcut and Advice

Interactions

Pointcuts and advice admit a wide range of composition strategies, ranging from
expected and acceptable to surprising and undesirable. For example, adding
tracing operations to procedure calls, an output effect, seems clearly acceptable.
Within a transactional context, this output behaviour would invalidate the all-
or-nothing property expected of transactions: a clearly unacceptable result. The
effect reports of the previous chapter highlight effect properties of the program,
informing the developer of the interaction behaviour of their program.

These interactions appear in two situations:

• simple interactions, where advice interacts with the program (advice on

program), and

• compound interactions, where more than one piece of advice applies at a
dynamic join point (advice at advice).

In this chapter, we provide a classification system of simple interactions based
on the components of the effect string. The classification proceeds along five axes:

1. control interactions — five categories,

2. data interactions — six categories,

75



5. Classifying PC and Advice Interactions Simple Interactions

3. input/output interactions — four categories,

4. exception interactions — three categories, and

5. concurrency interactions — three categories.

We show that our classification is a refinement of another accepted classification
system given by Rinard et al. [138] showing the value of our effect analysis.

As shown in Rinard et al., effect characterization of aspects permits a clas-
sification system for aspect-oriented programs written in AspectJ, a mainstream
aop language. In this chapter, we offer an extended classification system, built
upon the behaviour analysis developed in Chapter 4, that

• characterizes patterns of advice interaction,

• automates recognition of these patterns, and

• highlights for focused attention, those interactions with potentially sur-
prising behaviour.

The basis of our classification system consists of a number of pairwise effect
combinations which offer specific interactions. Our work is a refinement of the
categorization given by Rinard et al. to incorporate concurrency and exceptions.
We consider control flow interactions, data interactions, exception interactions,
and concurrency interactions.

5.1 Simple Interactions

Simple interactions occur when an advice defines a new behaviour at a dynamic
join point. The interaction is between the advice body and the dynamic join
point identified by the pointcut. The dynamic join point may arise within the
main program expression, a procedure body, or an advice body.

Control Flow Categories

The classification system for direct interaction focuses on control flow elements
that affect how and when the advised dynamic join point executes. We identify
five distinct kinds of interaction based upon the proceed behaviour of the advice
body. These are summarized in Table 3, where C is given as in Equation 1 on
Page 67.

76



5. Classifying PC and Advice Interactions Simple Interactions

Coupling The advice body permits the dynamic join point to proceed, uncon-
ditionally, exactly once, with the original arguments. This style of interaction,
where the advice body couples the original behaviour of the dynamic join point,
matches the application of before and after advice in languages such as AspectJ.
Instrumentation aspects, such as tracing, monitoring, and subject-observer en-
forcement fit into this category.

Extension The advice body permits the dynamic join point to proceed, un-
conditionally, exactly once, with (potentially) different arguments. This style of
interaction, where the advice body extends the behaviour of the dynamic join
point, matches the application of before and after advice in languages such as
PolyAML. Safety aspects which offer defaults, such as move-limiting and clipping
fit into this category.

These two categories were originally captured by the single class, augmen-
tation, by Rinard et al.14 Our analysis more finely divides this category, based
on whether arguments are passed unchanged through to the proceed expression.
Both styles are present in existing aop languages.

Narrowing The advice body permits the dynamic join point to proceed, con-
ditionally, exactly once. Because the dynamic join point behaviour is not always
maintained, the advice body narrows the behaviour of the dynamic join point.
Safety aspects which ensure security or consistency before allowing the dynamic
join point to proceed fit into this category.

Replacement The advice body never permits the dynamic join point to pro-
ceed. Instead, the behaviour of the advice body replaces the behaviour of the
dynamic join point. This category contains aspects to disable portions of a system
without removing the program code.

Repetition This catch-all category gathers advice bodies which repeat the dy-
namic join point more than once in any combination. Rinard et al. termed this
combination, but our designation seems more informative. Regardless, this con-
trol flow interaction is one which merits programmer attention, as the effects

14. Rinard et al. also requires that exceptions cannot be thrown by the advice; we examine
that portion of the analysis later in this chapter.

77



5. Classifying PC and Advice Interactions Data Interaction Categories

corresponding to the dynamic join point occur more than once. The developer
must verify that the repetition yields correct program behaviour.

Our control flow analysis yields five disjoint categories of control flow interac-
tions. Coupling is clearly the simplest interaction. Extension appears relatively
simple, although pre- and post-conditions for the dynamic join point may require
some additional analysis because dynamic join point arguments change. Nar-
rowing interactions require analysis to understand the conditions placed by the
advice on proceeding with the dynamic join point. Replacement is more complex
to reason about – program invariants enforced by the dynamic join point now
become the concern of the advice body. Repetition is the most complex inter-
action: unless the dynamic join point is idempotent, repetition requires careful
examination.

C = 〈Nc, Nu, P 〉 Interaction Rinard

〈 0, 1, #t〉 coupling augmentation
〈 0, 1, #f〉 extension augmentation
〈 1, 0, —〉 narrowing narrowing
〈 0, 0, —〉 replacement replacement
〈—, —, —〉 repetition combination

Table 3: Control Flow Interactions

Our categorization subsumes the four categories that Rinard et al. identifies,
and provides a more precise distinction over the communication of dynamic join
point arguments to single unconditional proceed advice. Rinard et al. provides
one category: augmentation; we provide two: coupling for unchanged arguments
(viz. before/after in AspectJ), and extension for modified arguments (viz. be-
fore/after in PolyAML). By inspection of Table 3, it is clear that our categoriza-
tion is complete: every control interaction has a place.

5.2 Data Interaction Categories

In this section, we enumerate a covering set of state-based interactions mediated
by advice. We characterize them based upon the state descriptions of the advice,

78



5. Classifying PC and Advice Interactions Data Interaction Categories

given in Equation 1 on Page 67. In this section, we use

A = GA ∪ SA

for all the global references recognized as accessed and mutated by the advice
body effect analysis and

P = GP ∪ SP

for all the global references recognized as accessed and mutated by the pointcut
effect analysis. Typically, mutation masks access, so the set of references mutated
is treated as a subset of those accessed; i.e. A = GA, and P = GP . Our list
comprises six different possible interactions, ranging from no possible interaction
to very closely coupled data interactions. Just as with control interactions, we
maintain Rinard et al.’s nomenclature.

Orthogonal This is where the access sets (and hence mutation sets) for the
pointcut and advice body are disjoint. There is no communication between the
pointcut and the advice body, other than through arguments. We say the dy-
namic join point and the advice are orthogonal. Coupling advice with orthogonal
data interactions cannot influence the behaviour of the dynamic join point; al-
lowing the programmer to understand the dynamic join point behaviour and the
advice behaviour separately.

A

S
A

S
P

P

Figure 40: Orthogonal Interaction

Independent This is where the access sets may intersect, but the mutation
sets remain disjoint. Although they can examine state of interest to each other,
neither the pointcut nor the advice body affects the state of interest to the other.
They are independent. Again, coupling advice with independent data interactions

79



5. Classifying PC and Advice Interactions Data Interaction Categories

allows separate understanding of the dynamic join point behaviour and the advice
behaviour.

A

S
A

S
P

P

Figure 41: Independent Interaction

Observation The pointcut mutation set overlaps with the advice body’s ac-
cess set. This means that the advice body can observe mutations made during
execution of the dynamic join point. With coupling advice, the behaviour of the
original dynamic join point remains unchanged; but, understanding the advice
behaviour does depend on understanding the dynamic join point behaviour.

A

SA

SP

P

Figure 42: Observation Interaction

Actuation The advice mutation set overlaps with the pointcut’s access set.
This means that the dynamic join point(s) can observe mutations made by the
advice body. In this case, we have a channel of communication from the advice to
dynamic join point, where the advice can actuate the behaviour of the dynamic
join point. With coupling advice, the behaviour of the advice can be understood
alone; but, understanding the dynamic join point behaviour does depend on
understanding the advice behaviour.

80



5. Classifying PC and Advice Interactions Data Interaction Categories

A

SA

SP

P

Figure 43: Actuation Interaction

Influence This occurs when the advice actuates the dynamic join point(s), and
the advice observes the dynamic join point(s). That is, each has influence over the
other by mutating a value that is accessed by the other. Except for replacement
advice, this data interaction requires an understanding of the advice and the
dynamic join point in order to understand the composed behaviour. Curiously,
Rinard et al. omit this kind of interaction altogether – there is no category in his
taxonomy that accommodates it.

A

S
A

S
P

P

Figure 44: Influence Interaction

Interference This interaction occurs when the advice and the pointcut muta-
tion sets overlap; that is, the dynamic join point and the advice body mutate the
same field. This interaction requires both the dynamic join point behaviour and
the advice behaviour to be understood and their sequencing to be understood.

Our data interactions match nicely with Rinard et al.’s taxonomy. Five of
ours are identical to theirs. In our analysis, we discovered an additional category,
influence, that does not appear in their categorization. By inspection of Table 4,
we see that our enumeration is complete.

Rinard et al. introduces the concept of scopes, an abstraction of collections
of global state. They attempt to identify these automatically by recognizing P

81



5. Classifying PC and Advice Interactions Data Interaction Categories

A

S
A S

P

P

Figure 45: Interference Interaction

A ∩ P A ∩ SP SA ∩ P SA ∩ SP Interaction Rinard

∅ ∅ ∅ ∅ orthogonal orthogonal
— ∅ ∅ ∅ independent independent
— — ∅ ∅ observation observation
— ∅ — ∅ actuation actuation
— — — ∅ influence NA
— — — ¬∅ interference interference

Table 4: Data Interactions

and SP sets for methods (dynamic join points). They also allow the programmer
to supply an abstraction function that groups sets of state locations. Then, the
data flow analysis treats any access and or mutation of a set element as involving
the whole set. As this does not alter the interaction categories, we do not provide
this automation.

Input (Output) Interactions

Input and output effects are informative when considered in concert with the con-
trol effect categories. This is because input and output operations are essentially
not idempotent. Reading from input is a destructive operation–the data read is
no longer available on the input stream. Writing to output is usually treated as
un-erasable.15 We examine four different categories of input (output) behaviour;
the same analysis applies to input and output symmetrically.

15. Certainly, in some buffered situations, input and output can be undone, but entails signif-
icant effort on the part of the programmer.

82



5. Classifying PC and Advice Interactions Data Interaction Categories

IA(OA) IP (OP ) Interaction

#f #f neither
#t #f advice only
#f #t join point only
#t #t both

Table 5: Input (Output) Interactions

Neither In this case, neither the advice nor the pointcut exhibit input (output)
behaviour. The interaction is trivial, regardless of the control interaction.

Advice only This interaction, where the advice body performs input (output),
but the pointcut effect indicates no input (output), is relatively straightforward.
As the dynamic join point performs no input (output) behaviour, understanding
the effect of the advice entails understanding the input (output) behaviour of the
advice body only.

Dynamic join point only In this case, the pointcut effect description shows
input (output) behaviour, but the advice does not. This means that understand-
ing overall behaviour depends on whether the dynamic join point proceeds. If
coupling (unconditional proceed with original arguments) occurs, then the behav-
iour of the dynamic join point is preserved. Extension (unconditional proceed
with altered arguments) requires examination of the altered arguments to verify
correct program behaviour. Replacement ensures that the dynamic join points’
input (output) operation does not occur. Narrowing is more complex, because
the dynamic join points’ input (output) operation may or may not occur — ex-
amining the dynamic join points and the advice are important to verify program
behaviour. Repetition is most complex: multiple input (output) operations will
ensue as the dynamic join point is activated more than once.

Both If both the pointcut effect annotation and the advice body annotation
display input (output) effects, then all cases become complex. Replacement is
probably the simplest control interaction, because the dynamic join point oper-
ation is discarded. In all cases, understanding the interaction requires consider-
ation of the dynamic join point and advice body code.

83



5. Classifying PC and Advice Interactions Data Interaction Categories

Rinard et al. do not perform input/output analysis in their classification sys-
tem. Instead they treat the input/output state as a new abstract variable and
group it with data-flow interactions. Our analysis is separate and provides more
detail about input and output operations. As described in the previous chapter,
our analysis could be sharpened to use sets of channels, rather than just boolean
flags. This would lend precision to the effect region, and yield one more category,
IA ∩ IP = ∅, indicating that the two sets of channels are disjoint.

Exception Interactions

Our effect string with exceptions keeps track of the set of exceptions that might
be thrown by procedures, pointcuts, and advice bodies. We also keep track of
any exceptions that may be caught by catch blocks. This analysis allows us to
recognize two anomalous situations, in addition to the usual normal exception
propagation behaviour.

Masking The advice effect catch set overlaps with the pointcut effect throwing
set. In this case, the advice is said to mask the exception(s) in common. This
situation is highlighted for the programmer, because it is important to ensure
that the exceptional circumstance is handled correctly when compared to the
original handler (which we do not locate).

Injection If the advice effect throwing set is not a subset of the dynamic join
point throwing set, then the advice is said to inject a new exception into the
control flow. This situation is highlighted for the programmer because it is pos-
sible that it is not handled at a higher level in the program. This would result in
advice creating un-handled exception errors.

Rinard et al. do not categorize exception behaviour, except to insist that aug-
menting interactions must not throw exceptions. This may be a result of using
AspectJ as the testbed for their system. In comparison to checked exceptions in
Java, our injection analysis appears to add no additional value. The Java lan-
guage expects all checked exceptions to be annotated and verified at compilation
time. Unfortunately, the Java virtual machine specification does not encompass
checked-exception annotations and verification. Therefore, aspects in AspectJ,
when compiling to bytecode, can inject exceptions into program behaviour with-

84



5. Classifying PC and Advice Interactions Data Interaction Categories

out the usual Java compilation warnings. This flexibility is valuable, but marks
a strong distinction between Java and AspectJ.

Concurrency Interactions

Our concurrency analysis is simple. Our effect analysis yields a pair of effect
strings, E = 〈Esync, Easync〉, one describing the behaviour in the original thread
(Esync) and a second separate effect string that combines effects from forked
threads (Easync). This separation allows us to recognize which effects will occur
asynchronously. We recognize three categories of concurrency, by examining the
the content of each effect string:

Synchronous In the synchronous case, there are no effects visible in the Easync

effect string. This is the most common case, and the simplest interaction to
understand: the sequential ordering of the program is preserved and described
by the kind of control interaction given for Esync.

Mixed In this case, neither Esync nor Easync are empty. This is the most
complex interaction, and highlights to the programmer that the dynamic join
points and the advice need to be examined.

Asynchronous In the asynchronous case, there are no effects visible in the
Esync effect string. This case is not as simple as the synchronous case, because
we conservatively combined all spawned threads together. The programmer must
carefully examine the code to understand the parallelism and potential race con-
ditions.

