
An Empirical Investigation of the MDL PrincipleTim Van Allen Chris Dutchyn Russ GreinerDepartment of Computing ScienceEdmonton, AB T6G 2H1 Canadaf vanallen, dutchyn, greiner g@cs.ualberta.caAbstractThis paper provides an empirical explorationof the \minimum description length" (MDL)principle, in the context of learning Bayesianbelief nets (BNs). In one set of experi-ments, with relatively few variables, we com-prehensively constructed the entire set of BN-structures, while in other tests, dealing withlarger sets of variables, we carefully subsam-pled the space of structures. In each situa-tion, we compared the BN with the small-est MDL score to various other BNs, includ-ing the \fully independent", \complete", andChow Liu networks, to see which had the best\true likelihood" score, over the entire distri-bution of tuples. Our �ndings partially char-acterize when MDL is an appropriate heuris-tic, and when it is not.Keywords: MDL, Learning, (Bayesian) Belief Nets,Over�tting, Foundations1 IntroductionBayesian belief nets (BNs) [Pea 88] provide a succinctway to encode a general joint distribution over a set ofprobabilistic variables, and they have proven to be ane�ective tool for many tasks. To help produce theseneeded BNs, there are now many algorithms for learn-ing them from a set of training data. Most attemptto �nd the BN that is the \closest �t" to the under-lying distribution; typically, which has the smallestKullback-Liebler divergence. An obvious approach isto seek the BN that has the smallest divergence fromthe training sample. Unfortunately, this can lead toover�tting | as the BN with the smallest divergencefrom the training sample is not necessarily the onewith the smallest divergence from the true distribu-tion. This is especially true as this empirical diver-

gence measure can only decrease as we expand the sizeof the BN.We therefore need some \regularizing" term, to pre-vent our learners from simply selecting the largest pos-sible network structure.1 The \minimum descriptionlength" (MDL) maxim serves this function. It says,in e�ect, we should prefer a smaller belief net over alarger one, unless the larger one has a signi�cantly bet-ter �t to the data | enough to justify the increase insize. (We provide the details in Section 2.)Many learning algorithms use an MDL criterion whendeciding between di�erent BNs; many of the ap-proaches appear to work e�ectively. Moreover, MDLis provably optimal in the limit . However, MDL is stillonly a heuristic | one which does not have to work, inthe real situation where there is only a limited sampleof data.This report provides an empirical investigation of thisprinciple. The next section provides the framework,overviewing related work, belief nets and their asso-ciated learning algorithms, and the MDL principle.Section 3 then presents our experimental framework,describing how we explore the space of network struc-tures and how we evaluate the quality of the resultingBNs. Section 4 presents our results, together with ourdescription of situations where MDL appears to workmost e�ectively, and where it does not. We concludewith a discussion of additional areas which can extendthis investigation.2 BackgroundOccam's razor is an inductive bias that prefers \sim-pler" hypotheses (the notion of complexity is problem-atic) over more complex ones. Blumer et al. [Blu 86]formalized the notion of an \Occam algorithm",within1As another reason to avoid huge structures, note thatthey may exhaust available storage resources or fail to givespeedy responses to subsequent queries.



