
Compilation Semantics of
Aspect-Oriented Programs

Hidehiko Masuhara
∗

Graduate School of
Arts and Sciences
University of Tokyo

masuhara@acm.org

Gregor Kiczales
Department of

Computer Science
University of British Columbia

gregor@cs.ubc.ca

Chris Dutchyn
Department of

Computer Science
University of British Columbia

cdutchyn@cs.ubc.ca

ABSTRACT
This paper presents a semantics-based compilation frame-
work for an aspect-oriented programming language based
on its operational semantics model. Using partial evalua-
tion, the framework can explain several issues in compilation
processes, including how to find places in program text to
insert aspect code and how to remove unnecessary run-time
checks. It also illustrates optimization of calling-context sen-
sitive pointcuts (cflow), implemented in real compilers.
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1. INTRODUCTION
This work is part of a larger project, the Aspect Sand-
Box (ASB), that aims to provide concise models of aspect-
oriented programming (AOP) for theoretical studies and to
provide a tool for prototyping alternative AOP semantics
and implementation techniques. To avoid difficulties to de-
velop formal semantics directly from artifacts as complex as
AspectJ and Hyper/J, ASB provides a suite of interpreters
of simplified languages. Those languages have sufficient fea-
tures to characterize existing AOP languages. In this paper
we report one result from the ASB project—a semantics-
based explanation of the compilation strategy for advice dis-
patch in AspectJ like languages[6, 7, 11, 12].

The idea is to use partial evaluation to perform as many tests
as possible at compile-time, and to insert applicable advice
bodies directly into the program. Our semantic framework
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also explains the optimization used by the AspectJ compiler
for context-sensitive pointcuts (cflow and cflowbelow).

Some of the issues our semantic framework clarifies include:

• The mapping between dynamic join points and the
points in the program text, or join point shadows,
where the compiler actually operates.

• What dispatch can be ‘compiled-out’ and what must
be done at runtime.

• The performance impact different kinds of advice and
pointcuts can have on a program.

• How the compiler must handle recursive application of
advice.

1.1 Join Point Models
Aspect-oriented programming (AOP) is a paradigm to mod-
ularize crosscutting concerns[13]. An AOP program is effec-
tively written in multiple modularities—concerns that are
local in one are diffuse in another and vice-versa. Thus far,
several AOP languages are proposed from practical to ex-
perimental levels[3, 11, 12, 16, 17].

The ability of an AOP language to support crosscutting lies
in its join point model (JPM). A JPM consists of three ele-
ments:

• The join points are the points of reference that aspect
programs can use to refer to the computation of the
whole program. Lexical join points are locations in the
program text (e.g., “the body of a method”). Dynamic
join points are run-time entities, such as events that
take place during execution of the program (e.g., “an
invocation of a method”).

• A means of identifying join points. (e.g., “the bodies
of methods in a particular class,” or “all invocations
of a particular method”)

• A means of specifying semantics at join points. (e.g.,
“run this code beforehand”)

As an example, in AspectJ:
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• the join points are nodes in the runtime control flow
graph of the program, such as when a method is called
(and returns), and when a field is read (and the value
is returned). (e.g., “a call to method set(int) of class
Point”1)

• the means of identifying join points is the pointcut
mechanism, which can pick out join points based
on things like the name of the method, the pack-
age, the caller, and so forth. (e.g., “call(void
Point.set(int))”)

• the means of specifying semantics is the advice mech-
anism, which makes it possible to specify additional
code that should run at join points.
(e.g., “before : call(void Point.set(int))

{ Log.add("set"); }”)

In this paper, we will be working with a simplified JPM
similar to the one from AspectJ. (See Section 2.1 for details.)

The rest of the paper is organized as follows. Section 2
introduces our AOP language, AJD, and shows its inter-
preter. Section 3 presents a compilation framework for AJD
excluding context-sensitive pointcuts, which are deferred to
Section 4. Section 5 relates our study to other formal stud-
ies in AOP and other compilation frameworks. Section 6
concludes the paper with future directions.

2. AJD: DYNAMIC JOIN POINT MODEL
AOP LANGUAGE

This section introduces our small AOP language, AJD, which
implements core features of AspectJ’s dynamic join point
model. The language consists of a simple object-oriented
language and its AOP extension. Its operational semantics
is given as an interpreter written in Scheme. A formaliza-
tion of a procedural subset of AJD is presented by Wand
and the second and the third authors[20].