Our analysis does allow the programmer to identify the following example
situations:

1. an advice which pushes push an exception into another thread, and out
of the control flow of an exception handler, these exceptions will never be
caught by the original handler.

2. an advice which pushes state mutation into a new thread: any expectation
of atomicity arising from default synchronous behaviour is unwarranted.

3. an advice which pushes input or output into a new thread also waives any
expectation of sequential behaviour.

85



5. Classifying PC and Advice Interactions Compound Interactions

The programmer can be directed to those advice bodies which are are highlighted
as bringing asynchrony effects.

Summary of Interactions

To summarize, our effect analysis, developing as a natural static analysis from our
continuation-based dynamic semantics, yields a classification system for aspect-
oriented programs. It is very similar to Rinard et al., but more precise and
complete.

1. It offers more precise control interaction categories, in particular, differen-
tiating two components of Rinard’s augmentation class into coupling and
extension classes,

2. It is complete with regard to data interaction categories, by including the
influence class which is missing in Rinard’s categorization,

3. It characterizes exceptions and concurrency in a simple way, but highlights
interactions that are omitted by Rinard,

4. It has allowed us to identify an inconsistency between Java and AspectJ,
where checked exceptions may be introduced by advice without triggering
the usual Java errors.

5.3 Compound Interactions

Compound interactions occur when two (or more) advice compose at a single
dynamic join point. To preserve deterministic behaviour, one advice must go
first, and the next advice applies only when invoked when the first one proceeds.
This is similar to applying advice at advice-execution dynamic join points. The
overall effect of the two advice is to layer the effect of the dominant one over the
subordinate one.

Purely from a containment perspective, we report when multiple advice have
common pointcuts, using whole-program analysis. That is, when two advice have
an overlapping set of dynamic join points, we draw the programmer’s attention to
this. For example, in the following code, we indicate that adv12 and adv13 affect
the same dynamic join points, namely calls to p1 . We draw the programmer’s

86



5. Classifying PC and Advice Interactions Compound Interactions

(((p1 proc () 1)
(p2 proc () 2)
(p3 proc () 3)

(adv1 advise (call p1 ())
. . . )

(adv12 advise (or (call p1 ())
(call p2 ()))

. . . )
(adv23 advise (or (call p2 ())

(call p3 ()))
. . . ))

. . . )

Figure 46: Multiple Advice at Dynamic Join Points

attention to the fact that both advice apply; it remains her duty to ensure they
work together.

The significant consideration is that the order of application matters. Besides
textual ordering, another natural order is to consider pointcuts as subsetting
dynamic join points. In Figure 46, the set of dynamic join points matched by
the advice adv1 is a subset of those matched by adv12 . Therefore, adv1 can be
considered as more-specific, since it affects a smaller set of dynamic join points.
Nelson et al. [123] examined a variety of orderings for a simple bounded buffer
system, and showed that most-specific to least-specific offers the best result – it
maintained more liveness properties. AspectJ adopts this most- to least- spe-
cific strategy. In some applications, this ordering does not provide the correct
semantics; hence declare precedence (superseding the previous dominates

construct) was added.
This ordering is not generally computable; as the example in Figure 46 shows.

Advice adv12 is neither more specific nor less specific than adv23 . In this case,
some other criterion must be used. During execution, lexical ordering is applied.
The programmer may not anticipate this ambiguity; so the default ordering can
be highlighted in the effect report.

For these reasons, we simply supply the effect categorization, and report the
advice ordering and conflicts to the programmer. It remains their responsibility
to determine whether the layering provides the desired results.

87



5. Classifying PC and Advice Interactions Example Interactions and Reports

(run ’(([depth global]

[f proc (x) (if (call = 0 x)
(begin (call display (get depth))

1)
(call ∗ x (call f (call − x 1)))))

[bef advise (exec f v) (begin (call display (get depth))
(set depth (call + (get depth) 1))
(proceed v))]

[aft advise (exec f v) (let ([r (proceed v)])
(begin (call display (get depth))

(set depth (call − (get depth) 1))
r))])

(begin (set d 0)
(call f 5))))

Figure 47: Tracing Instrumentation

5.4 Example Interactions and Reports

Here, we provide the results of applying our analysis to four archetypical aop

programming situations.

Tracing

The tracing aspect given in Section 2.4.2 of Laddad [98] instruments a given
method call with before and after logging messages. We translate this to our
extended Proc language, yielding the code displayed in Figure 47.

Our analysis of this instrumentation code shows that these advice have the
following interaction behaviours.

Each of the advice interact with the dynamic join point as

• coupling – the arguments are passed through, unchanged, to the single
unconditional proceed;

• actuation – the fact procedure reads the depth global value, which is mu-
tated by each advice,

• advice output – the advice body provides additional output effects;

88



5. Classifying PC and Advice Interactions Example Interactions and Reports

(run ’(([minx global]

[xpos global]

[a1 advise (set xpos v) (if (call < v (get minx))
(raise outOfBounds)
(proceed v))]

[a2 advise (set minx v) (if (call < (get xpos) v)
(raise outOfBounds)
(proceed v))])

(begin (set minx 1)
(set xpos 2)
(set xpos 1)
(set xpos 0))))

Figure 48: Move Limiting

• normal exceptions – no addition masking or injection of exceptions oc-
curs;

• synchronous – no effects are pushed into additional threads.

Furthermore, each advice interacts with the other at the same dynamic join
point with interference state effects, because each reads and writes the depth
global. Our report indicates that the advice apply to the same dynamic join
points, and so they conflict. This warns the programmer to review their ordering
(which is lexical in our implementation).

Move Limiting

From Clifton and Leavens [28], we take the MoveLimiting aspect, where mutation
of a state value is restricted to positive values by an aspect. Our translation is
shown in Figure 48.

Our analysis against bounds checking code shows that each advice has the
following interaction behaviour:

• coupling – the arguments are passed through, unchanged, to the single
unconditional proceed;

89



5. Classifying PC and Advice Interactions Example Interactions and Reports

(run ’(([p proc (x) (if (call = 0 x)
(raise zero)
1)]

[a advise (exec p v) (try (proceed v)
catch zero (begin (call display 0)

(raise exc)))])

(begin (call p 1)
(call p 0))))

Figure 49: Exception Logging Instrumentation

• orthogonal – there is no interaction regarding state variables;

• none – the advice body provides no additional input/output behaviour;

• injects exceptions – it injects a new exception into the flow control of the
program, and the programmer should be notified to ensure that appropriate
catch expressions are in place;

• synchronous – no effects are pushed into additional threads.

This advice ensures that xpos is never less than minx . There is no state interac-
tion – minx is not referenced by set xpos expressions, and vice versa. However,
there is notification to the programmer that a new exception is injected into the
program. It becomes their responsibility to ensure the correct catch expressions
are available.

Exception Logging

The exception logging advice given in Section 5.4.2 of Laddad [98] instruments an
application with after advice that logs exceptions thrown from method invocation.
We translate this to our extended Proc language, yielding the code displayed in
Figure 49.

Our analysis against simple exception throwing code shows that this advice
has the following interaction behaviour:

• coupling – the arguments are passed through, unchanged, to the single
unconditional proceed;

90



5. Classifying PC and Advice Interactions Example Interactions and Reports

(run ’(([ret global]

[p proc (x) (set ret x)]

[a advise (exec p v) (fork (proceed v)
0)])

(begin (set ret 0)
(call p 1)
(call (display (get ret)))
(set ret 2)))
(call p 0))))

Figure 50: Runnable With Return

• orthogonal – neither reading nor writing of mutable references occurs in
the advice body;

• advice output – the advice body provides additional output effects;

• normal exceptions – no addition masking or injection of exceptions oc-
curs;

• synchronous – no effects are pushed into additional threads.

This advice couples the instrumentation code to exception propagation out of the
named procedure. Our analysis shows that it can be reasoned about modularly,
in isolation from the rest of the program.

Runnable With Return

Laddad [98] provides a number of examples where execution is deferred to an-
other thread, using his RunnableWithReturn class. Here we provide a simple
implementation of this for Proc in Figure 50, and apply our effect analysis to it.

The system reports the effect of the dynamic join point (exec p x ) as mutating
the global variable ret . Although this is a simple example, that summary can
alert the programmer that ret is also updated outside of p, as in the main body
of the program.

The key result from our analysis is to note that this code inserts an asyn-

chronous effect into the program. In particular, setting the global ret via the

91



5. Classifying PC and Advice Interactions Other Analyses and Related Work

procedure p is asynchronous and can interfere with other uses of ret . The pro-
grammer is notified of the potential race condition.

With this understanding of the analysis and its use, we turn our attention to
the sorts of analyses that others have recently proposed.

5.5 Other Analyses and Related Work

Other research groups have recognized the effect of advice on programming.
Clifton and Leavens [27, 28] have provided another taxonomy of spectators,
observers, and assistants. Katz [89]; Katz and Gil [90]; Sihman and Katz [149]
has explored a third set of descriptions for understanding the effects of pointcuts
and advice. Dantas and Walker [40] provide a type-and-effect characterization of
harmless advice.

Clifton et al.

Clifton proposes two distinct kinds of advice interaction: based on the effect of the
advice on the dynamic join point. They are called spectators and assistants. Here,
we examine each of these, and place it as a subset of our interaction taxonomy.

Spectators Spectators, originally termed observers, are aspects which do “not
change the behaviour of any other module.” Specifically, a spectator

• may only mutate state that it owns (i.e. not accessed by other modules)

• may mutate the program world state (i.e. perform input/output),

• must not change the control flow to or from the dynamic join point,

• must proceed exactly once, unconditionally and without changing argu-
ments,

• must not explicitly throw any checked exceptions,

Therefore, spectators are aspects with coupling and observation interactions and
with no exception or concurrency interactions. They are, by design, simple to rea-
son about – the advice and the dynamic join point behaviour can be understood
and implemented as separate modules.

92



5. Classifying PC and Advice Interactions Other Analyses and Related Work

Assistants Assistants are the catch-all for any other type of aspect; those that
change the behaviour of the advised module. These interactions encompass all
other kinds in our taxonomy.

The goal of Clifton et al.’s work is to identify advice whose interactions are
simple enough to be understood independently. They provide a static analysis for
a substantial object-oriented language, including the necessary alias and pointer
analysis, to ensure that spectators conform to the specification. They syntac-
tically enforce coupling interaction by marking spectators as before, after, or
surround to ensure the unconditional, single proceed with original arguments.
Any other kind of advice is an assistant, and they insist that modules include
explicit reference, an accepts declaration, for any permitted assistant. In this
way, their system provides a measure of modular reasoning: either an advice is a
spectator and has no impact on reasoning about any module, or it is an assistant
and must be explicitly documented in the modules with which it interacts.

Katz et al.

Katz [89] together with Katz and Gil [90] have categorized aspects based on
temporal properties. They identify three main categories of aspects: spectative,
regulative, and invasive, based upon a sophisticated state graph model. In par-
ticular, they characterize aspects as additive, in that they extend an underlying
program – one without aspects. Here, we show how their categories are subsumed
by our taxonomy.

Spectative A spectative aspect “can change the values of variables local to the
aspect, but does not change the value of any variable or the flow of method calls of
the underlying system.” This is directly characterizes as providing a refinement
of the underlying state graph – inserting state nodes with effects not shared with
the unadvised system. This description matches the coupling and observation
interactions that we previously described.

Katz [88] relaxes these restrictions to permit termination of execution as well.
These are called weakly spectative. We do not have a specific category for this
possibility; it seems to be narrowing or replacement, but with a very specific
alternative operation.

93



5. Classifying PC and Advice Interactions Other Analyses and Related Work

Regulative A regulative aspect is a spectative aspect that is permitted to
remove state graph edges without adding connections, and to repeat some states
nodes. Removing state graph edges without adding connections corresponds with
our narrowing and our replacement control interactions. Repeating a state note
does not include multiple proceeds, because that adds additional connections.
Furthermore, repeating a state node is permitted only when the repeated node
does not alter the state other than that local to the aspect. So, regulative aspects
must be observational.

Invasive Invasive aspects are permitted to alter state graph of the underly-
ing system in any way. This catch-all group contains the remaining interaction
possibilities in our classification.

In principle, invasive aspects can invalidate any property of the system; but
Katz et al. claim that many invasive aspects change the underlying system in re-
stricted ways. Therefore, they separate out a group of weakly invasive aspects —
ones which augment the state graph with new transitions beginning only at points
in the underlying state graph. They leverage this to show that a property of the
original system is preserved if the advice body also preserves the property, with-
out checking the entire system. They indicate that deriving this property is not
possible statically, but the examples they give fit into the extension+observation
and coupling+actuation groups.

Dantas et al.

Dantas and Walker [40] provide a type-and-effect analysis for harmless advice –
that which obeys a weak non-interference property. Specifically, harmless advice

• may change the termination behaviour of computations,

• may perform input/output operations,

• but does not otherwise influence the final result.

This allows programmers to ignore harmless advice when reasoning about the
partial correctness of their programs, and to extend programs without breaking
important data invariants offered by the original program. They recognize aspects
providing profiling, invariant checking, security enforcement, instrumentation,
and persistence features as harmless. Although their analysis system differs from

94



5. Classifying PC and Advice Interactions Summary

Rinard et al., they declare that harmless advice falls into orthogonal, independent,
and observation interactions.

Some of this work takes effect descriptions in different direction, into the
checking realm. In particular Clifton et al. insists that every assistant be visible
to any module that it affects, by including its name in a new accepts declara-
tion. Failing to annotate this implies that the aspect must be a spectator, and
Clifton provides static analysis to prove this property. Failure of this check causes
compilation errors.

Krishnamurthi et al. [97] provide a different model-checking system for as-
pects. They expect the programmer to supply computational tree logic descrip-
tions of desired properties of the system and apply a model checker to prove these
of a system augmented with aspects.

5.6 Summary

Our effect analysis from Chapter 4 has given us the information to provide an
automated system of classifying advice and highlighting interactions that merit
programmer inspection. Our classification system, based upon interaction and
comparisons of the effect strings, refines that of Rinard et al. by

• subdividing the augmentation control interaction into extension and cou-
pling

• recognizing a missing data interaction, influence,

• providing an alternate input/output characterization that can be extended
to recognize multiple I/O channels,

• includes exception interactions in a more general way, and

• provides simple concurrency categories.

Our exception categorization also led us to discover an unexpected property of
AspectJ, namely that it does not provide the same assurances as Java that all
checked exceptions are annotated in method signatures. Last, we have shown
how our categorization also subsumes those of Clifton et al., Katz (et al.), and
Dantas et al.

95



5. Classifying PC and Advice Interactions Summary

Our classification could become the foundation for annotations that express
desired advice interactions and for statically checking effects against those anno-
tations. Those goals are beyond the scope of this work. Our success is to show
that our semantic development provides a workable effect analysis system.