the PAC-learning framework [Val 84]. The basic ideais that, if you consider only short hypotheses, thenonly a small (polynomial) number of samples is nec-essary to reject all unacceptable hypotheses; hence, ifthis hypothesis space contains an acceptable hypoth-esis, it can be found in a reasonable amount of time.This follows simply from the observation that there arerelatively few short hypotheses. However, the sameresult holds for any small set of hypotheses, regard-less of their complexity under some arbitrary encodingscheme. Conversely, any small set has a simple (short)encoding scheme over its elements, even if their indi-vidual complexity (for example, in conjunctive normalform logic) is exponentially larger. Of course, Occam'srazor is merely a bias, which does not have to workeverywhere. This has prompted others to empiricallyinvestigate its e�ectiveness; in particular, Murphy andPazzani [Mur 95] carry out an empirical investigationof Occam's razor (in the context of learning decisiontrees) that is similar in spirit to our current investiga-tion of the MDL principle.Rissanen [Ris 85] introduced the minimum descrip-tion length (MDL) principle. This principle is basedon the observation that the maximal likelihood hy-pothesis, given some data, is the one that minimizesthe encoding length of the data as a two part codewhere the pre�x is an optimal encoding of the hy-pothesis (given some prior distribution over the hy-potheses), and the su�x is an optimal encoding ofthe data given the hypothesis. Because the length ofan optimal encoding is determined by the probabil-ity distribution over the code words, data compressionbecomes equivalent to Bayesian induction. Usually,however, we are lacking a principled basis for assign-ment of prior probabilities, and so in practice the MDLprinciple is applied under some existing, convenient,encoding scheme. Instead of the priors determiningthe encoding scheme, it is the other way around: theencoding scheme determines the priors. As such, theMDL principle becomes an instantiation of Occam'srazor | it reects a bias towards simpler hypotheses.The no free lunch theorems are relevant to our re-search because they counter any claim for a generalpurpose learning algorithm. Essentially, they statethat only compressible (non-random) \truths" can beinduced from a limited sample, and furthermore, thata learning method only does better than random sam-pling to the extent that it exploits some backgroundknowledge (implicit or explicit) about the target do-main [Wol 92].2.1 Belief NetsBelief nets (a.k.a. Bayesian networks, probability nets,causal nets) represent arbitrary joint distributions, us-
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�	J��	 ? P(H=1 )0.05H P(B=1 jH )1 0.950 0.03 H P(J=1 jH )1 0.80 0.3H � HepatitisJ � JaundiceB � (positive) Blood testFigure 1: Simple Belief Net, BHBJing a network of dependencies between variables, aug-mented with conditional probability tables that repre-sent the nature of those dependencies [Pea 88]. Tech-nically, a belief net B = hN ; E ; �i is a directed acyclicgraph whose nodes N represent variables and whosedirected edges E represent probabilistic dependenciesbetween the variables. Associated with each nodeN 2 N is a \conditional probability table" (\CPt-able"), �N 2 � that provides the distribution of N 'svalue as a function of the values assigned to N 's par-ents. If all of the variables are binary, we can rep-resent the CPtable for the node X, with k parentsPa(X) = fY1; : : : ; Ykg by a table with 2k rows, eachrow representing one possible assignment to the node'sparent-set. If the ith row is indexed by hY1; : : : ; Yki =hy1; : : : ; yki (where each yj 2 f0; 1g is the value of therandom parent variable Yj), then the values for thisrow specify P(X = 1 j hY1; : : : ; Yki = hy1; : : : ; yki ) andP(X = 0 j hY1; : : : ; Yki = hy1; : : : ; yki ).2 See Figure 1for an example of such a structure.Note that BHBJ represents the complete joint distri-bution over the three variables. While such a distri-bution would typically require specifying 7 = 23 � 1probabilities, this structure requires only 5. We getthis saving as the structure implicitly encodes sev-eral independence claims | here, that P( J jH;B ) =P( J jH ). (This is why BHBJ does not include a linkconnecting B to J.) In general, the savings, realizeddue to the independencies encoded in the structure,can be huge; this can allow us to represent distribu-tions over a large number of variables using only asmall number of parameters [Bei 89].Of course, a small BN can only represent a relativelysmall number of possible distributions (i.e., only thosewhich satisfy the independence claims of the network).A completely connected BN can represent any dis-tribution over its variables. (This follows from theobservation that any distribution can be written asP(X1; : : : ; Xn ) = P(Xn )P(X1 jX2; : : : ; Xn ) = : : : =Qi P(Xi jXi+1; : : : ; Xn ).)2Internally, we have supressed the superuous P(X =0 j ~y ) values, as P(X = 0 j ~y ) = 1� P(X = 1 j ~y ).