2.1 Informal Semantics
We first informally present the semantics of AJD. In short,
AJD is an AOP language based on a simple object-oriented
language with classes, objects, instance variables, and meth-
ods. Its AOP features covers essential part of AspectJ (ver-
sion 1.0).

2.1.1 Object Semantics
Figure 1 is an example program. For readability, we use
a Java-like syntax in the paper2. It defines a Point class
with one integer instance variable x, a unary constructor,
and three methods set, move and main.

When method main of a Point object is executed, line 7 cre-
ates another Point object and runs the constructor defined
at line 3. Line 8 invokes method move on the created object.
Finally, line 9 reads and displays the value of variable x of
the object.

1For simplicity later in the paper, we are using one-
dimensional points as an example.
2Our implementation actually uses an S-expression based
syntax.

1 class Point {
2 int x;
3 Point(int ix) { this.set(ix); }
4 void set(int newx) { this.x = newx; }
5 void move(int dx) { this.set(this.x + dx); }
6 void main() {
7 Point p = new Point(1);
8 p.move(5);
9 write(p.x); newline();
10 }
11 }

Figure 1: An Example Program. (write and newline
are primitive operators.)

p ∈ {pointcuts}, m ∈ {method signatures},
n ∈ {constructor signatures}, v ∈ {identifiers with types}

p ::= call(m) | execution(m) | new(n)
| target(v) | args(v, . . . ) | p&&p | p||p | !p
| cflow(p) | cflowbelow(p)

Figure 2: Syntax of Pointcuts.

2.1.2 Aspect Semantics
To explain the semantics of AOP features in AJD, we first
define its JPM.

2.1.2.1 Join Point
The join point is an action during program execution, in-
cluding method calls, method execution, object creation,
and advice execution. (Note that a method invocation is
treated as a call join point at the caller’s side and an execu-
tion join point at the receiver’s side.) The kind of the join
point is the kind of action (e.g., call and execution).

2.1.2.2 Means of Identifying Join Points
The means of identifying join points is the pointcut mecha-
nism. A pointcut is a predicate on join points, which is used
to specify the join points that a piece of advice applies to.
The syntax of pointcuts is shown in Figure 2. Since point-
cuts can have parameters, the evaluation of a pointcut with
respect to a join point results in either bindings that satisfy
the pointcut (meaning true), or false.

The first three pointcuts (call, execution, and new) match
join points that have the same kind and signature as the
pointcut. The next two pointcuts (target and args) match
any join point that has values of specified types. The next
three operators (&&, || and !) logically combine or negate
pointcuts. The last two pointcuts match join points that
have a join point matching their sub-pointcuts in the call-
stack. These are discussed in Section 4 in more detail. In-
terpretation of pointcuts is formally presented in other lit-
erature[20].

2.1.2.3 Means of Specifying Semantics
The means of specifying semantics is the advice mechanism.
A piece of advice contains a pointcut and a body expression.
When a join point is created, and it matches the pointcut of
a piece of advice, the body of the advice is executed. There
are two types of advice, namely before and after. A before
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1 before : call(void Point.set(int)) && args(int z) {
2 write("set:"); write(z); newline();
3 }

Figure 3: Example Advice.

1 (define eval
2 (lambda (exp env jp)
3 (cond
4 ((const-exp? exp) (const-value exp))
5 ((var-exp? exp) (lookup env (var-name exp)))
6 ((call-exp? exp)
7 (call (call-signature exp)
8 (eval (call-target exp) env jp)
9 (eval-rands (call-rands exp) env jp)
10 jp))
11 ...)))
12 (define call
13 (lambda (sig obj args jp)
14 (execute (lookup-method (object-class obj) sig)
15 obj args jp)))
16 (define execute
17 (lambda (method this args jp)
18 (let ((class (method-class method))
19 (params (method-params method)))
20 (eval (method-body method)
21 (new-env (list* ’this ’%host params)
22 (list* this class args))
23 jp))))

Figure 4: Expression Interpreter.

advice is executed before the original action is taken place.
Similarly, the after is executed after the original action is
completed.