96



Chapter 6

Conclusion

Having presented the technical material of our work, we review the contributions
of this dissertation and close with a summary of open research questions arising
from our results.

6.1 Contributions

This research provides two semantic descriptions of dynamic join points, point-
cuts, and advice for procedural languages.

One, a dynamics semantics, moves from our previously published expression-
oriented, big-step system to a novel continuation-based, small-step semantics.
This translation yields an elegant model of dynamic join points as principled
program control points, pointcuts as identifiers of these points, and advice as
specializers of the behaviour of these control points. The second semantic spec-
ification, a static semantics, captures the essential abstraction of continuations,
that of computational effects, and develops an abstraction of pointcuts and ad-
vice with regard to the effects they express. This abstraction to effects supports
and refines existing aspect classifications, yielding interesting types-and-effects
properties for dynamic joinpoints, pointcuts, and advice.

The specific contributions are:

1. A novel development of continuation-based dynamic semantics for dynamic
join points, pointcuts, and advice for a first-order, mutually-recursive pro-

97



6. Conclusion Contributions

cedural language showing that

a) Dynamic join points, pointcuts, and advice aspects can be modeled
directly in continuation semantics; without the need for labels or con-
tinuation marks,

b) Principled dynamic join points arise naturally, as continuation frames,
from describing programming languages in continuation semantics,
and

c) Advice acts as a procedure on these continuation frames, providing
specialized behaviour for them.

2. An application of this construction to a higher-order procedural language,
Scheme, yielding a semantic description of AspectScheme which includes
lexically-scoped and dynamically-scoped pointcuts and advice.

3. An implementation of AspectScheme, constructed as a language extension
to PLT Scheme, using macros and their language extension points, to sup-
ply, and lexically-scoped, dynamically-scoped, and the more usual top-level
(declarative) pointcuts and advice aspects.

4. A demonstration that cflow pointcuts break tail-call properties of program-
ming languages and add a state effect into the languages.

5. A static semantics that focusses on the key property of continuations: that
they carry computational effects. We

a) characterize dynamic join point shadows by their input, output, state
access and state mutation regions;

b) associate dynamic join point effects with pointcuts, yielding reports
summarizing and contrasting these effects;

c) characterize advice bodies, describing their input/output and state
effects as well as any repetition of join point behaviour.

6. An effect reporting algorithm that extends ones already accepted for aspect-
oriented languages. Ours includes

a) five control interaction classes that cover a broader range,

b) six data interactions, including one missing from the existing analyses,

98



6. Conclusion Open Questions

c) an alternate input (output) categorization with four categories,

d) exception categorization that helped highlight an AspectJ/Java incon-
sistency, and

e) three simple concurrency interactions.

Any substantial research must focus on specific questions, leaving others for
future work. In addition, as it solves some problems, it must illuminate new areas
of investigation also. We now consider some of these.

6.2 Open Questions

As semantics for aop languages is still in its infancy, many unanswered ques-
tions remain. Even with its limited focus on dynamic aspects, this work leaves
open many avenues for further investigation. They come in three clusters: one
related to directly extending and further formalizing this work; one related to al-
ternate language families – specifically object-oriented languages; and one related
to productizing the effect analysis.

Extending and Formalizing

Implementation Our construction provides an elegant account of dynamic
join points, pointcuts, and advice. The efficiency of this model, however, is un-
clear. Tail call optimization has been preserved, at the cost of exposing cflow ’s
internal effects. Exposing administrative frames which separate operator and
operand reduces the potential for optimal instruction reordering. Cps optimiza-
tions identified by Shivers [148] and others may be invalidated, and partial eval-
uation opportunities given by Danvy et al. [43] and Damian and Danvy [39] may
become unavailable.

Full Abstraction Several semantic specifications of dynamic join points, point-
cuts, and advice aspect-oriented languages have been posed[20; 42; 58; 115; 169].
This work identifies the underlying continuation structure which this kind of aop

attempts to abstract and modularize. The various specifications differ in subtle
ways: some provide syntactic control to enforce coupling interactions (before,
after, surround advice types); some relax this to extension interactions; others

99



6. Conclusion Open Questions

expand beyond declarative pointcut languages. How can we be sure that we’ve
captured the essence of aop?

We attempt to do this by construction from the denotational semantics of
our previous work[169]. By virtue of the correctness of the cps conversion, our
abstract machine semantics matches the original at relevant points, but it is more
precise at the auxiliary continuations. This over-specification is undesirable.

Formal verification of the equivalence of language semantics is a full abstrac-
tion problem: show that two models are observationally equivalent – neither is
more expressive than the other. Providing this level of correspondence between
abstract machine and denotational semantics for procedural languages was chal-
lenging, and the complete result is relatively recent [3]. Sub-typing has only
recently become expressible in game semantics, so a full oo language with dy-
namic dispatch seems still to be a ways off.

Solving the full abstraction problem for procedural languages required a new
kind of semantic specification: (two-player) game semantics [2]. Recently, Abram-
sky [1] has extended this theory to multi-player game semantics, which I believe
offers the right framework for full abstraction of aop. Otherwise, one must choose
to compose aspects either into the language (i.e., extending the opponent) or into
the program (i.e., rewriting the player).

Inter-type Declarations Masuhara and Kiczales [112] demonstrate that the
pointcuts and advice model generalizes a number of other aop forms.

• Open classes [29] and inter-type declarations [23]: in this case, we posit a
dynamic semantics for the elaboration phase [21]16.

• Composition filters [13] and HyperJ [128]: both of which are based on a
domain-specific program composition language.

• Traversals as given in Demeter [107]: which is based on a traversal definition
language.

In our view, each of these languages have a (well-defined) dynamic semantics,
amenable to cps conversion and defunctionalization. We see each as providing a
set of dynamic join points, and a method for composing new behaviour at those

16. For example, Scheme R6RS standardization work has specifically recognized this in the
letrec* formulation of define.

100



6. Conclusion Open Questions

dynamic join points. For example, inter-type declarations appear interested in
side-effecting elaboration-stage values such as methods, classes, and operations.
Is this construction truly as general as it appears?

Type-checking Aspects Our work explicitly eschews type checking. There
has been some work on applying type-checking and type-inference to aspects [41;
42]. Type inference of around advice is especially difficult; it is conjectured [165]
to be impossible in pure Hindley-Milner-Damas [38; 127; 150; 158]. Recently,
Dantas et al. [42] provide a clever and novel blending of global and local type
inference [132] for parametric polymorphism in aspects. The scheme is still im-
predicative, and requires some type annotations. Interesting remaining questions
include “how much type annotation is required?”, “are there relationships be-
tween advice that requires annotation and the effects it provides?”, and “can
aspects replace type constraints across data flows to permit greater modular-
ity?”.

Object-Oriented Languages

Our focus has been on procedural languages – systems providing alternative di-
mensions of modularity. We perceive a cluster of open questions revolving around
aspects and object languages.

Dynamic Join Point Construction We believe that that our semantic con-
struction will yield the same intuitive dynamic join points that the original aspect
language designers identified. An initial implementation looks promising.

Frame Activation Pointcut AspectJ

(field location i) I (getfield frame o) getfield o.i getfield o.i
o I (setfield frame field location i) setfield o i setfield o.i

v∗ I (dispatch frame o i) dispatch o.i(...) call o.i(...)
(method location i) I (execframe o v∗) exec o.i(...) exec o.i(...)

v∗ I (allocate frame i) alloc i(...) init i(...)
(class i) I (init frame v∗) init i(...) preinitialize i(...)

Figure 51: Object-Oriented Dynamic Join Points

101



6. Conclusion Open Questions

Object / Aspect Duality Filinski [65] noted the categorical duality between
values and continuations. Object-oriented technology has provided abstract and
modular values. What might the equivalent abstraction and modularity of contin-
uations be? How might the Galois connection between direct and cps semantics,
explored by Danvy [44] and Danvy and Lawall [49], affect this modularity re-
lationship? We hypothesize that the result is similar to pointcuts and advice
aop. If so, that helps us understand a fundamental question: what do aspects
modularize?

An Effect Checking Tool

We give an effect reporting tool. However, effects can compose in a variety of
ways. Different orderings give different behaviours, such as resetting state on
exceptions (yielding transactional behaviour), or preserving state on exceptions
(the more common behaviour). Both of these are legitimate; therefore, an effect-
checking tool requires a syntax for annotating desired effects. One place where
these kinds of properties are again being investigated is in typestate checking [64;
101; 156] and regular types [76; 126].

Other than in research prototypes for domain-specific applications (e.g. con-
currency [7] and mobility [96]), effects are most common as monadic type anno-
tations in Haskell and related languages. Perhaps these syntaxes can be adapted
for use with aop, to describe layered and combined effects like transactions. This
is an open question, because making it expressive and lightweight are opposing
forces: utility is the desired end – usability studies seem to be mandated. Fur-
ther, this composition is problematic [60; 85; 95; 106]. Three ways to circumvent
these composition difficulties are

• to examine our construction as a special case of delimited continuations [15;
16; 87; 145; 161] where each frame is captured by shift and reset . In
future work, we intend to examine this relationship as a degenerate form
of monadic reflection, following Shan’s lead in applying polarized logic to
help illuminate the construction [146];

• to re-examine our construction in terms of monads, potentially yielding the
sort of configurable applications of Angus [9];

• or to examine a more mathematical formulations of effects, such as Führmann
[75].

102



Works Cited

[1] Samson Abramsky. Socially responsive, environmentally friendly logic. Ox-
ford University Computing Laboratory, 2006.

[2] Samson Abramsky and Radha Jagadeesan. Games and full completeness
for multiplicative linear logic. Symbolic Logic, 59(2):543–574, 1994.

[3] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab-
straction for pcf. Information and Computation, 163(2):409–470, 2000.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract machines.
In Principles and Practice of Declarative Programming, pages 8–19. ACM
Press, August 2003. ISBN 1-58113-705-2.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages
with computational effects. Theoretical Computer Science, 342(1):149–172,
2005.

[6] R. E. Allen, H. W. Fowler, and F. G. Fowler, editors. The Concise Oxford
Dictionary. Oxford University Press, 8th edition, 1990.

[7] Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and
Effect Systems: Behaviours for Concurrency. Imperial College Press, June
1999.

[8] James H. Andrews. Process-algebraic foundations of aspect-oriented pro-
gramming. In Yonezawa and Matsuoka [170], pages 187–209. ISBN 3-540-
42618-3.

[9] Chris Angus. Constructing configurable applications by combining monads.
Manuscript, 1997. URL http://www.cs.ncl.ac.uk/old/research/trs/
paper/577.ps.

103

http://www.cs.ncl.ac.uk/old/research/trs/paper/577.ps
http://www.cs.ncl.ac.uk/old/research/trs/paper/577.ps


Works Cited

[10] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992. ISBN 0-521-41695-7.

[11] Awe Aßmann and Andreas Ludwig. Aspect weaving by graph rewriting. In
U.W. Eisenecker and K. Czarnecki, editors, Generative Component-based
Software Engineering, October 1999.

[12] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sasha Kuzins,
Jennifer Lhoták, Ondr̆ej Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. abc: An Extensible AspectJ Compiler. In
Mehmet Akşit, editor, Aspect Oriented Software Development, pages 87–98.
ACM Press, April 2005.

[13] Lodewijk Bergmans and Mehmet Akşit. Composing crosscutting concerns
using composition filters. Communications of the ACM, 44(10):51–57, 2001.

[14] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris Stone.
Safe-for-space threads in standard ML. Higher-Order and Symbolic Com-
putation, 11(2):209–225, 1998.

[15] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An opera-
tional foundation for delimited continuations in the cps hierarchy. Technical
Report RS–05–25, BRICS, University of Aarhus, August 2005. URL http:
//www.brics.dk/RS/05/24/BRICS-RS-05-24.pdf. to appear in Logical
Methods in Computer Science.

[16] Dariusz Biernacki, Olivier Danvy, and Chung chieh Shan. On the static
and dynamic extents of delimited continuations. Science of Computer Pro-
gramming, 60(3):274–297, 2006.

[17] Bruno Blanchet. Escape analysis for java: Theory and practice. Transac-
tions on Programming Languages and Systems, 25(6):713–775, 2003.

[18] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann.
Virtual machine support for dynamic join points. In Murphy and Lieberherr
[121], pages 83–92.

[19] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele, Jr. An optimiz-
ing compiler for lexically scoped LISP. In Compiler Construction, pages
261–275, 1982.

[20] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. µABC: A
minimal aspect calculus. In Philippa Gardner and Nobuko Yoshida, editors,
Concurrency Theory, volume 3170 of Lecture Notes in Computer Science,
pages 209–224. Springer-Verlag, September 2004. ISBN 3-540-22940-X.

104

http://www.brics.dk/RS/05/24/BRICS-RS-05-24.pdf
http://www.brics.dk/RS/05/24/BRICS-RS-05-24.pdf


Works Cited

[21] L. Cardelli. Phase distinctions in type theory. Manuscript, 1988. URL
citeseer.ist.psu.edu/cardelli88phase.html.

[22] Luca Cardelli, editor. European Conference on Object Oriented Program-
ming, volume 2743 of Lecture Notes in Computer Science, July 2003.
Springer-Verlag. ISBN 3-540-40531-3.

[23] Andy Clement, Adrian Colyer, George Harley, and Matthew Webster.
Eclipse AspectJ. Addison-Wesley, 2005. ISBN 0321245873. Chapter 8.

[24] John Clements and Matthias Felleisen. A tail-recursive semantics for stack
inspection. In Lecture Notes in Computer Science, volume 2618, pages
22–37, July 2003.

[25] John Clements and Matthias Felleisen. A tail-recursive machine with stack
inspection. ACM Transactions on Programming Languages and Systems,
26(6):1029–1052, 2004.

[26] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[27] Curtis Clifton and Gary T. Leavens. Observers and assistants: A proposal
for modular aspect-oriented reasoning. Technical Report TR#02-04a, Iowa
State University, April 2002.

[28] Curtis Clifton and Gary T. Leavens. Spectators and assistants: Enabling
modular aspect-oriented reasoning. Technical Report TR#02-10, Iowa
State University, October 2002.

[29] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch for Java.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications, volume 35(10), pages 130–145, 2000.

[30] William D. Clinger. Proper tail recursion and space efficiency. In ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 174–185, June 1998.

[31] Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm Hutchinson, and
Joon Suan Ong. Structuring Operating System Aspects, chapter 28, pages
651–657. In Filman et al. [71], October 2004.

[32] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxima-
tion of fixpoints. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, 1977.