2.2 Comparing DistributionsMost BN-learning algorithms seek a belief net that isa good match to the underlying distribution. In thestandard situation, the learner does not have accessto the \truth" PT . Instead, the learner receives anempirical sample S, with associated distribution:PS(x ) = jfs 2 Sjs = xgjjSjThe learner seeks the the belief net that maximizesthe (log) likelihood of the data given the belief net| i.e., P(S jB ) � PB(S ). As the empirical sampleS is typically a degraded version of the originaldistribution PT , even a learned belief net B thatperfectly matches PS will not match PT . But, howclose is B to PT ? One commonly used measure forcomparing two distributions is the Kullback Leiblerdivergence [Kul 51]:KLD(PT ; PB ) = Xx PT (x ) log�PT (x )PB(x )� (1)(The \x" in the summation ranges over all 2O(n) as-signments to the variables.)3To understand this measure, consider an optimalcharacter encoding of a distribution PT . Each ofthe 2O(n) potential assignments x to the variablesis an atomic event, and is assigned probabilityPT (x ). It is well known that optimal (minimallength) encodings require � logPT (x ) bits to encodex [Cov 91]. For a given sample S, we expect to seejSjPT (x ) occurrences of each event; therefore, wecan encode (any sample S of) the entire distribution inHS = jSj Xx PT (x ) logPT (x )bits. Now consider a distribution PA (perhaps a beliefnet) which approximates PT . If our encoder wasbased on these approximate probabilities, each eventx would still occur with probability PT (x ) but wouldnow consume � logPA(x ) bits each. This means asample S of the \truth" would requirejSj Xx PT (x ) logPA(x )bits. The di�erence in encoding length is:HT �HA = jSj KLD(PT ; PA )bits. As the factor jSj is independent of each distri-bution, the KL divergence (Equation 1) serves as ameasure of the \accuracy" of the approximation, in-dependent of the sample.Note �nally that, the KL divergence is always positiveand achieves a minimum of zero only when PT (x ) =PA(x ) for all possible events x.3We assume here and throughout the paper that alllogarithms are base 2.

2.3 BN-Learning AlgorithmsOf the large body of results dealing with learningbelief nets, the most relevant points are:Best Structure: It is NP-hard to �nd the best struc-ture in general, where \best" is based on an MDL-likemeasure [Chi 94]. This explains why essentially alllearning algorithms search in the space of structures.As one exception to this, there is a poly-timealgorithm cl that �nds the best tree-structurednetwork [Cho 68]: Let Btree be the set of all tree-structured belief nets (over the set of variables), whereeach B 2 Btree has exactly one root (with no parents),and every other node has exactly one parent. Thengiven any sample of complete tuples S, cl(S) willreturn a belief netBCL(S) = argmaxfB(S) j B 2 BtreegBest CPtable Entries: Given a complete set oftraining data, it is trivial to �nd the best (maximum-likelihood) CPtable entries for a given structure: justuse the frequencies observed in the sample S [Coo 92].For example, suppose our structure places the node Aas a parent of B. Assume that the sample S includesnA=0 tuples that assign A to 0, and nB=1;A=0 tuplesthat assign B to 1 and A to 0. We would �ll theCPtable entry for P(B = 1 jA = 0 ) with the rationB=1;A=0=nA=0.One issue is dealing with unobserved events; e.g.,nB=1;A=0 = 0, or worse nA=0 = 0. In the latter case,nB=1;A=0=nA=0 is unde�ned. A common solution isto apply a LaPlacian correction; yielding:P(B = 1 jA = 0 ) = nB=1;A=0 + 1nA=0 + jBj (2)where jBj represents the number of potential valuesfor the attribute B.There are straightforward extensions for �nding theentries that produce the BN with the largest poste-rior probability, given a prior distribution over net-works [Hec 95].2.4 Minimum Description LengthMany learners attempt to learn a good \hypothesis"(e.g., an accurate classi�cation function or here, an ap-propriate belief net), based on a �nite sample of train-ing data. These learners typically search in a space ofsuch hypotheses; such spaces often include hypotheseswith di�erent inherent \complexities" (e.g., di�erentnumber of parameters), where more complex hypothe-ses are able to �t the training data better than lesscomplex ones. Unfortunately, a good �t to the train-ing data does not guarantee good performance in gen-