Figure 3 shows an example of advice that lets the example
program to print a message before every call to method set.
The keyword before specifies the type of the advice. point-
cut is written after the colon. The pointcut matches join
points that call method set of class Point, and the args
sub-pointcut binds variable z to the argument to method
set. Line 2 is the body, which prints messages and the
value of the argument.

When the program in Figure 1 is executed together with
the advice in Figure 3, the advice matches to the call to set
twice (in the constructor and in method set), it thus will
print “set:1”, “set:6” and “6”.

2.2 AJD Interpreter
The interpreter of AJD consists of an expression interpreter
and several definitions for AOP features including the data
structure for a join point, wrappers for creating join points,
a weaver, and a pointcut interpreter.

2.2.1 Expression Interpreter
Figure 4 shows the core of the expression interpreter ex-
cluding support for AOP features. The main function eval
takes an expression, an environment, and a join point as its
parameters. The join point is an execution join point at the
enclosing method or constructor.

An expression is a parsed abstract syntax tree. There are
predicates (e.g., const-exp? and call-exp?) and selectors
(e.g., const-value and call-signature) for the syntax

field available information
kind call, execution, etc.
name name of method or class
target target of method invocation
args arguments to a method
stack (explained in Section 4)

Table 1: Fields in Join Points

1 (define call
2 (lambda (sig obj args jp)
3 (weave (make-jp ’call sig obj args jp)
4 (lambda (args jp)
5 ;; body of the original call goes here
6 )
7 args)))

Figure 5: A Wrapper.

trees. An environment binds variables to mutable cells; i.e.,
an assignment to a variable is implemented as side-effect in
Scheme. An object is a Scheme data structure that has a
class information and mutable fields for instance variables.
Likewise, an assignment to an instance variable is imple-
mented as side-effect.

Each action that creates join points is defined as a separate
sub-function, so that we can add AOP support later.

For example, the interpreter evaluates a method call ex-
pression in the following manner. First, sub-expressions for
the target object and operand values are recursively evalu-
ated (ll.8–9). Next, in function call, a method is looked-up
in the class of the target object (l.14). Then, in function
execute, an environment that binds the formal parameters
to the operand values is created (ll.25–26)3 . Finally, the
body of the method is evaluated with newly created envi-
ronment (ll.24–27).

2.2.2 Join Point
A join point is a data structure that is created upon an ac-
tion in the expression interpreter. A piece of advice obtains
all information about advised action from join points. In
our implementation, a join point is a record of kind, name,
target, args, and stack. Table 1 summarizes values in
those fields. There are selectors, such as jp-kind, and a
constructor, make-jp, for accessing and creating join points.

2.2.3 Wrapper
In order to advice actions performed in the expression in-
terpreter, we wrap the interpreter functions so that they
(conceptually) create dynamic join points. Figure 5 shows
how call—one of such a function—is wrapped. When a
method is to be called, the function first creates a join point
that represents the call action (l.3) and applies it to weave,
which executes advice applicable to the join point (explained
below). The lambda-closure passed to weave (ll.4–6) defines
the action of call, which is executed during the weaving
process.

Likewise, the other functions including method execution,

3The pseudo-variable %host is used for looking-up methods
for super classes.
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1 (define weave
2 (lambda (jp action args)
3 (call-befores/afters *befores* args jp)
4 (let ((result (action args jp)))
5 (call-befores/afters *afters* args jp)
6 result)))
7 (define call-befores/afters
8 (lambda (advs args jp)
9 (for-each (call-before/after args jp) advs)))
10 (define call-before/after
11 (lambda (args jp)
12 (lambda (adv)
13 (let ((env (pointcut-match? (advice-pointcut adv)
14 jp)))
15 (if env
16 (execute-before/after adv env jp))))))
17 (define execute-before/after
18 (lambda (adv env jp)
19 (weave (make-jp ’aexecution adv #f #f ’() jp)
20 (lambda (args jp)
21 (eval (advice-body adv) env jp))
22 ’())))

Figure 6: Weaver.

1 (define pointcut-match?
2 (lambda (pc jp)
3 (cond
4 ((and (call-pointcut? pc) (call-jp? jp)
5 (sig-match? (pointcut-sig pc) (jp-name jp)))
6 (make-env ’() ’()))
7 ((and (args-pointcut? pc)
8 (types-match? (jp-args jp)
9 (pointcut-arg-types pc)))
10 (make-env (pointcut-arg-names pc) (jp-args jp)))
11 ...
12 (else #f))))

Figure 7: Pointcut Interpreter.

object creation, and advice execution (defined later) are
wrapped.