105

citeseer.ist.psu.edu/cardelli88phase.html


Works Cited

[33] Patrick Cousot and Radhia Cousot. Galois connection based abstract in-
terpretations for strictness analysis. In Dines Bjørner, Manfred Broy, and
Igor V. Pottosin, editors, Formal Methods in Programming and Their Ap-
plications, volume 735 of Lecture Notes in Computer Science, pages 98–127.
Springer-Verlag, June 1993. ISBN 3-540-57316-X.

[34] Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 12–25, 2000.

[35] Patrick Cousot and Radhia Cousot. Modular static program analysis. In
R. Nigel Horspool, editor, Compiler Construction, volume 2304 of Lecture
Notes in Computer Science, pages 159–178. Springer-Verlag, April 2002.
ISBN 3-540-43369-4.

[36] Patrick Cousot and Radhia Cousot. Basic concepts of abstract interpre-
tation. In René Jacquart, editor, International Federation for Information
Processing Congress, pages 359–366. Kluwer, August 2004. ISBN 1-4020-
8156-1.

[37] Radhia Cousot, editor. Verification, Model Checking, and Abstract In-
terpretation, volume 3385 of Lecture Notes in Computer Science, January
2005. Springer-Verlag. ISBN 3-540-24297-X.

[38] Lúıs Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 207–212, 1982.

[39] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis:
On the impact of the cps transformation. September 2003.

[40] Daniel S. Dantas and David Walker. Harmless advice. In Peyton Jones
[130], pages 383–396. ISBN 1-59593-027-2.

[41] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: A polymorphic aspect-oriented functional program-
ming language. In Danvy and Pierce [51]. ISBN 1-59593-064-7.

[42] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional program-
ming language. ACM Transactions on Programming Languages and Sys-
tems, to appear.

[43] O. Danvy, B. Dzafic, and F. Pfenning. On proving syntactic properties of
cps programs. In Andrew Gordon and Andrew Pitts, editors, Workshop
on Higher Order Operational Techniques in Semantics, September 1999.
ENTCS, vol. 26.

106



Works Cited

[44] Olivier Danvy. Back to direct style. Science of Computer Programming, 22
(3):183–195, 1994.

[45] Olivier Danvy. Formalizing implementation strategies for first-class con-
tinuations. In Gert Smolka, editor, European Symposium on Programming,
volume 1782 of Lecture Notes in Computer Science, pages 88–103. Springer-
Verlag, March 2000. ISBN 3-540-67262-1.

[46] Olivier Danvy and Andrzej Filinski. Abstracting control. In Lisp and
Functional Programming, pages 151–160, 1990.

[47] Olivier Danvy and John Hatcliff. Thunks (continued). In Workshop on
Static Analysis, pages 3–11, 1992.

[48] Olivier Danvy and John Hatcliff. On the transformation between direct and
continuation semantics. In Stephen D. Brookes, Michael G. Main, Austin
Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical
Foundations of Programming Semantics, volume 802 of Lecture Notes in
Computer Science, pages 627–648. Springer-Verlag, April 1993. ISBN 3-
540-58027-1.

[49] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class
continuations. pages 299–310.

[50] Olivier Danvy and Lasse R. Nielson. A first-order one-pass cps transforma-
tion. Theoretical Computer Science, 308(1–3):239–257, November 2003.

[51] Olivier Danvy and Benjamin C. Pierce, editors. International Conference
on Functional Programming, September 2005. ISBN 1-59593-064-7.

[52] Bart De Win, Wouter Joosen, and Frank Piessens. Developing Secure Appli-
cations Through Aspect-Oriented Programming, chapter 27, pages 633–560.
In Filman et al. [71], October 2004.

[53] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition
of crosscuts. In Lecture Notes in Computer Science, volume 2192, pages
170–186, September 2001.

[54] Christopher J. Dutchyn. AspectScheme v1. PLaneT repository, January
2005.

[55] Christopher J. Dutchyn. AspectScheme v2. PLaneT repository, January
2006.

[56] Christopher J. Dutchyn, Gregor Kiczales, and Hidehiko Masuhara. As-
pect Sandbox. internet, 2002. URL http://www/labs/spl/projects/
asb.html.

107

http://www/labs/spl/projects/asb.html
http://www/labs/spl/projects/asb.html


Works Cited

[57] Christopher J. Dutchyn, Hidehiko Masuhara, and Gregor Kiczales. AOP
language exploration using the aspect sand box. In Harold Ossher and Gre-
gor Kiczales, editors, Aspect Oriented Software Development. ACM Press,
April 2002. ISBN 1-58113-469-X. Tutorial.

[58] Christopher J. Dutchyn, David B. Tucker, and Shriram Krishnamurthi.
Semantics and scoping of aspects in higher-order languages. Science of
Computer Programming, 67(3):207–239, November 2006.

[59] Matthew B. Dwyer and Richard N. Taylor, editors. Foundations of Software
Engineering, November 2004. ACM Press. ISBN 1-58113-855-5.

[60] David Espinosa. Building interpreters by transforming stratified monads.
Unpublished manuscript, June 1994.

[61] Matthias Felleisen. The theory and practice of first-class prompts. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 180–190, 1988.

[62] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science, 102:
235–271, 1992.

[63] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba.
Abstract continuations: A mathematical semantics for handling full jumps.
In Lisp and Functional Programming, pages 52–62, 1988.

[64] John Field, Deepak Goyal, G. Ramalingam, and Eran Yahav. Typestate
verification: Abstraction techniques and complexity results. Science of
Computer Programming, 58(1–2):57–82, 2005.

[65] Andrzej Filinski. Declarative continuations and categorical duality. Mas-
ter’s thesis, DIKU, University of Copenhagen, August 1989.

[66] Andrzej Filinski. Representing monads. In Hans J. Boehm, Bernard Lang,
and Daniel Yellin, editors, ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 446–457. ACM Press, January
1994.

[67] Andrzej Filinski. Controlling Effects. PhD thesis, University of Pennsylva-
nia, May 1996.

[68] Andrzej Filinski. Representing layered monads. In Andrew Appel and
Alex Aiken, editors, ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 175–188. ACM Press, January 1999.

108



Works Cited

[69] Robert Filman. Understanding AOP through the study of interpreters,
2001. URL citeseer.ist.psu.edu/571298.html.

[70] Robert Filman and Daniel Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness, chapter 2, pages 21–36. In Filman et al.
[71], October 2004.

[71] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, ed-
itors. Aspect-Oriented Software Development. Addison-Wesley, October
2004.

[72] Robert B. Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shri-
ram Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: A
Programming Environment for Scheme. Journal of Functional Program-
ming, 12(2):159–182, 2002.

[73] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 237–247, 1993.

[74] Daniel Friedman, Mitchell Wand, and Christopher Haynes. Essentials of
Programming Languages. MIT Press, 2001.

[75] Carsten Führmann. Varieties of effects. In M. Nielsen and U. Engberg, edi-
tors, Foundations of Software Science and Computation Structures, volume
2303 of Lecture Notes in Computer Science, pages 144–159. Springer-Verlag,
2002.

[76] Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In
Cardelli [22], pages 151–175. ISBN 3-540-40531-3.

[77] K. M. George, Janice Carroll, and Dave Oppenheim, editors. Control Flow
Analysis: a Compilation Paradign for Functional Language, February 1995.
ACM Press. ISBN 0-89791-658-1. revised version online.

[78] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, 2nd edition, 2000.

[79] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck. Handling cross-
cutting constraints in domain-specific modeling. Communications of the
ACM, 44(10):87–93, 2001.

[80] William G. Griswold and Mehmet Akşit, editors. Aspect Oriented Software
Development. ACM Press, March 2003. ISBN 1-58113-660-9.

[81] Williams Ludwell Harrison, III. The Interprocedural Analysis and Auto-
matic Parallelization of Scheme Programs. PhD thesis, University of Illinois
at Urbana-Champagne, 1989.

109

citeseer.ist.psu.edu/571298.html


Works Cited

[82] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 458–471, 1994.

[83] Paul Hudak, Simon Peyton Jones, and Phil Wadler. Report on the pro-
gramming language Haskell: a non-strict, purely functional language. ACM
SIGPLAN Notices, 27(5), May 1992. Version 1.2.

[84] Erik Hilsdale and Jim Hugunin. Advice Weaving in AspectJ. In Murphy
and Lieberherr [121], pages 26–35.

[85] Mark P. Jones and Luc Duponcheel. Composing monads. Technical Report
DCS/RR-1004, Yale University, 1993 1993.

[86] Pierre Jouvelot and David K. Gifford. Reasoning about continuations with
control effects. In R. L. Wexelblat, editor, ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 218–226. ACM
Press, June 1989. ISBN 0-89791-306-X.

[87] Y. Kameyama. Towards logical understanding of delimited continuations.
In A. Sabry, editor, Continuations Workshop, number 545, pages 27–33.
Computer Science Department, Indiana University, 2000.

[88] Shmuel Katz. Diagnosis of harmful aspects using regression verification. In
Curtis Clifton, Ralf Lämmel, and Gary T. Leavens, editors, Foundations of
Aspect Oriented Languages, March 2004.

[89] Shmuel Katz. Aspect categories and classes of temporal properties. Lecture
Notes in Computer Science, 3880:106–134, 2006.

[90] Shmuel Katz and Yossi Gil. Aspects and superimpositions. In Ana M. D.
Moreira and Serge Demeyer, editors, European Conference on Object Ori-
ented Programming, volume 1743 of Lecture Notes in Computer Science,
pages 308–309. Springer-Verlag, June 1999. ISBN 3-540-66954-X.

[91] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on
the algorithmic language Scheme. Higher-Order and Symbolic Computation,
11(1):7–105, 1998.

[92] Gregor Kiczales. The fun has just begun. In Griswold and Akşit [80].
invited talk.

[93] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In European Conference
on Object-Oriented Programming, 2001.

110



Works Cited

[94] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In European Conference on Object-Oriented Pro-
gramming, June 1997.

[95] David King and Philip Wadler. Combining monads. In John Launchbury
and Patrick M. Sansom, editors, Functional Programming, Workshops in
Computing, pages 134–143. Springer-Verlag, July 1993. ISBN 3-540-19820-
2.

[96] Zeliha Dilsun Kirli. Mobile Computation with Functions. Advances in Infor-
mation Security. Kluwer, 2002. ISBN 1-4020-7024-1. also LCS Edinburgh
dissertation, 2001.

[97] Shriram Krishnamurthi, Kathi Fisler, and M. Greenberg. Verifying aspect
advice modularly. In Dwyer and Taylor [59], pages 137–146. ISBN 1-58113-
855-5.

[98] Ramnivas Laddad. AspectJ in Action. Manning Press, April 2003. ISBN
1930110936.

[99] Patrick Lam, Victor Kuncak, and Martin Rinard. On modular pluggable
analyses using set interfaces. Technical Report 933, MIT, 2003.

[100] Patrick Lam, Victor Kuncak, and Martin Rinard. On our experience with
modular pluggable analyses. Technical Report 965, MIT, 2004.

[101] Patrick Lam, Viktor Kuncak, and Martin C. Rinard. Generalized typestate
checking for data structure consistency. In Cousot [37], pages 430–447.
ISBN 3-540-24297-X.

[102] Peter J. Landin. A generalization of jumps and labels. UNIVAC Systems
Programming Research Report, August 1965. Reprinted in Higher-Order
and Symbolic Computation, 11(2):125–143, 1998.

[103] Gary T. Leavens and Ron Cytron, editors. Foundations of Aspect Oriented
Languages, April 2002. Iowa State University TR#2-06.

[104] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves
Girard, editor, Typed Lambda Calculus and Applications, volume 1581 of
Lecture Notes in Computer Science, pages 228–242. Springer-Verlag, April
1999. ISBN 3-540-65763-0.

[105] Sheng Liang. Modular Monadic Semantics and Compilation. PhD thesis,
Yale, 1997.

111



Works Cited

[106] Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and
modular interpreters. In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 333–343, 1995.

[107] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-oriented pro-
gramming with adaptive methods. Communications of the ACM, 44(10):
39–41, 2001.

[108] Karl J. Lieberherr, Boaz Patt-Shamir, and Doug Orleans. Traversals of
object structures: Specification and efficient implementation. ACM Trans-
actions on Programming Languages and Systems, 26(2):370–412, 2004.

[109] Daniel Lohmann and Olaf Spinczyk. Architecture-neutral operating sys-
tem components. In Michael L. Scott and Larry Peterson, editors, Sympo-
sium on Operating Systems Principles. ACM Press, October 2003. work-
in-progress session.

[110] J. M. Loucassen. Types and Effects: Towards the Integration of Functional
and Imperative Programming. PhD thesis, MIT, 1987. LCS/TR-408.

[111] J. M. Loucassen and D. K. Gifford. Polymorphic effect systems. In ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 47–57. ACM Press, 1988.

[112] Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in aspect-
oriented mechanisms. In Cardelli [22], pages 2–28. ISBN 3-540-40531-3.

[113] Hidehiko Masuhara, Gregor Kiczales, and Christopher J. Dutchyn. Compi-
lation semantics of aspect-oriented programs. In Leavens and Cytron [103],
pages 17–26.

[114] Hidehiko Masuhara, Gregor Kiczales, and Christopher J. Dutchyn. A com-
pilation and optimization model for aspect-oriented programs. In Görel
Hedin, editor, Compiler Construction, volume 2622 of Lecture Notes in
Computer Science, pages 46–60. Springer-Verlag, January 2003.

[115] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa. Aspectual
caml: an aspect-oriented functional language. In Danvy and Pierce [51],
pages 320–330. ISBN 1-59593-064-7.

[116] Albert R. Meyer and Jon G. Riecke. Continuations may be unreasonable.
In Lisp and Functional Programming, pages 63–71, 1988.

[117] Matthew Might and Olin Shivers. Environment analysis via ∆CFA. In
Peyton Jones [130], pages 127–140. ISBN 1-59593-027-2.

112



Works Cited

[118] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML. MIT Press, 1997. ISBN 0262631814.

[119] Eugenio Moggi. Computational lambda-calculus and monads. In Logic in
Computer Science, pages 14–23. IEEE, June 1989.

[120] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[121] Gail C. Murphy and Karl J. Lieberherr, editors. Aspect Oriented Software
Development. ACM Press, March 2004. ISBN 1-58113-842-3.

[122] Chetan R. Murthy. A computational analysis of girard’s translation and
LC. In Logic in Computer Science, pages 90–101. IEEE, June 1992.

[123] Torsten Nelson, Donald D. Cowan, and Paulo S. C. Alencar. Supporting
formal verification of crosscutting concerns. In Yonezawa and Matsuoka
[170], pages 153–169. ISBN 3-540-42618-3.

[124] Paniti Netinant, Tzilla Elrad, and Mohamed E. Fayad. A layered approach
to building open aspect-oriented systems: a framework for the design of on-
demand system demodularization. Communications of the ACM, 44(10):
83–85, 2001.