eral. This means a learner that simply returns thehypothesis with the best empirical �t may over�t .4This is particularly true in our context, as a largerbelief net (one with more links) will never have a worseempirical accuracy than a smaller net. Of course, givenan in�nite quantity of training data, we may actuallywant to use the complete net structure BK . That is,let BNK be the set of all instantations (all possibleCPtables) of this BK structure, and note this includesall possible joint distributions, and hence necessarilyincludes the current distribution; i.e., BNK includes aB� with 0 KL divergence.Note however that BK (over n binary variables) re-quires specifying O(2n) parameters; producing goodestimates for these values will require a large numberof training samples. To see this, notice each train-ing sample can only a�ect one CPtable entry for eachnode. This means we will need at least 2n�1 sam-ples just to touch each entry of the CPtable of the\�nal" node (the one with n� 1 parents). To producemeaningful values, of course, will require many moresamples.Applying the MDL principle is one way to address theissue of over�tting in a belief net. We can encode adata set, given a belief net, as a 2-part code, using aconvenient representation for the BN and an optimalencoding of the data given the probability distributionthat the belief net represents.To describe a belief net structure, we must identifythe kN parents of each node N 2 N . Each parent canbe speci�ed using dlog jN je bits [Cov 91]. AssumingB has binary-valued attributes, the CPtable for Ncontains one probability value for each of the 2kNpossible assignments the parents of N . This gives usa belief net description of lengthBNDL(B) = XN2N �dlog jN jekN + d 2kN �where d is a factor representing the length (in bits) ofa single conditional probability value.We can draw some observations from this result. First,more highly connected networks require longer encod-ings. This follows immediately from the larger condi-tional probability tables at each node. Another obser-vation is that for networks with few nodes, the CPtableentries consume a very large proportion of the encod-ing length of the network. This follows from the factthat with few nodes, there can be only few parents aswell, so d � log jN j. This suggests that BNDL(B)may be used as a measure of complexity for a belief4Over�tting occurs when one hypothesis scores higherthan another on the training data but does worse on theunderlying distribution.

net.5In many cases, the probabilities are computed from asample S, and so can be represented by dlog jSje bits.This estimate is improved in [Fri 96] by recognizingthat the probabilities are roughly normally distributedwith a variance of dlog jSje� 12 . Based on this normaldistribution, only the low order bits are useful, and sowe can encode each CP table entry computed from asample S with d = 12dlog (jSj)e (3)bits.The MDL principle requires us to measure the lengthof the data S given the belief net B. We again relyupon an optimal encoding to give us a shortest length.As noted above, we constructed the CPtables of B sothat it most accurately represents the distribution.So, using B to encode each sample s 2 S, we require� log (PB( s )) bits. Each sample element will typi-cally occur many times in S, each distinct element xoccuring with frequency:fx = jfs 2 Sjs = xgjjSjThus, our encoding of the data will require:DDL(S; B ) = �Xs dlogPB( s )e= �Xx fxdlogPB(x )ebits. The second formula requires us to sum overeach unique x in the sample set. Other implemen-tations require the sum to be over the entire spaceof potential assignments; that computation is in-tractable, if the number of variables is large. There-fore, [Suz 96, Chi 97] have considered methods to elim-inate the low-order marginals and reduce the cost ofthis summation.The \MDL" belief net representing a sample S is theBMDL that minimizes the MDL-score, which is thesum of the following two terms:BMDL = argminBS fDDL(S; BS) + BNDL(BS )g (4)We observe that this MDL belief net may not beunique.As noted above, many BN-learning algorithm seek thisBMDL.3 ExperimentsWe describe below a set of experiments designed toinvestigate the e�ectiveness of the MDL principle in5In fact, we will use this value as the \truth complexity"of our base distribution in the experiments.