2.2.4 Weaver
Figure 6 shows the definition of the weaver. Function weave
takes a join point (jp), a lambda-closure for continuing the
original action (action), and a list of arguments to action
(args). It also uses advice definitions in global variables
(*befores* and *afters*). It defines the order of advice
execution; it executes befores first, then the original action,
followed by afters last.

Function call-befores/afters processes a list of advice. It
matches the pointcut of each piece of advice against the cur-
rent join point (ll.13–14), and executes the body of the ad-
vice if they match (ll.15–16). In order to (potentially) advise
execution of advice, the function execute-before/after is
also wrapped. Line 21 actually executes the advice body in
an environment that provides the bindings expressed by the
pointcut.

Calling around advice has basically the same structure for
the before and after. It is, however, more complicated due
to its interleaved execution for the proceed mechanism.

2.2.5 Pointcut interpreter

The pointcut interpreter pointcut-match?, shown in Fig-
ure 7, matches a pointcut to a join point. Due to space lim-
itations, we only show rules for two types of pointcuts. The
first rule (ll.4–6) defines that a call(m) pointcut matches
to a call join point that whose name field matches to m.
It returns an empty environment that represent ‘true’ (l.6).
An args(t x, . . .) pointcut (where t and x are a type and a
variable, respectively) matches to any join point whose ar-
guments have the same type to t, . . . (ll.7–10). It returns
an environment that binds variable x, . . . in the pointcut to
the value of the argument in the join point (l.10). False is
returned when matching fails (l.12).

3. COMPILING AJD PROGRAMS BY
PARTIAL EVALUATION

3.1 Outline
Our compilation framework is based on partial evaluation of
an interpreter, which is known as the first Futamura projec-
tion[9]. Given an interpreter of a language and a program to
be interpreted, partially evaluating the interpreter with re-
spect to the subject program generates a compiled program
(called a residual program). Following this scheme, we can
expect that partial evaluation of an AOP interpreter with
respect to a subject program and advice definitions would
generate a compiled, or statically woven program.

While the AJD interpreter is written as to ‘test-and-execute’
all pieces of advice at each dynamic join point, our compila-
tion framework successfully inserts only applicable advice to
each shadow of join points. This is achieved in the following
way:

1. Our compilation framework runs partial evaluation with
AJD interpreter and each method definition.

2. The partial evaluator processes the expression inter-
preter, which virtually walks over the expressions in
the method. All shadows of join points are thus in-
stantiated.

3. At each shadow of join points, the partial evaluator
further processes the weaver. Using statically given
advice definitions, it (conceptually) inserts test-and-
execute sequence of all advice.

4. For each piece of advice, the partial evaluator reduces
the test-and-execute code into a conditional branch
whose condition is either constant or dynamic value,
and then-clause executes the advice body. Depending
on the condition, the entire code or the test code may
be removed.

5. The partial evaluator may process the execution code
of the advice body. It thus instantiates shadows of
join points in the advice body. By recursively follow-
ing the steps from 3, ‘advised advice execution’ is also
compiled.

As is mentioned in the above step 1, we run partial evalua-
tion with respect to each method definition. This is because
the applicable method for a method call can not be deter-
mined at compile-time in object-oriented languages. There-
fore, we start partially evaluation the execute function with
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its method parameter. The rest of the parameters (env and
jp) are set to unknown at partial evaluation time. The resid-
ual program serves as a compiled (or statically woven) code
of the method written in Scheme. The function is stored in
a dispatch table so that it will be directly called at run-time.

For partial evaluation, we used PGG, an offline partial eval-
uator for Scheme[19].

3.2 How AJD is Partially Evaluated
An offline partial evaluator processes a program in the fol-
lowing way. It first annotates subexpressions in the program
as either static or dynamic, based on their dependency on
the statically known parameters. Those annotations are of-
ten called binding-times. It then processes the program from
the beginning by actually evaluating static expressions and
by returning symbolic expressions for dynamic expressions.
The resulted program, which is called residual program, con-
sists of a dynamic expressions in which statically computed
values are embedded.