[125] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, November 1999. ISBN 3540654100.

[126] Oscar Nierstrasz. Regular types for active objects. In Object-Oriented
Programming Systems, Languages, and Applications, pages 1–15, 1993.

[127] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

[128] Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns in
hyperspace. Technical Report RC 21452(96717)16APR99, IBM, 1999.

[129] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell, pages 47–96.
IOS Press, 2001. ISBN 1 58603 1724. Presented at the 2000 Marktoberdorf
Summer School.

[130] Simon Peyton Jones, editor. ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 2006. ACM Press. ISBN
1-59593-027-2.

[131] Simon Peyton Jones and Philip Wadler. Imperative functional program-
ming. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, January 1993.

113



Works Cited

[132] Benjamin C. Pierce and David N. Turner. Local type inference. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 252–265, 1998.

[133] Christian Queinnec. Continuation conscious compilation. Lisp Pointers, 6
(1), 1993.

[134] Christian Queinnec. Locality, causality and continuations. In Lisp and
Functional Programming, pages 91–102, 1994.

[135] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In ACM National Conference, pages 717–740. ACM Press, 1972.

[136] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3-4):233–248, 1993.

[137] John C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355–361, 1998.

[138] Martin Rinard, Alexandru Sălcianu, and Suhabe Bugrara. A classification
system and analysis for aspect-oriented programs. In Dwyer and Taylor
[59], pages 147–158. ISBN 1-58113-855-5.

[139] Suman Roychoudhury and Jeff Gray. AOP for everyone – cracking the
multiple weavers problem. Manuscript, 2005. URL http://www.cis.uab.
edu/gray/Pubs/software-suman.pdf.

[140] Amr Sabry. The Formal Relationship between Direct and Continuation-
passing Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD
thesis, Rice University, 1994.

[141] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3–4):289–
360, 1993.

[142] Alexandru Sălcianu and Martin C. Rinard. Purity and side effect analysis
for java programs. In Cousot [37], pages 199–215. ISBN 3-540-24297-X.

[143] Peter Selinger. Control categories and duality: on the categorical semantics
of the λ−µ calculus. Mathematical Structures of Computer Science, 11(2):
207–260, 2001.

[144] D. Sereni and Oege de Moor. Static analysis of aspects. In Griswold and
Akşit [80], pages 30–39, 2003.

[145] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell,
editors, Scheme Workshop, 1999.

114

http://www.cis.uab.edu/gray/Pubs/software-suman.pdf
http://www.cis.uab.edu/gray/Pubs/software-suman.pdf


Works Cited

[146] Chung-chieh Shan. From shift and reset to polarized logic. Manuscript,
2003. URL http://www.eecs.harvard.edu/~ccshan/polar/paper.pdf.

[147] Olin Shivers. Control flow analysis in scheme. In R. L. Wexelblat, editor,
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 164–174. ACM Press, June 1988. ISBN 0-89791-269-1.

[148] Olin Shivers. Higher-order control-flow analysis in retrospect: Lessons
learned, lessons abandoned. In Kathryn S. McKinley, editor, SIGPLAN
Notices, volume 39, pages 257–269. ACM Press, April 2004. ISBN 1-58113-
623-4.

[149] Marcelo Sihman and Shmuel Katz. Superimpositions and aspect-oriented
programming. Computer Journal, 46(5):529–541, 2003.

[150] Christian Skalka and Francois Pottier. Syntactic type soundness for HM(X).
Electronic Notes in Theoretical Computer Science, 75, 2003.

[151] Christian Skalka, Scott Smith, and David Van Horn. A type and effect
system for flexible abstract interpretation of java (extended abstract). Elec-
tronic Notes in Theoretical Computer Science, 131:111–124, 2005.

[152] Olaf Spinczyk and Daniel Lohmann. Using AOP to develop architecture-
neutral operating system components. In SIGOPS European Workshop,
pages 188–192. ACM Press, September 2004.

[153] Guy Lewis Steele, Jr. RABBIT: A Compiler for Scheme. PhD thesis, MIT,
1978. Also MIT AITR 474.

[154] Guy Lewis Steele, Jr. Building interpreters by composing monads. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 472–492, January 1994.

[155] Christopher Strachey. Fundamental concepts in programming languages.
1967 International Summer School in Computer Programming, Copen-
hagen, 1967. Reprinted in Higher-Order and Symbolic Computation, 13
(1/2):11–49, 2000.

[156] Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. ACM Transactions on Software
Engineering 12(1):157–171, 1986.

[157] Greg Sullivan. Aspect-oriented programming with reflection and meta-
object protocols. Communications of the ACM, 44(10):95–97, 2001.

[158] Martin Sulzmann. A General Framework for Hindley/Milner Type Systems
With Constraints. PhD thesis, Yale, 2000.

115

http://www.eecs.harvard.edu/~ccshan/polar/paper.pdf


Works Cited

[159] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, 1997. Also available as technical report
ECS-LFCS-97-376.

[160] Philip Wadler. The essence of functional programming. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–14,
January 1992.

[161] Philip Wadler. Monads and composable continuations. In Lisp and Func-
tional Programming, pages 39–56, January 1994.

[162] Philip Wadler. Monads for functional programming. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming, volume 925
of Lecture Notes in Computer Science, pages 24–52. Springer-Verlag, May
1995. ISBN 3-540-59451-5.

[163] Philip Wadler. The marriage of effects and monads. In International Con-
ference on Functional Programming, pages 63–74, 1998.

[164] Philip Wadler and Peter Thiemann. The marriage of effects and monads.
Transactions on Computational Logic, 4(1):1–32, 2003.

[165] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects.
In Colin Runciman and Olin Shivers, editors, International Conference on
Functional Programming, August 2003. ISBN 1-58113-756-7.

[166] Mitchell Wand and Daniel P. Friedman. Compiling lambda-expressions
using continuations and factorizations. Computer Languages, 3(4):241–263,
1978.

[167] Mitchell Wand, Gregor Kiczales, and Christopher J. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented programming. In
Leavens and Cytron [103], pages 1–8.

[168] Mitchell Wand, Gregor Kiczales, and Christopher J. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented programming. In
Martin Odersky, editor, Foundations of Object Oriented Languages, Janu-
ary 2002.

[169] Mitchell Wand, Gregor Kiczales, and Christopher J. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented programming. ACM
Transactions on Programming Languages and Systems, 26(4):890–910, Sep-
tember 2004.

[170] Akinori Yonezawa and Satoshi Matsuoka, editors. Metalevel Architectures
and Separation of Crosscutting Concerns, volume 2192, September 2001.
Springer-Verlag. ISBN 3-540-42618-3.

116



Appendices

117





Appendix A

AspectScheme CEKS Semantics

A.1 Syntactic Categories

Expressions M ::= V
| x
| (M M )
| (o M . . .)
| (if M M M )
| (set! x M )
| (around M M M )
| (fluid-around M M M )
| (app/prim M M )

x :: identifier

Expression closures MC ::= 〈M,E,A〉

119



A. AspectScheme CEKS Semantics Syntactic Categories

Values V ::= (λ (x ) M )t

| true

| false

| empty

| (cons VCVC )

t :: source location tag

Value closures VC ::= 〈V,E, A〉

Continuations K ::= mt-k

| 〈app1-k MC, E, A,K〉
| 〈app2-k VC, E, A,K〉
| 〈if-k MC,MC,K〉
| 〈set-k x,E,A, K〉
| 〈around1-k scope,MC,MC,K〉
| 〈around2-k scope,VC,MC,K〉
| 〈markapp-k VC,K〉
| 〈appprim1-k MC, A, K〉
| 〈appprim2-k VC, A, K〉
| 〈op-k o, 〈VC, . . .〉, 〈MC, . . .〉,K〉

Stores S :: 〈{`}, ` → VC 〉
S0 ≡ 〈{`0}, ` 7→ error〉

` :: store location

`0 = fixed store location

120



A. AspectScheme CEKS Semantics Syntactic Categories

Environments E :: 〈`, x → `〉
E0 ≡ 〈`0, x 7→ error〉

〈〈`, e〉, 〈L, s〉〉+ {x 7→ VC} ≡ 〈〈`e, e[x 7→ `v]〉, 〈L ∪ {`e}, s[`v 7→ VC ]〉〉
where `e, `v /∈ L ∪ dom(S)

〈E,S〉+ {x1 7→ VC1, . . . , xn 7→ VCn} ≡ 〈E,S〉+ {x1 7→ VC1}+ · · ·+ {xn 7→ VCn}

Advice environments A :: {〈scope,VC,VC 〉}
A0 ≡ ∅

scope ∈ {static, dynamic}

Primitive operations o ::= eq?
| cons
| first
| rest
| empty?

121



A. AspectScheme CEKS Semantics Transition Rules

A.2 Transition Rules

Initialization and Termination

M Binit 〈〈M,E0, A0〉,mt-k, S0〉

〈〈V,E, A〉,mt-k, S〉 Iterm V

Literals
There are no transition rules for literal (value) expressions; they will either ap-
pear as the whole program (and hence become value closures by initialization), or
they will become closures as their enclosing expression is evaluated.

Variables

〈〈x,E,A〉,K, S〉 Bvar 〈S(E(x)),K, S〉

If

〈〈(if MMthenMelse), E, A〉,K, S〉
Bif 〈〈M,E,A〉, 〈if-k 〈Mthen, E, A〉, 〈Melse, E, A〉,K〉, S〉

〈〈true, E, A〉, 〈if-k MCthen,MCelse,K〉, S〉 Iif 〈MCthen,K, S〉

〈〈false, E, A〉, 〈if-k MCthen,MCelse,K〉, S〉 Iif 〈MCelse,K, S〉

Continuation Marks

〈VC, 〈markapp-k VCfun,K〉, S〉 Bmark 〈VC,K, S〉

122



A. AspectScheme CEKS Semantics Transition Rules

Set!

〈〈(set! x M), E, A〉,K, S〉 Bset 〈〈M,E,A〉, 〈set-k x,E,A, K〉, S〉

〈VC, 〈set-k x,E,A, K〉, S〉 Iset 〈VC,K, S[E(x) 7→ VC ]〉

Primitive Operations

〈〈(o M1 . . .Mn), E, A〉,K, S〉
Bprim 〈〈M1, E, A〉, 〈op-k o, 〈〉, 〈〈M2, E, A〉, . . . , 〈Mn, E, A〉〉,K〉, S〉

〈VCm, 〈op-k o, 〈VCm−1, . . . ,VC1〉, 〈MCm+1, . . . ,MCn〉,K〉, S〉
Iprim 〈MCm+1, 〈op-k o, 〈VCm, . . . ,VC1〉, 〈MCm+2, . . . ,MCn〉,K〉, S〉

〈VCn, 〈op-k o, 〈VCn−1, . . . ,VC1〉, 〈〉,K〉, S〉 Iprim 〈δ(o,VC1, . . . ,VCn),K, S〉
where

δ(empty? ,VC ) =

{
〈true, E0, A0〉 if VC = 〈empty, E, A〉
〈false, E0, A0〉 otherwise

δ(cons,VC1,VC2) = 〈(cons VC1VC2), E0, A0〉

δ(first , 〈(cons VC1VC2), E, A〉) = VC1

δ(rest , 〈(cons VC1VC2), E, A〉) = VC2

δ(eq? , 〈(λ (x) M)t, 〈`, e〉, A〉, 〈(λ (x′) M ′)t′ , 〈`′, e′〉, A′〉)

=

{
〈true, E0, A0〉 if t = t′ and ` = `′

〈false, E0, A0〉 otherwise

123



A. AspectScheme CEKS Semantics Transition Rules

Around and Fluid-around

〈〈(around MpcMadvM), E, A〉,K, S〉
Baround 〈〈Mpc, E, A〉, 〈around1-k static, 〈Madv, E, A〉, 〈M,E,A〉,K〉, S〉

〈〈(fluid-around MpcMadvM), E, A〉,K, S〉
Baround 〈〈Mpc, E, A〉, 〈around1-k dynamic, 〈Madv, E, A〉, 〈M,E,A〉,K〉, S〉

〈VCpc, 〈around1-k scope,MCadv,MC,K〉, S〉
Iaround 〈MCadv, 〈around2-k scope,VCpc,MC,K〉, S〉

〈VCadv, 〈around2-k scope,VCpc, 〈M,E,A〉,K〉, S〉
Iaround 〈〈M,E,A ∪ {〈scope,VCpc,VCadv〉}〉,K, S〉

App/prim

〈〈(app/prim MfunMarg), E, A〉,K, S〉
Bapp/prim 〈〈Mfun, E, A〉, 〈appprim1-k 〈Marg, E, A〉, A, K〉, S〉

〈VCfun, 〈appprim1-k MCarg, Aapp,K〉, S〉
Iapp/prim 〈MCarg, 〈appprim2-k VCfun, Aapp,K〉, S〉

〈VCarg, 〈appprim2-k 〈(λ (x ) M )t, E, Afun〉, Aapp,K〉, S〉
Iapp/prim 〈〈M,E′, A′〉,K, S′〉
where

〈E′, S′〉 = 〈E,S〉+ {x 7→ VCarg}

A′ = Aapp|dynamic ∪ Afun|static

124



A. AspectScheme CEKS Semantics Transition Rules

Function applications

〈〈(MfunMarg), E, A〉,K, S〉
Bapp 〈〈Mfun, E, A〉, 〈app1-k 〈Marg, E, A〉, E, A,K〉, S〉

〈VCfun, 〈app1-k MCarg, Eapp, Aapp,K〉, S〉
Iapp 〈MCarg, 〈app2-k VCfun, Eapp, Aapp,K〉, S〉

〈VCarg, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp,K〉, S〉
Iapp 〈〈M ′, E′, Aapp〉,K ′, S′〉
where

M ′ = (app/prim W J| Aapp |K arg)

K ′ = 〈markapp-k 〈(λ (x ) M )t, Efun, Afun〉,K〉

〈E′, S′〉 = 〈Eapp, S〉

+ {fun 7→ 〈(λ (x ) M )t, Efun, Afun〉, arg 7→ VCarg, jp∗ 7→ JJK ′K}

+ {pci 7→ VCpci , adv i 7→ VCadvi | 〈scopei,VCpci ,VCadvi〉 ∈ Aapp}

W JiK =



fun if i = 0
(app/prim (λ (f ) (if (app/prim pci jp∗)

(app/prim adv i f )
f ))

W Ji− 1K)

otherwise

JJKK =


〈empty, E0, A0〉 if K = mt-k

〈(cons VCJJK ′K), E0, A0〉 if K = 〈markapp-k VC,K ′〉
JJK ′K if K = 〈. . . , K ′〉

125





Appendix B

AspectScheme 2.3 Implementation

This appendix contains the implementation for AspectScheme 2.3, available from
the PLaneT archive via the following PLT Scheme preamble:

(require (planet "aspect-scheme2.ss" ("cdutchyn" "aspect-scheme.plt" 2 1)))

at the start of your program.
The source code is also available for download at http://www.cs.ubc.ca/

~cdutchyn/downloads/AspectScheme/aspect-scheme2.plt.

;;;
;;; AspectScheme v. 2.3 – with bindings, execution join points, and top-level aspects.
;;; Copyright (c) 2005, 2006 by Christopher Dutchyn (cdutchyn@cs.ubc.ca);
;;; all rights reserved.
;;;

(module aspect-scheme2 mzscheme
(require (only (lib "list.ss") foldl foldr))

;; Join Point

;; proc args

;; jp ::= call-jp a->b a ;; procedure application (’a’ can be values (ie. tuple ...)

;; | exec-jp a->b a ;; procedure execution (cannot be advised only matched)

;; | adv-jp adv c ;; advice execution ... ’c’ can be values as well

;; Pointcut

;; pc :: [jp]*jp*[jp]->c ;; above * jp * below

127

http://www.cs.ubc.ca/~cdutchyn/downloads/AspectScheme/aspect-scheme2.plt
http://www.cs.ubc.ca/~cdutchyn/downloads/AspectScheme/aspect-scheme2.plt


B. AspectScheme 2.3 Implementation

;; Advice

;; adv :: (a->b)->c->(a->b)

;; Aspect

;; aspect ::= fluid-around pc adv body ;; dynamic scoping

;; | around pc adv body ;; lexical scoping

;; | toplevel-around pc adv ;; top-level scoping (i.e. body is rest of repl)

;;

;; Other kinds of advice (before, after) are special cases; using them might inform a type-

;; checker and enable it to recognize behaviour as extensional rather than superpositional.

;;

;; (before pc | (around pc

;; | (λ (proceed)

;; (λ ctxt | (λ ctxt

;; (λ arg | (λ args

;; ...adv-body...)) | ...adv-body...

;; | (proceed args))))

;; body) | body)

;; (after pc | (around pc

;; | (λ (proceed)

;; (λ ctxt | (λ ctxt

;; (λ args | (λ args

;; | (let-values

;; | ([r (with-handlers ([(λ (x) #t)

;; | (λ (x) ...adv-body...

;; | raise x)])

;; | (proceed args)])

;; ...adv-body...)) | ...adv-body...

;; | (values r)))))

;; body) | body)

;; (after-throwing pc | (around pc

;; | (λ (proceed)

;; (λ ctxt | (λ ctxt

;; (λ args | (λ args

;; | (with-handlers ([(λ (x) #t)

;; ...adv-body...)) | (λ (x) ...adv-body...

;; | raise x)])

;; | (proceed args)))))

;; body) | body)

;;

128



B. AspectScheme 2.3 Implementation

;; (after-returning pc | (around pc

;; | (λ (proceed)

;; (λ ctxt | (λ ctxt

;; (λ args | (λ args

;; | (let-values ([r (proceed args)])

;; ...adv-body...)) | ...adv-body...

;; | (values r)))))

;; body) | body)

(define-syntax fluid-let-parameter

(syntax-rules ()
[( ([p v ]) e . . . )
(let ([y v ])

(let ([swap (λ () (let ([t (p)])
(p y)
(set! y t)))])

(dynamic-wind swap (λ () e . . . ) swap)))]))

;; aspect structure
(define-struct aspect (pc adv))

(define-struct jp (target args))
(define-struct (call-jp jp)())
(define-struct (exec-jp jp)())
(define-struct (adv-jp jp)())

;; join points implemented via continuation marks
(define (jp-context)

(continuation-mark-set→list

(current-continuation-marks)
’joinpoint))

(define-syntax with-joinpoint

(syntax-rules ()
[( jp body . . . )
((λ (x ) x )
(with-continuation-mark ’joinpoint jp

(begin body . . . )))]))

129



B. AspectScheme 2.3 Implementation

;; dynamically-scoped aspects
(define dynamic-aspects (make-parameter ’()))
(define static-aspects (make-parameter ’()))

(define-syntaxes (fluid-around around)
(let ([round (λ (param)

(λ (stx )
(syntax-case stx ()

[( pc adv body0 . . . )
(quasisyntax/loc stx

(fluid-let-parameter ([#,param (cons (make-aspect pc adv)
(#,param))])

body0 . . . ))])))])
(values (round #‘dynamic-aspects) ;dynamically-scoped

(round #‘static-aspects)))) ;lexically-scoped

;; lexically-scoped aspects
(define-syntax lambda/static

(syntax-rules ()
[( params body . . . )
(let ([aspects (static-aspects)])

(λ params
(fluid-let-parameter ([static-aspects aspects])

body . . . )))]))

;; top-level aspects
(define toplevel-aspects (make-parameter ’()))

(define (toplevel-around pc adv)
(toplevel-aspects (cons (make-aspect pc adv) (toplevel-aspects))))

;; current aspects – in decending order of application!
(define (current-aspects)

(append (dynamic-aspects)
(static-aspects)
(toplevel-aspects)))

130



B. AspectScheme 2.3 Implementation

;; weaver
;; replacement for #%app

(define-syntax app/weave
(syntax-rules ()

[( f a . . . ) (app/weave/rt f a . . . )]))

(define (app/weave/rt fun-val . arg-vals)
(if (primitive? fun-val)

(apply fun-val arg-vals)
(let ([jp (make-call-jp fun-val arg-vals)])

(with-joinpoint jp
(apply (weave (λ arg-vals

(with-joinpoint (make-exec-jp fun-val arg-vals)
(apply fun-val arg-vals)))

’() jp (jp-context)
(current-aspects))

arg-vals)))))

(define (weave fun-val jp- jp jp+ aspects)
(foldr (λ (aspect fun)

(cond

[((aspect-pc aspect) jp- jp jp+)
⇒ (λ (ctxt-vals)

(with-joinpoint (make-adv-jp (aspect-adv aspect) ctxt-vals)
(apply ((aspect-adv aspect) fun) ctxt-vals)))]

[else fun]))
fun-val
aspects))

131



B. AspectScheme 2.3 Implementation

;; pointcuts – strict combinators
(define ((&& . pcs) jp- jp jp+)

(let loop ([pcs pcs]
[res ’()])

(if (null? pcs)
(reverse res)
(let ([r ((car pcs) jp- jp jp+)])

(and r
(loop (cdr pcs) (append (reverse r) res)))))))

(define ((|| . pcs) jp- jp jp+)
(let loop ([pcs pcs])

(and (not (null? pcs))
(or ((car pcs) jp- jp jp+)

(loop (cdr pcs))))))

(define ((! pc) jp- jp jp+)
(and (not (pc jp- jp jp+))

’()))

;; pointcuts – ‘binding’
(define (target jp- jp jp+)

(list (jp-target jp)))

(define (args jp- jp jp+)
(jp-args jp))

(define ((some-args as) jp- jp jp+)
(foldl (λ (a v l)

(if a
(cons v l)
l))

’()
as
(jp-args jp)))

132



B. AspectScheme 2.3 Implementation

;; pointcuts – structural
(define (top? jp- jp jp+)

(and (null? jp+)
’()))

(define (top pc)
(&& pc

(! (cflowbelow pc))))

(define ((below pc) jp- jp jp+)
(and (not (null? jp+))

(pc (cons jp jp-) (car jp+) (cdr jp+))))

(define ((above pc) jp- jp jp+)
(and (not (null? jp-))

(pc (cdr jp-) (car jp-) (cons jp jp+))))

(define (bottom pc)
(&& pc

(! (cflowabove pc))))

(define (bottom? jp- jp jp+)
(and (null? jp-)

’()))

;; pointcuts - compatibility
(define (cflow pc)

((cflow-walk below top? ) pc))

(define (within f )
(cflowbelow (&& (exec f )

(! (cflowabove call? )))))

133



B. AspectScheme 2.3 Implementation

;; pointcuts – fundamental
(define ((kind= k? ) jp- jp jp+)

(and (k? jp)
’()))

(define call? (kind= call-jp? ))

(define exec? (kind= exec-jp? ))

(define adv? (kind= adv-jp? ))

(define ((target= f ) jp- jp jp+)
(and (eq? f (jp-target jp))

’()))

(define (call f )
(&& call?

(target= f )))

(define (exec f )
(&& exec?

(target= f )))

(define (adv a)
(&& adv?

(target= a)))

;; pointcuts - higher-order recursive
(define (((cflow-walk step end) pc) jp- jp jp+)

((|| pc
(&& (! end)

(step ((cflow-walk step end) pc)))) jp- jp jp+))

134



B. AspectScheme 2.3 Implementation

;; pointcuts - higher-order points-free
(define (cflowtop pc)

(cflowbelow (top pc)))

(define (cflowbelow pc)
(below ((cflow-walk below top? ) pc)))

(define (cflowabove pc)
(above ((cflow-walk above bottom) pc)))

(define (cflowbottom pc)
(cflowbelow (bottom pc)))

;; language definition
(provide (all-from-except mzscheme #%app λ)

(rename app/weave #%app)
(rename #%app app/prim)
(rename lambda/static λ)

fluid-around

around

toplevel-around

&& || !
top? top below above bottom bottom?
target args some-args
call? exec? adv? call exec adv
cflowtop cflowbelow cflowbottom cflowabove
cflow within
))

135





Appendix C

PROC Implementation

This appendix contains the implementation for the Proc language, as described
in Chapter 2, and extended with exceptions and threads.

137



C. PROC Implementation Syntax

C.1 Syntax

;;;
;;; Syntax – mutually-recursive, first-order procedural [WKD04]
;;;

;;program
(define-struct pgm [decls body ]) ; PGM ::= (id * decl)... * exp

;; declarations
(define-struct procD [ids body ]) ; DECL ::= PROC id... * exp
(define-struct globD []) ; — GLOBAL

;; expressions
(define-struct litX [val ]) ; EXP ::= LIT val
(define-struct varX [id ]) ; — VAR id
(define-struct ifX [test then else]) ; — IF exp exp exp
(define-struct seqX [exps]) ; — SEQ exp...
(define-struct letX [ids rands body ]) ; — LET (id * exp)... exp
(define-struct getX [id ]) ; — GET id
(define-struct setX [id rand ]) ; — SET id exp
(define-struct appX [id rands]) ; — CALL id exp...

(define-struct pcdX [rands]) ; — PROCEED exp...

138



C. PROC Implementation Parser

C.2 Parser

(define (parse-pgm s) ;: sexp → pgm
(make-pgm (map parse-named-decl (car s))

(parse-exp (cadr s))))

(define (parse-named-decl i+s) ;: sexp → (id * decl)
(cons (car i+s)

(parse-decl (cdr i+s))))

(define (parse-decl s) ;: sexp → decl
(case (car s)

[(proc) (make-procD (cadr s) (parse-exp (caddr s)))]
[(global) (make-globD)]
[(advise) (make-advD (parse-pc (cadr s)) (parse-exp (caddr s)))]
[else (error ’parse-decl "not a decl: ˜a" s)]))

(define (parse-exp s) ;: sexp → exp
(cond [(number? s) (make-litX s)]

[(boolean? s) (make-litX s)]
[(symbol? s) (make-varX s)]
[(pair? s) (case (car s)

[(if) (make-ifX (parse-exp (cadr s))
(parse-exp (caddr s))
(parse-exp (cadddr s)))]

[(seq) (make-seqX (map parse-exp (cdr s)))]
[(let) (make-letX (map car (cadr s))

(map parse-exp (map cadr (cadr s)))
(parse-exp (caddr s)))]

[(get) (make-getX (cadr s))]
[(set) (make-setX (cadr s) (parse-exp (caddr s)))]
[(call) (make-appX (cadr s)

(map parse-exp (cddr s)))]
[(proceed) (make-pcdX (map parse-exp (cdr s)))]
[else (error ’parse "not an exp: ˜a" s)])]

[else (error ’parse "not an exp: ˜a" s)]))

139



C. PROC Implementation Parser

(define (parse-pc s)
(case (car s)

[(get) (make-getC (cadr s))]
[(set) (make-setC (cadr s) (caddr s))]
[(call) (make-callC (cadr s) (cddr s))]
[(exec) (make-execC (cadr s) (cddr s))]
[(or) (make-orC (map parse-pc (cdr s)))]
[(not) (make-notC (parse-pc (cdr s)))]
[else (error ’parse-pc "not a pointcut ˜a" s)]))

140



C. PROC Implementation Elaborator

C.3 Elaborator

;;; Elaborator

(define ∗globs∗ #f) ;: (id * boxed-val)...
(define ∗procs∗ #f) ;: (id * proc/prim)...
(define ∗advs∗ #f) ;: (pc * adv)

;; values – val ::= constant — procedure
(define-struct procV [ids body ]) ;; PROC id... exp

(define init-val 0) ;: val

;; location LOC ::= ref val (ie. box)

(define (lookup-glob i) ;: id → loc
(let ([i+b (assq i ∗globs∗)])

(if i+b
(cadr i+b)
(error ’glob "not found: ˜a" i))))

(define (lookup-proc i) ;: id → proc
(let ([i+p (assq i ∗procs∗)])

(if i+p
(cadr i+p)
(error ’proc "not found: ˜a" i))))

(define (get-glob l) ;: loc → val
(unbox l))

(define (set-glob l v) ;: (loc * val) → val
(let ([ov (unbox l)])

(set-box! l v)
ov))

(define ((lift o) v∗ k) ;: (val... → val) → (val... * cont) → !val...
(apply k (o v∗)))

141



C. PROC Implementation Elaborator

(define (elab! prims i+d∗) ;: ((id * (val... * cont → !))... * (id * decl))... → !
(set! ∗globs∗ ’())
(set! ∗procs∗ prims)
(set! ∗advs∗ ’())
(for-each (λ (i+d)

(let ([d (cdr i+d)]
[i (car i+d)])

(cond [(procD? d) (set! ∗procs∗ ‘((,i ,(make-procV (procD-ids d)
(procD-body d)))

. ,∗procs∗))]
[(globD? d) (set! ∗globs∗ ‘((,i ,(box init-val ))

. ,∗globs∗))]
[(advD? d) (set! ∗advs∗ ‘((,(advD-pc d) . ,(advD-body d))

. ,∗advs∗))]
[else (error ’elab "not a decl: ˜a" d)])))

i+d∗)
(set! step (adv-step ∗advs∗)))

142



C. PROC Implementation Evaluator

C.4 Evaluator

;;; Evaluator

;;; frames
;; auxiliary
(define-struct testF [then else env ]) ; FRM ::= TEST exp exp env :: !bool
(define-struct bindF [ids body env ]) ; — BIND id... exp env :: !val...
(define-struct nextF [exps env ]) ; — NEXT exp... env :: !val
(define-struct randF [exp env ]) ; — RAND exp env :: !val...
(define-struct konsF [vals]) ; — KONS val... :: !val
(define-struct rhsF [id ]) ; — RHS id :: !val
;; effective
(define-struct getF []) ; — GET :: !loc
(define-struct setF [val ]) ; — SET val :: !loc
(define-struct callF [id ]) ; — CALL id :: !val
(define-struct execF [args]) ; — EXEC val... :: !proc

(define-struct pcdF [v→v+f advs]) ; — PCD val... → val+frm adv... :: !val...