This subsection explains how the AJD interpreter is par-
tially evaluated with respect to a subject program, by em-
phasizing what operations can be performed at partial evalu-
ation time. Although the partial evaluation is an automatic
process, we believe understanding this process is crucially
important for identifying information available at compile-
time and also for developing better insights into design of
hand-written compilers.

3.2.1 Compilation of Expressions
The essence of the Futamura projection is to perform com-
putation involving exp at partial evaluation time. Special-
ization of execute with each static method makes eval of
exp static, and subsequent execution keeps this static prop-
erty of exp. In contrast, call applies the method parameter
as a dynamic value to execute due to the nature of dynamic
dispatching in object-oriented languages. We therefore con-
figure4 the partial evaluator not to process execute from
call so that it will not ‘downgrade’ the binding-time of exp
to dynamic.

The environment (env) is treated as dynamic. With more
careful interpreter design, we could make it partially-static
data, in which variables are static and values are dynamic.
However, this is not the focus of this paper.

3.2.2 Compilation of Advice
As is mentioned in Section 3.1, our compilation framework
inserts advice bodies into their applicable shadows of join
points with appropriate guards. Below, we explain how this
is done by the partial evaluator.

1. A wrapper (e.g., Figure 5) creates a join point upon
calling weave. The first three fields of the join point,
namely kind, within and name, are static because they
merely depend on the program text. The rest fields
have values computed at run-time. Those static fields

4To do so, we rewrite call to call execute* instead
of execute, and manually give dynamic binding-time to
execute*.

could be passed to the weaver either by using partially-
static data structure[4] or by rewriting the program to
keep those three values in a split data structure. We
took the latter approach for the ease of debugging and
also for other technical reasons.

2. Function weave (Figure 6) is executed with a partially
static join point, an action, and dynamic arguments.
Since the advice definitions are statically available, the
partial evaluator unrolls loops that test each advice
definition (i.e., for-each in eval-befores/afters).

3. As explained in Section 3.2.3, matching a static point-
cut to a partially static join point may result in either
a static or dynamic value. Therefore, the test-and-
execute sequence (in eval-before/after) become one
of the following three:

Statically false: No action is taken; i.e., no code is
inserted into compiled code.

Statically true: The body of the advice is partially
evaluated; i.e., the body is inserted in compiled
code without guards.

Dynamic: In this case, partial evaluation of
pointcut-match? generates an if expression
whose then-clause is the above ‘statically true’
case and the else-clause is ‘statically false’ case.
Essentially, the advice body is inserted with a
guard.

4. In the statically true or dynamic cases at the above
step, the partial evaluator processes the evaluation of
the advice body. Since the wrapper of the advice exe-
cution calls weave, application of advice to the execu-
tion of advice body is also compiled.

5. When the original action is evaluated (l.4 in Figure 6),
the residual code of the original action is inserted. This
residual code from weave will thus have the original
computation surrounded by applicable advice bodies.

3.2.3 Compilation of Pointcut
In step 3 above, pointcut interpreter (Figure 7) is partially
evaluated with a static pointcut and a partially static join
point. The partial evaluation process depends on the type of
the pointcut. For pointcuts that depend on only static fields
of a join point (namely call, execution and new), the con-
dition is statically computed to either an environment (as
true) or false. For pointcuts that test values in the join point
(namely target and args), the partial evaluator returns
residual code that dynamically tests the types of the val-
ues in the join point. For example, when pointcut-match?
is partially evaluated with respect to args(int x), the fol-
lowing expression is returned as residual code.

1 (if (types-match? (jp-args jp) ’(int))
2 (make-env ’(x) (jp-args jp))
3 #f)

Logical operators (namely &&, || and !) are partially eval-
uated into an expression that combines the residual expres-
sions of its sub-pointcuts. The remaining two pointcuts
(cflow and cflowbelow) are discussed in the next section.
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1 (define point-move
2 (lambda (this1 args2 jp3)
3 (let* ((args7 (list (+ (get-field this1 ’x)
4 (car args2))))
5 (jp8 (make-jp this1 args7 (jp-state jp3))))
6 (if (types-match? args7 ’(int))
7 (begin (write "set:")
8 (write (car args7)) (newline)))
9 (execute* (lookup-method (object-class this1)
10 ’set)
11 args7 jp8)))))

Figure 8: Compiled code of move method of Point
class.

The actual pointcut-match? is written in a continuation-
passing style so that partially evaluator can reduce a con-
ditional branch in the weaver (ll.15–16 in Figure 6) for the
static cases. This is a standard technique in partial evalua-
tion.

3.3 Compiled Code
Figure 8 shows the compiled code for the move method de-
fined in Figure 1 combined with the advice given in Figure 3.
For readability, we post-processed the residual code by elim-
inating dead code, propagating constants, renaming variable
names, resolving environment accesses, and so forth.5 Note
that the compiled code manipulates only the dynamic por-
tion of join points, as we split them into static and dynamic
parts.

It first creates a parameter list (ll.3–4) and a join point (l.5)
for method call. Lines 6 to 8 are advice body with a guard.
The guard checks the residual condition for args pointcut.
(Note that no run-time checks are performed for call point-
cut.) If matched, the body of the advice is executed(ll.7–8).
Finally, the original action (i.e., method call) is performed
(ll.9–11).

As we see, advice execution is successfully compiled. Even
though there is a shadow of execution join points at the
beginning of the method, no advice bodies are inserted in
the compiled function as it does not match any advice.

4. COMPILING CALLING-CONTEXT SEN-
SITIVE POINTCUTS

As briefly mentioned before, cflow and cflowbelow point-
cuts can investigate join points in the call-stack; i.e., their
truth value is sensitive to calling context. Here, we first
show a straightforward implementation that is based on a
stack of join points. It is inefficient, however, and can not
be compiled properly.

We then show a more optimized implementation that can
be found in AspectJ compiler. The implementation exploits
incremental natures of those pointcuts, and shown as a mod-
ified version of AJD. We can also see those pointcuts can be
properly compiled by using our compilation framework.

5The shown code is compiled with optimized cflow evalu-
ation mechanism presented in Section 4.3. Therefore, the
last field of the join point is used in a manner different from
Figure 5.

1 after : call(void Point.set(int))
2 && cflow(call(void Point.move(int))
3 && args(int w)) {
4 write("under move:"); write(w); newline();
5 }

Figure 9: Advice with cflow Pointcut.

1 (define pointcut-match?
2 (lambda (pc jp)
3 (cond ...
4 ((cflow-pointcut? pc)
5 (or (pointcut-match? (pointcut-body pc) jp)
6 (pointcut-match? pc (jp-stack jp))))
7 ...)))

Figure 10: Naive Algorithm for Evaluating cflow.

To keep discussion simple, we only explain cflow in this sec-
tion. Extending our idea to cflowbelow is easy and actually
done in our experimental system.

4.1 Calling-Context Sensitive Pointcut: cflow
A pointcut cflow(p) matches to any join points if there is
a join point that matches to p in its call-stack. Figure 9
is an example. The cflow pointcut in lines 2–3 specifies
join points that are created during the method call to move.
When this pointcut matches a join point, the args(int w)
sub-pointcut gets the parameter to move from the stack.

As a result, execution of the program in Figure 1 with pieces
of advice in Figures 3 and 9 prints “set:1” first, “set:6”
next, and then “under move:5” followed by “6” last. The
call to set from the constructor is not advised by the advice
using cflow.

4.2 Stack-Based Implementation
A straightforward implementation is to keep a stack of join
points and to examine each join point in the stack from the
top when cflow is evaluated.

We use the stack field in a join point to maintain the stack.
Whenever a new join point is created, we record previous
join point in the stack field (as is done as the last argument
to make-jp in Figure 5). Since join points are passed along
method calls, the join points chained by the stack field from
the current one form a stack of join points.

The algorithm to evaluate cflow(p) simply runs down the
stack until it finds a join point that matches to p, as shown
in Figure 10. If it reaches the bottom of the stack, the result
is false.

The problem with this implementation is run-time overhead.
In order to manage the stack, we have to push6 a join point
each time a new join point is created. Evaluation of cflow
takes linear time in the stack depth at worse. When cflow
pointcuts in a program match only specific join points, keep-
ing the other join points in the stack and testing them is
waste of time and space.

6By having a pointer to ‘current’ join point in parameters to
each function, pop can be automatically done by returning
from the function.