;;; continuations ::= frm...
(define (push f k) ;: (frm * cont) → cont

(cons f k))

(define ((pop e s) k) ;: ((val → !) * ((frm * cont) → (val → !) → cont → val → !
(if (null? k)

e
(s (car k) (cdr k))))

143



C. PROC Implementation Evaluator

;;; evaluator – expression side
(define (eval x r k) ;: (exp * env * cont) → !

;(display ‘(E ,x ,k))(newline)
(cond [(litX? x ) (apply k

(litX-val x ))]
[(varX? x ) (apply k

(lookup-env r (varX-id x )))]
[(ifX? x ) (eval (ifX-test x )

r
(push (make-testF (ifX-then x ) (ifX-else x ) r)

k))]
[(seqX? x ) (let ([x∗ (seqX-exps x )])

(if (null? x∗)
(apply k 0)
(evseq (car x∗) (cdr x∗) r k)))]

[(letX? x ) (evlis (letX-rands x )
r
(push (make-bindF (letX-ids x ) (letX-body x ) r)

k))]
[(getX? x ) (apply (push (make-getF )

k)
(lookup-glob (getX-id x )))]

[(setX? x ) (eval (setX-rand x )
r
(push (make-rhsF (setX-id x ))

k))]
[(appX? x ) (evlis (appX-rands x )

r
(push (make-callF (appX-id x ))

k))]
[(pcdX? x ) (evlis (pcdX-rands x )

r
(push (make-pcdF (lookup-env r ’%proceed)

(lookup-env r ’%advs))
k))]

[else (error ’eval "not an exp: ˜a" x )]))

144



C. PROC Implementation Evaluator

(define (evseq x x∗ r k) ;: (val * exp... * env * cont) → !
(eval x

r
(if (null? x∗)

k
(push (make-nextF x∗ r)

k))))

(define (evlis x∗ r k) ;: (exp... * env * cont) → !
(if (null? x∗)

(apply k
’())

(evlis (cdr x∗)
r
(push (make-randF (car x∗) r)

k))))

(define (halt v) ;: val → !
(display v)
(newline))

(define (apply k v) ;: (cont * val) → !
;(display ‘(A ,k ,v))(newline)
(((pop halt

step)
k)

v))

145



C. PROC Implementation Evaluator

;;; evaluator – continuation side
(define ((base-step f k) v) ;: (frm * cont) → val → !

(cond ;; auxiliary frames
[(testF? f ) (eval ((if v testF-then testF-else) f )

(testF-env f )
k)]

[(nextF? f ) (let ([x∗ (nextF-exps f )])
(evseq (car x∗) (cdr x∗) (nextF-env f ) k))]

[(randF? f ) (eval (randF-exp f )
(randF-env f )
(push (make-konsF v)

k))]
[(konsF? f ) (apply k

(cons v (konsF-vals f )))]
[(bindF? f ) (eval (bindF-body f )

(extend-env (bindF-ids f )
v
(bindF-env f ))

k)]

146



C. PROC Implementation Evaluator

;; non-auxiliary frames
[(getF? f ) (apply k

(get-glob v))]
[(rhsF? f ) (apply (push (make-setF v)

k)
(lookup-glob (rhsF-id f )))]

[(setF? f ) (apply k
(set-glob v (setF-val f )))]

[(callF? f ) (apply (push (make-execF v)
k)

(lookup-proc (callF-id f )))]
[(execF? f ) (cond [(procV? v) (eval (procV-body v)

(extend-env (procV-ids v)
(execF-args f )
empty-env)

k)]
[(procedure? v) (v (execF-args f ) k)]
[else (error ’exec "not a procedure: ˜a" v)])]

[(pcdF? f ) (let-values ([(v1 f1 ) ((pcdF-v→v+f f ) v)])
(((adv-step (pcdF-advs f )) f1 k) v1 ))]

[else (error ’step "not a frame: ˜a" f )]))

(define (((adv-step advs) f k) v) ;: adv... → (frm * cont) → val → !
(let loop ([advs advs])

(cond [(null? advs) ((base-step f k) v)]
[(match-pc (caar advs) v f ) ⇒ (λ (m)

(eval (cdar advs)
(extend-env ‘(%proceed

%advs

. ,(match-ids m))
‘(,(match-prcd m)

,(cdr advs)
. ,(match-vals m))

empty-env)
k))]

[else (loop (cdr advs))])))

147



C. PROC Implementation Evaluator

;;; defined once the *adv* are elaborated
(define step ;(adv-step *adv*)) ;: (frm * cont) → val → !

#f)

148



C. PROC Implementation AOP Constructs

C.5 AOP Constructs

;;; pointcuts and advice aop

;; pointcuts
;; effective continuation frame matching
(define-struct getC [gid ]) ; PCUT ::= GETPC id
(define-struct setC [gid id ]) ; — SETPC id id
(define-struct callC [pid ids]) ; — CALLPC id id...
(define-struct execC [pid ids]) ; — EXECPC id id...
;; combinational
(define-struct orC [pcs]) ; — ORPC pcut...
(define-struct notC [pc]) ; — NOTPC pcut

(define-struct andC [pcs]) ; — ANDPC pcut...

;; declarations
(define-struct advD [pc body ]) ; DECL +:= ADVICE pcut exp

(define-struct match [ids vals prcd ]) ; MATCH id... val... (val... → (val * frm))

(define (merge-match m1 m2 )
(make-match
(append (match-ids m1 ) (match-ids m2 ))
(append (match-vals m1 ) (match-vals m2 ))
(λ (nv)

(let-values ([(nv1 f1 ) (match-prcd m1 nv)])
(match-prcd m2 nv1 )))))

149



C. PROC Implementation AOP Constructs

;;; matching
(define (match-pc c v f ) ;: (pcut * val * frm) → match

(cond ;; combinational pointcuts
[(orC? c) (let loop ([pcs (orC-pcs c)])

(if (null? pcs)
#f

(or (match-pc (car pcs) v f )
(loop (cdr pcs)))))]

[(notC? c) (if (match-pc (notC-pc c) v f )
#f

(make-match ’()
’()
(λ (nv)

(values v f ))))]
;; [(andC? c) (let loop ([pcs (andC-pcs c)])
;; (if (null? pcs)
;; (make-match ’()
;; ’()
;; (lambda (nv)
;; (values v f)))
;; (merge (match-pc (car pcs) v f)
;; (loop (cdr pcs)))))]

150



C. PROC Implementation AOP Constructs

;; fundamental pointcuts
[(getC? c) (and (getF? f )

(eq? (lookup-glob (getC-gid c)) v)
(make-match ’()

’()
(λ (nv)

(values v f ))))]
[(setC? c) (and (setF? f )

(eq? (lookup-glob (setC-gid c)) v)
(make-match ‘(,(setC-id c))

‘(,(setF-val f ))
(λ (nv)

(values v (make-setF (car nv))))))]
[(callC? c) (and (callF? f )

(eq? (callC-pid c) (callF-id f ))
(make-match (callC-ids c)

v
(λ (nv)

(values nv f ))))]
[(execC? c) (and (execF? f )

(eq? (lookup-proc (execC-pid c)) v)
(make-match (execC-ids c)

(execF-args f )
(λ (nv)

(values v (make-execF nv)))))]
[else (error ’match-pc "not a pointcut: ˜a" c)]))

151



C. PROC Implementation Environments

C.6 Environments

;;;
;;; Environments
;;;

;;; environment – env :: id → val

(define (empty-env i) ;: env
(error ’lookup "not found: ˜a" i))

(define ((extend-env i∗ v∗ r) i) ;: (id... * val... * env) → id → val
(let loop ([i∗ i∗] [v∗ v∗])

(cond [(null? i∗) (r i)]
[(eq? (car i∗) i) (car v∗)]
[else (loop (cdr i∗) (cdr v∗))])))

(define (lookup-env r i)
(r i))

152



C. PROC Implementation Top Level

C.7 Top Level

;;; top level

(load "env.scm")
(load "syntax.scm")
(load "elab.scm")
(load "eval.scm")
(load "aop.scm")
(load "parse.scm")

(define prims
‘([+ ,(lift (λ (vs)

(+ (car vs)
(cadr vs))))]

[= ,(lift (λ (vs)
(= (car vs)

(cadr vs))))]
[display ,(lift (λ (vs)

(display (car vs))
0))]

[newline , (lift (λ (vs)
(newline)
0))]

[abort ,(λ (vs k) ; Felleisen A operator
(apply ’() (car vs)))]))

(define (run s)
(let ([g (parse-pgm s)])

(elab! prims (pgm-decls g))
(eval (pgm-body g)

empty-env
’())))

(load "tests.scm")

153





Subject Index

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.
advice . . . . . . . . . . . . . . . . . . 14, 18–24.

after . . . . . . . . . . . . . . . . . . . . . . . 18.
around . . . . . . . . . . . . . . . . 18, 31.
before . . . . . . . . . . . . . . . . . . . . . 18.
fluid-around . . . . . . . . . . . . . . . 31.
matching . . . . . . . . . . . . . . . . . . 20.

advice environment . . . . . . . . . . . . 32.
aspect

assistant . . . . . . . . . . . . . . . . . . . 93.
harmless . . . . . . . . . . . . . . . . . . . 94.
invasive . . . . . . . . . . . . . . . . . . . . 94.

weakly . . . . . . . . . . . . . . . . . . . 94.
regulative . . . . . . . . . . . . . . . . . . 93.
spectative . . . . . . . . . . . . . . . . . 93.

weakly . . . . . . . . . . . . . . . . . . . 93.
spectator . . . . . . . . . . . . . . . . . . 92.

AspectJ . . . . . . . . . . . . . . . . . . . . . . . 24.
AspectScheme . . . . . . . . . . . . . . . . . 25.

behaviour analysis . . . . . . . . . . . . . 53.

CEKS machine . . . . . . . . . . . . 30–31.
closure . . . . . . . . . . . . . . . . . . . . . . . . . 10.
continuation . . . . . . . . . . . . . . . . 9, 10.
continuation mark . . . . . . see mark,

continuation.
cps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.

declare precedence . . . . . . . . . . . . . 87.
Demeter, Law of . . . . . . . . . . . . . . . 63.
dominates . . . . . . . . . . . . . . . . . . . . . 87.

effect . . . . . . . . . . . . . . . . . . . . . . . . . . 54.
concurrency . . . . . . . . . . . . . . . 55.
exception . . . . . . . . . . . . . . . . . . 54.
io . . . . . . . . . . . . . . . . . . . . . . . . . . 55.
nondeterminism . . . . . . . . . . . 55.
region . . . . . . . . . . . . . . . . . . . . . 59.
state . . . . . . . . . . . . . . . . . . . . . . . 54.

effect report
advice . . . . . . . . . . . . . . . . . . . . . 65.
pointcut . . . . . . . . . . . . . . . . . . . 62.

effect string . . . . . . . . . . . . . . . . . . . . 56.
advice . . . . . . . . . . . . . . . . . . . . . 64.
join point . . . . . . . . . . . . . . . . . . 59.
pointcut . . . . . . . . . . . . . . . . . . . 61.
procedure . . . . . . . . . . . . . . . . . . 56.

frame
auxiliary . . . . . . . . . . . . . . . . . . . 11.

full abstraction . . . . . . . . . . . . . . . . 99.

interaction
compound . . . . . . . . . . 75, 86–87.
concurrency . . . . . . . . . . . 85–86.

asynchronous . . . . . . . . . . . . 85.
mixed . . . . . . . . . . . . . . . . . . . 85.
synchronous . . . . . . . . . . . . . 85.

control . . . . . . . . . . . . . . . . 76–78.
coupling . . . . . . . . . . . . . . . . . 77.
extension . . . . . . . . . . . . . . . . 77.
narrowing . . . . . . . . . . . . . . . 77.
repetition . . . . . . . . . . . . . . . . 77.
replacement . . . . . . . . . . . . . 77.

155



join point shift

data . . . . . . . . . . . . . . . . . . . 78–82.
actuation . . . . . . . . . . . . . . . . 80.
independent . . . . . . . . . . . . . 79.
influence . . . . . . . . . . . . . . . . . 80.
interference . . . . . . . . . . . . . . 81.
observation . . . . . . . . . . . . . . 80.
orthogonal . . . . . . . . . . . . . . . 79.

exception . . . . . . . . . . . . . . 84–85.
injection . . . . . . . . . . . . . . . . . 84.
masking . . . . . . . . . . . . . . . . . 84.

io . . . . . . . . . . . . . . . . . . . . . . 82–84.
advice only . . . . . . . . . . . . . . 83.
both . . . . . . . . . . . . . . . . . . . . . 83.
join point only . . . . . . . . . . . 83.
neither . . . . . . . . . . . . . . . . . . 82.

simple . . . . . . . . . . . . . . . . . 75, 76.

join point . . . . . . . . . . . . . . . . . . . . . . 14.
advice execution . . . . . . . . . . . 86.
dynamic . . . . . . . . . . . . . . . 15–16.
principle . . . . . . . . . . . . . . . . . . . 15.
shadow . . . . . . . . . . . . . . . . . . . . 59.

let
monadic . . . . . . . . . . . . . . . . . . . 10.

mark
continuation . . . . . . . . . . . 25, 37.

monad . . . . . . . . . . . . . . . . . . . . . . . . . 27.

pointcut . . . . . . . . . . . . . . . . 14, 16–18.
call . . . . . . . . . . . . . . . . . . . . . . . . 17.
cflow . . . . . . . . . . . . . . . . . . 25, 38.

optimization . . . . . . . . . . . . . 40.
exec . . . . . . . . . . . . . . . . . . . . . . . 17.
get . . . . . . . . . . . . . . . . . . . . . . . . 17.
not . . . . . . . . . . . . . . . . . . . . . . . . 17.
or . . . . . . . . . . . . . . . . . . . . . . . . . 17.
principle . . . . . . . . . . . . . . . . . . . 17.
set . . . . . . . . . . . . . . . . . . . . . . . . . 17.

procedure string . . . . . . . . . . . . . . . 58.
proceed . . . . . . . . . . . . . . . . . . . . 18, 21.

reflection,monadic . . . . . . . . . . . . 102.

reset . . . . . . . . . . . . . . . . . . . . . . . . . . 102.

scoping
dynamic . . . . . . . . . . . . . . . . . . . 35.
static . . . . . . . . . . . . . . . . . . . . . . 35.

semantics
big-step . . . . . . . . . . . . . . . . . . . . 8.
continuation . . . . . . . . . . . . . . . . 9.
direct . . . . . . . . . . . . . . . . . . . 8, 24.
game . . . . . . . . . . . . . . . . . . . . . 100.
small-step . . . . . . . . . . . . . . . . . 10.

shift . . . . . . . . . . . . . . . . . . . . . . . . . . 102.