6



Our compilation does not help those problems. Rather, it
highlights the problems. Since relationship between caller
and receiver is unknown to the partial evaluator, the stack
field of a join point becomes dynamic. Consequently, a stack
of join points becomes partially-static in which only some
fields of the topmost element are static, while the other el-
ements are totally dynamic. When partial evaluator pro-
cesses pointcut-match? with a static cflow pointcut and
a partially static join point, the second recursive call (l.6
in Figure 10) supplies a dynamic (not partially static) join
point. This makes the residual code a loop that dynamically
tests each join point in the stack except for the top element7;
i.e., all the tests involving with cflow are performed at run-
time.

4.3 State-Based Implementation
A more optimized implementation of cflow in AspectJ com-
piler is to exploit its incremental nature. This idea can be ex-
plained by an example. Assume (as in Figure 9) that there is
pointcut “cflow(call(void Point.move(int)))” in a pro-
gram. The pointcut becomes true once move is called. Then,
until the control returns from move (or another call to move
is taken place), the truth of the pointcut is unchanged. This
means that the system needs only manage the state of each
cflow(p) and update that state at the beginning and the
end of join points that make p true. Note that the state
should be managed by a stack because it may be rewound
to its previous state upon returning from actions.

This state-based optimization can be explained in the fol-
lowing regards:

• The state-based implementation avoids repeatedly
matching cflow bodies to the same join point in the
stack, which can happen in the stack-based implemen-
tation. This is achieved by evaluating bodies of cflow
at each join point in advance, and records the result
as its state for later use.

• The state-based implementation makes static evalua-
tion (i.e., compilation) of cflow bodies possible, which
can not in the stack-based implementation. This is
because bodies are evaluated at each shadow of join
points.

• The state-based implementation usually performs a
smaller number of stack operations because the state
of a cflow pointcut needs not be updated at the join
points not matching to its body. On the other hand,
the stack-based implementation has to push all join
points on the stack.

• The state-based implementation evaluate cflow point-
cut in constant time in by having a stack of states for
each cflow pointcut.

It is not difficult to implement this idea in AJD. Fig-
ure 11 outlines the algorithm. Before running a subject

7If the partial evaluator supported polyvariant specializa-
tion[5]. Otherwise, the test for the topmost element is also
coerced to dynamic.

1 (define weave
2 (lambda (jp action args)
3 (let ((new-jp (update-states *cflow-pointcuts*
4 jp jp)))
5 ...the body of original weave...
6 )))
7 (define update-states
8 (lambda (pcs jp njp)
9 (if (null? pcs)
10 njp
11 (update-states (cdr pcs) jp
12 (let ((env (pointcut-match?
13 (pointcut-body (car pcs)) jp)))
14 (if env
15 (update-state njp (pointcut-id (car pcs))
16 env)
17 njp))))))
18 (define pointcut-match?
19 (lambda (pc jp)
20 (cond ...
21 ((cflow-pointcut? pc)
22 (lookup-state jp (pointcut-id pc)))
23 ...)))

Figure 11: State-based Implementation of cflow.
(update-state jp id new-state ) returns a copy of
jp in which id ’s state is changed to new-state .
(lookup-state jp id ) returns the state of id in jp .

1 (let* ((val7 ...create a point object ...)
2 (args9 ’(5))
3 (jp8 (make-jp this1 args9 (jp-state jp3))))
4 (if (types-match? args9 ’(int))
5 (begin
6 (execute* (lookup-method (object-class val7)
7 ’move)
8 val7 args9
9 (state-update jp8 ’_g1
10 (new-env ’(w) args9)))
11 ... write and newline ...)
12 ... omitted ...))

Figure 12: Compiled code of “p.move(5)” with cflow
advice. (Definitions of variables env6, this1 and jp
are omitted.)

program, the system collects all cflow pointcuts in the pro-
gram, including those appear inside of other cflow point-
cuts. The collected pointcuts are stored in a global variable
*cflow-pointcuts*. The system also gives unique identi-
fiers to them, which are accessible via pointcut-id. We
rename the last field of a join point from stack to state, so
that it stores the current states of all cflow pointcuts.

When the interpreter creates a join point, it also updates the
states of all cflow pointcuts by wrapping weave. The wrap-
per creates a copy of the new join point with updated cflow
states (ll.3–4), and performs the original action. Function
update-states evaluates the sub-pointcut of each cflow
pointcut (ll.12–13), and updates the state if the result is
true (ll.15–16).

Interpretation of cflow pointcut is merely looks up the state
in the current join point (l.22).

4.4 Compilation Result
Figures 12 and 13 show excerpts of compiled code for the
program in Figure 1 with the two pieces of advice in Figures
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1 (define point-move
2 (lambda (this1 args2 jp3)
3 (let* ((args5 (list (+ (get-field this1 ’x)
4 (car args2))))
5 (jp6 (make-jp this1 args5 (jp-state jp3))))
6 (if (types-match? args5 ’(int))
7 (begin
8 (write "set:") (write (car args5)) (newline)
9 (let* ((val7
10 (execute* (lookup-method
11 (object-class this1) ’set)
12 this1 args5 jp6))
13 (env8 (state-lookup jp6 ’_g1)))
14 (if env8
15 (begin (write "under move:")
16 (write (lookup env8 ’w)) (newline)))
17 val7))
18 ...omitted...))))

Figure 13: Compiled code of method move with cflow
advice.

3 and 9. The compiler gave _g1 to the cflow pointcut as its
identifier.

Figure 12 corresponds to “p.move(5);” (l.8 in Figure 1).
Since the method call to move makes the cflow to true, the
compiled code updates the state of _g1 to an environment
created by args pointcut in the join point (ll.9–10), and
passes the updated join point to the method.

Figure 13 shows the compiled move method. We can see the
additional code for the advice using cflow at lines 13–16. It
dynamically evaluates the cflow pointcut by merely looking
its state up, and runs the body of advice if the pointcut
is true. The value of variable w, which is bound by args
pointcut in cflow, is taken from the recorded state of cflow
pointcut. Since the state is updated when move is to be
called, it gives the argument value to move method.

To summarize, our framework compiles a program with cflow
pointcuts into one with state update operations at each join
point that matches the sub-pointcut of each cflow pointcut,
and state look-ups in the guard of advice bodies. In terms of
run-time checks for pointcuts, the code is basically identical
to the one generated by AspectJ compiler.

5. RELATED WORK
In reflective languages, some crosscutting concerns can be
controlled through meta-programming[10, 18]. Several re-
searchers including the first author have successfully com-
piled reflective programs by using partial evaluation[2, 14,
15]. It is more difficult, however in reflective languages, to
ensure successful compilation because the programmer can
easily write a meta-program that confuses the partial eval-
uator.

Wand and the second and the third authors presented a for-
mal model of the procedural version of AJD[20]. Our model
is based on this, and used it for compilation and optimizing
cflow pointcuts.

Douence et al. showed an operational semantics of an AOP
system[8]. Their system is based on a ‘monitor’ that ob-
serves the behavior of subject program, and the weaving

is triggered by means of pattern matching to a stream of
events. They also gave a program transformation system
that inserts code to trigger the monitor into subject pro-
gram. Our framework automatically performs this insertion
by using partial evaluation.

Andrews proposed process algebras as a formal basis of AOP
languages[1]. In his system, advice execution is represented
by synchronized processes, and compilation (static weaving)
is transformation of processes that removes synchronization.
Our experience suggests that powerful transformation tech-
niques like partial evaluator would be needed to effectively
remove run-time checks in dynamic join point models.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a compilation framework to an
aspect-oriented programming (AOP) language, AJD, based
on operational semantics and partial evaluation techniques.
The framework explains issues in AOP compilers including
identifying shadows of join points, compiling-out pointcuts
and recursively applying advice. The optimized cflow im-
plementation in AspectJ compiler can also be explained in
this framework.

The use of partial evaluation allows us to keep simple oper-
ational semantics in which everything is processed at run-
time, and to relate the semantics to compilation. Partial
evaluation also allows us to understand the data dependency
in our interpreter by means of its binding-time analysis. We
believe this approach would be also useful to prototyping
new AOP features with effective compilation in mind.

Although our language supports only core features of prac-
tical AOP languages, we believe that this work could bridge
between formal studies and practical design and implemen-
tation of AOP languages.

Future directions of this study could include the following
topics. Optimization algorithms could be studied for AOP
programs based on our model, for example, elimination of
more run-time checks with the aid of static analysis. Our
model could be refined into more formal systems so that we
could relate between semantics and compilation with cor-
rectness proofs. Our system could also be applied to design
and test new AOP features.
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