156



Citation Index

Abramsky and Jagadeesan [1994]
100, 103.

Abramsky et al. [2000] . . . 100, 103.
Abramsky [2006] . . . . . . . . . 100, 103.
Ager et al. [2003] . . . . . . . . . 26, 103.
Ager et al. [2005] . . . . . 10, 25, 103.
Allen et al. [1990] . . . . . . . . . . 7, 103.
Amtoft et al. [1999] . . . . . . 102, 103.
Andrews [2001] . . . . . . . . . . . 27, 103.
Angus [1997] . . . . . . . . . . . . . 102, 103.
Appel [1992] . . . . . . . . . . . . . . 56, 103.
Avgustinov et al. [2005] . . . 41, 104.
Aßmann and Ludwig [1999] . . . . 16,

104.
Bergmans and Akşit [2001] . . . . . . 2,

100, 104.
Biagioni et al. [1998] . . . . . . 68, 104.
Biernacka et al. [2005] . . . 102, 104.
Biernacki et al. [2006] . . . . 102, 104.
Blanchet [2003] . . . . . . . . . . . 71, 104.
Bockisch et al. [2004] . . . . . 48, 104.
Brooks et al. [1982] . . . . . . . 71, 104.
Bruns et al. [2004] . . . . 26, 99, 104.
Cardelli [1988] . . . . . . . . . . . 100, 104.
Cardelli [2003] . . . . . . 105, 109, 112.
Clement et al. [2005] . . . . . 100, 105.
Clements and Felleisen [2003] . . .41,

105.
Clements and Felleisen [2004] . . .41,

105.

Clements and Northrop [2001] . . .2,
105.

Clifton and Leavens [2002] . . . . . 89,
92, 105.

Clifton et al. [2000] . . . . . . 100, 105.
Clinger [1998] . . . . . . . . . . . . . 41, 105.
Coady et al. [2004] . . . . . . . . . 1, 105.
Cousot and Cousot [1977] . . . . . . 72,

105.
Cousot and Cousot [1993] . . . . . . 72,

105.
Cousot and Cousot [2000] . . . . . . 72,

106.
Cousot and Cousot [2002] . . . . . . 72,

106.
Cousot and Cousot [2004] . . . . . . 72,

106.
Cousot [2005] . . . . . . . 106, 111, 114.
Damas and Milner [1982] . . . . . 101,

106.
Damian and Danvy [2003] . . . . . 99,

106.
Dantas and Walker [2006] . . .92, 94,

106.
Dantas et al. [2005] . . . 26, 54, 101,

106.
Dantas et al. [to appear] . . . 26, 54,

99, 101, 106.
Danvy and Filinski [1990] . . . . . . 72,

107.

157



Danvy and Hatcliff [1992] Lohmann and Spinczyk [2003]

Danvy and Hatcliff [1992] . . . . . . 11,
107.

Danvy and Hatcliff [1993] . . . . . . 10,
107.

Danvy and Lawall [] . . . . . 102, 107.
Danvy and Nielson [2003] . . . . . . 12,

107.
Danvy and Pierce [2005] . . . . . . 106,

107, 112.
Danvy et al. [1999] . . . . . . . . 99, 106.
Danvy [1994] . . . . . . . . . . . . 102, 106.
Danvy [2000] . . . . . . . . . . . . . 10, 107.
De Win et al. [2004] . . . . . . . 1, 107.
Douence et al. [2001] . . . . . . 27, 107.
Dutchyn et al. [2002] . . . 8, 24, 107.
Dutchyn et al. [2006] . . . xiv, 25, 29,

37, 47, 99, 108.
Dutchyn [2005] . . . . . . . . . . . 29, 107.
Dutchyn [2006] . . . . . . . 25, 29, 107.
Dwyer and Taylor [2004] . . . . . . 108,

111, 114.
Espinosa [1994] . . . . . . 72, 102, 108.
Felleisen and Hieb [1992] . . .30, 108.
Felleisen et al. [1988] . . . . . . 12, 108.
Felleisen [1988] . . . . . . . . . . . . 12, 108.
Field et al. [2005] . . . . . . . . 102, 108.
Filinski [1989] . . . . . . . . 19, 102, 108.
Filinski [1994] . . . . . . . . . . . . . 72, 108.
Filinski [1996] . . . . . . . . . . . . . 72, 108.
Filinski [1999] . . . . . . . . . . . . . 72, 108.
Filman and Friedman [2004] . . . 26,

109.
Filman et al. [2004] . . . . . . 105, 107,

109.
Filman [2001] . . . . . . . . . . . . . . 8, 108.
Findler et al. [2002] . . . . . . . . 3, 109.
Flanagan et al. [1993] . . .11, 12, 14,

71, 109.
Friedman et al. [2001] . . . . . . 8, 109.
Führmann [2002] . . . . . . . . 102, 109.
Gapeyev and Pierce [2003] . . . . 102,

109.
George et al. [1995] . . . . . . . 71, 109.

Gosling et al. [2000] . . . . . . . 37, 109.
Gray et al. [2001] . . . . . . . . . . 2, 109.
Griswold and Akşit [2003] . . . . . 109,

110, 114.
Harrison [1989] . . . . 56, 58, 72, 109.
Hatcliff and Danvy [1994] . . . . . . 10,

109.
Hilsdale and Hugunin [2004] . . . 41,

110.
Hudak et al. [1992] . . . . . . . . 72, 110.
Jones and Duponcheel [1993] . . . 72,

102, 110.
Jouvelot and Gifford [1989] . . . . 15,

19, 54, 69, 72, 110.
Kameyama [2000] . . . . . . . . 102, 110.
Katz and Gil [1999] . . . 92, 93, 110.
Katz [2004] . . . . . . . . . . . . . . . 93, 110.
Katz [2006] . . . . . . . . . . . 92, 93, 110.
Kelsey et al. [1998] . . . 8, 34, 38, 41,

110.
Kiczales et al. [1997] . . . 2, 14, 110.
Kiczales et al. [2001] . . . 2, 24, 110.
Kiczales [2003] . . . . . . . . . . . . xii, 110.
King and Wadler [1993] . . . 72, 102,

111.
Kirli [2002] . . . . . . . . . . . . . . 102, 111.
Krishnamurthi et al. [2004] . . . . . 95,

111.
Laddad [2003] . . . . . 88, 90, 91, 111.
Lam et al. [2003] . . . . . . . . . . 72, 111.
Lam et al. [2004] . . . . . . . . . . 72, 111.
Lam et al. [2005] . . . . . . . . . 102, 111.
Landin [1965] . . . . . . . . . . . . . . 9, 111.
Leavens and Cytron [2002] . . . . 111,

112, 116.
Levy [1999] . . . . . . . . . . . . . . . 53, 111.
Liang et al. [1995] . . . . . . . . 102, 111.
Liang [1997] . . . . . . . . . . . . . . 72, 111.
Lieberherr et al. [2001] . . . . . . 2, 63,

100, 112.
Lieberherr et al. [2004] . . . . 63, 112.
Lohmann and Spinczyk [2003] . . . 1,

112.

158



Loucassen and Gifford [1988] Yonezawa and Matsuoka [2001]

Loucassen and Gifford [1988] . . . 72,
112.

Loucassen [1987] . . . . . . . . . . 72, 112.
Masuhara and Kiczales [2003] . . .

100, 112.
Masuhara et al. [2002] . . . . . .xiv, 8,

112.
Masuhara et al. [2003] . . .xiv, 8, 46,

112.
Masuhara et al. [2005] . . . . . 48, 99,

112.
Meyer and Riecke [1988] . . .72, 112.
Might and Shivers [2006] . . .72, 112.
Milner et al. [1997] . . . . . . . . 48, 112.
Moggi [1989] . . . . . . . . . . 10, 72, 113.
Moggi [1991] . . . . . . . 10, 54, 72, 113.
Murphy and Lieberherr [2004] . . .

104, 110, 113.
Murthy [1992] . . . . . . . . . . . . 15, 113.
Nelson et al. [2001] . . . . . . . 87, 113.
Netinant et al. [2001] . . . . . . 2, 113.
Nielson et al. [1999] . . . . 53, 71, 72,

113.
Nierstrasz [1993] . . . . . . . . . 102, 113.
Odersky et al. [1999] . . . . . 101, 113.
Ossher and Tarr [1999] . . . 100, 113.
Peyton Jones [2006] . . . . . . 106, 112,

113.
Peyton Jones and Wadler [1993] . . .

72, 113.
Peyton Jones [2001] . . . . . . . 72, 113.
Pierce and Turner [1998] . . . . . . 101,

113.
Queinnec [1993] . . . . . . . . . . . 71, 114.
Queinnec [1994] . . . . . . . . . . . 71, 114.
Reynolds [1972] . . . . . . . . 8, 11, 114.
Reynolds [1993] . . . . . . . . . . . . 9, 114.
Reynolds [1998] . . . . . . . . 8, 11, 114.
Rinard et al. [2004] . . . . . . . 76, 114.
Roychoudhury and Gray [2005] . . .

16, 114.
Sabry and Felleisen [1993] . . . . . . 54,

114.

Sabry [1994] . . . . . . . . . . 14, 71, 114.
Selinger [2001] . . . . . . . . . . . . 54, 114.
Sereni and de Moor [2003] . . . . . 41,

114.
Shan [1999] . . . . . . . . . . . . . . 102, 114.
Shan [2003] . . . . . . . . . . . . . . 102, 114.
Shivers [1988] . . . . . . 56, 70, 71, 115.
Shivers [2004] . . . . . . . . . 70, 99, 115.
Sihman and Katz [2003] . . .92, 115.
Skalka and Pottier [2003] . . . . . . 101,

115.
Skalka et al. [2005] . . . . . . . . 72, 115.
Spinczyk and Lohmann [2004] . . . 1,

115.
Steele [1978] . . . . . . . . . . . . . . 71, 115.
Steele [1994] . . . . . . . . . . . . . . 72, 115.
Strachey [1967] . . . . . . . . . . . . 9, 115.
Strom and Yemini [1986] . . . . . . 102,

115.
Sullivan [2001] . . . . . . . . . . . . . 2, 115.
Sulzmann [2000] . . . . . . . . . 101, 115.
Sălcianu and Rinard [2005] . . . . . 71,

114.
Thielecke [1997] . . . . . . . 11, 15, 115.
Wadler and Thiemann [2003] . . . 54,

116.
Wadler [1992] . . . . . . . . . . . . . 55, 116.
Wadler [1994] . . . . . . . . 72, 102, 116.
Wadler [1995] . . . . . . . . . . . . . 72, 116.
Wadler [1998] . . . . . . . . . . . . . 54, 116.
Walker et al. [2003] . . . 48, 54, 101,

116.
Wand and Friedman [1978] . . . . . 71,

116.
Wand et al. [2002] . . .xiv, 8, 24, 116.
Wand et al. [2004] . . .xiv, 8, 16, 24,

25, 99, 100, 116.
Yonezawa and Matsuoka [2001] . . .

103, 113, 116.

159





Colophon

This dissertation was typeset using the the TEX
typesetting system created by Donald Knuth, the
LATEX 2ε document preparation macros created by

Leslie Lamport, the memoir class designed by Peter
Wilson, and the ubc-diss package developed by

Christopher Dutchyn. Program code is composed using
SLaTeX developed by Dorai Sitaram. The body text
is set 10/15pt× 32pc with Computer Modern Roman
designed by Donald Knuth. Other fonts include Sans,
Smallcaps, Italic, Slanted, and Typewriter, all from

Knuth’s Computer Modern family.

161


	Abstract
	Contents
	Tables
	Figures
	Preface
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Motivation
	Thesis
	Contributions

	1.2 Plan of Presentation

	I Dynamic Semantics
	2 A Model for Dynamic Join Points, Pointcuts, and Advice
	2.1 A Procedural Language -- Direct Semantics
	2.2 A Procedural Language -- Continuation Semantics
	2.3 Exposing Our AOP Constructs
	2.4 Comparison to Other Semantics
	Aspect Sandbox
	AspectScheme
	PolyAML and uABC
	Other Related Work

	2.5 Summary

	3 Advice in Higher Order Languages
	3.1 AspectScheme Model
	Background on the CEKS machine
	Declaring Advice
	Function Equality
	Primitive Function Application
	Regular Function Application

	3.2 AspectScheme with Cflow
	Cflow and Optimizations

	3.3 State Effects Cflow
	Regenerating Cflow

	3.4 Related Work
	3.5 Summary


	II Static Semantics
	4 Abstracting Pointcuts and Advice to Effects
	4.1 Computational Effects
	4.2 Effect Analysis for PROC
	Effect Strings for Procedures
	Effect Strings for Dynamic Join Points
	Effect Strings for Pointcuts
	Pointcut Effect Reports
	Effect Strings for Advice Bodies
	Advice Effect Reports

	4.3 Exceptions and Threads
	4.4 Effect Analysis for AspectScheme
	4.5 Related Work
	4.6 Summary

	5 Classifying Pointcut and Advice Interactions
	5.1 Simple Interactions
	Control Flow Categories

	5.2 Data Interaction Categories
	Input (Output) Interactions
	Exception Interactions
	Concurrency Interactions
	Summary of Interactions

	5.3 Compound Interactions
	5.4 Example Interactions and Reports
	Tracing
	Move Limiting
	Exception Logging
	Runnable With Return

	5.5 Other Analyses and Related Work
	Clifton et al.
	Katz et al.
	Dantas et al.

	5.6 Summary


	6 Conclusion
	6.1 Contributions
	6.2 Open Questions
	Extending and Formalizing
	Object-Oriented Languages
	An Effect Checking Tool


	Works Cited
	Appendices
	A AspectScheme CEKS Semantics
	A.1 Syntactic Categories
	A.2 Transition Rules

	B AspectScheme 2.3 Implementation
	C PROC Implementation
	C.1 Syntax
	C.2 Parser
	C.3 Elaborator
	C.4 Evaluator
	C.5 AOP Constructs
	C.6 Environments
	C.7 Top Level


	Subject Index
	Citation Index