producing e�ective belief nets. In particular, we at-tempt to characterize the true accuracy of the beliefnet with the smallest (empirical) description lengthover a range of truth complexities and sample sizes. Inaddition, we varied the range of belief nets under ex-amination, exhaustively scrutinizing all 5-node struc-tures, and selectively sampling the space of 10-nodebelief net structures.3.1 Exhaustive Study (jN j = 5)In these experiments, with 5 random binary variables,we exhaustively generated and evaluated all 29,281possible BN-structures BN 5 against 30 \true" distri-butions.6 Each distribution was represented by samplesets ranging in size from 8 elements to 128 elements.Further, we average over 5 runs.For each experiment, we randomly generated 30 be-lief net structures, cycling through all edge countsfrom 0 to 10 = �52�. The random structure was com-pleted with CPtable entries uniformly generated fromf0=32; 1=32; : : : ; 32=32g. This gave us a \true" dis-tribution, Btrue, with (empirical) description lengthBNDL(Btrue).7 This BNDL(Btrue) o�ers a usefulmeasure of the \complexity" of the world we are at-tempting to model: it is larger for structures with moredependencies (edges).For each sample size k 2 f8; 16; 32; 64;128g, we gen-erated k tuples from this Btrue distribution, S =S(Btrue; k), which we used to instantiate each struc-ture B 2 BN 5 using frequency estimates with a LaPla-cian correction (Equation 2). We then used Equation 4to compute the MDL-score of the instantiated B(S).We then computed the (true) KL divergenceKLD(Btrue; B(S)) between each of these instantiatedB(S)s and Btrue. For comparison, we also investi-gated how well other \distinguished structures" fared,in particular6While graph isomorphism is not an issue here, morethan one graph structure may represent the same depen-dency relationships. E.g., two belief nets are equivalent ifthey have the same arcs and the same v-structure. There-fore, unique belief net structures are actually acyclic graphswhere compelled edges have an enforced direction, but theothers can be chosen arbitrarily (but only once). Chicker-ing [Chi 95] characterizes the equivalence classes of beliefnet structures, and [Chi 97] provides an O(n2 + e3) algo-rithm for determining the class for a given structure. Wedecided not to push on this \uniqueness" issue, as it willnot alter our results in any way.7The (empirical) description length requires a value ford corresponding to the bit-length of a single CPtable entry.We use d = dlog 33e, because we admit 33 di�erent values.We could not use Equation 3 to reduce this quantity as thatimprovement requires the CPtable entries to be normallydistributed, which is clearly false.

BI : the independent structure (containing no links),which is necessarily the BN requiring the fewestbits to encode;BK : the \complete" structure (containing every pos-sible link), which is necessarily the BN requiringthe most bits to encode;BCL: the optimal tree-structured net that cl wouldreturn, containing exactly jN j � 1 links.For each Btrue and value of k, we actually drew 5samples and computed their average MDL and KLDscores. We did this for a total of 30 di�erent \true"distributions (i.e., thirty di�erent randomly generatedBtrues).3.2 Stochastic Study (jN j = 10)It is possible that we will encounter some e�ect dueto the fact that jN j = 5 is relatively small. We there-fore wanted to \scale" to larger classes of structures.Here, we chose jN j = 10 variables. Unfortunately,the combinatorics prevent us from continuing to ex-amine all possible structures. We therefore decided tostochastically sample from the space of these struc-tures, taking care to include a wide range of \candi-date" structures. That is, if we generated structuresusing the obvious \include each edge with probabil-ity 1/2", we would include mostly structures that had� 1=2�n2� of the possible arcs, and so we probably notsee either the near-independent nor the near-completestructures. We therefore biased the search, to increasethe chance of including at least one structure with eachof 0; 1; : : : ; �n2� arcs.Here, we produced 100 di�erent candidate graphs |call this set BN 10 |making sure that this set includedthe special graphs mentioned above (BI , BK). We alsocomputed BCL(S), which varies with the dataset. Wethen ran the same basic set of experiments. Becauseour BN 10 is much smaller then BN 5, we were able toperform more intensive testing. We allowed 10 datasamples to be generated from each of the 100 Btrues.4 ResultsAs stated in the previous section, our investigationinvolved two separate experiments, one in which weconsidered as hypotheses all network structures over5 variables and one in which we sampled hypothesesfrom the space of 10 variable structures. In each case,we varied truth complexity and sample size, and mea-sured true error (KL-divergence from the underlyingdistribution; Equation 1) as well as the MDL-score(the description length based on an error term and anetwork complexity term; Equation 4).



0

0.2

0.4

0.6

0.8

1

1.2

1.4

100
Complexity (in bits -- log scale)

KL-Divergence as a function of Truth Complexity - 128 samples, 5 variables

MDL
K
I

MIN
MAX

CL

Figure 2: Results of BN 5 with k = 128.In the 5-variable networks, we see that the MDL-hypothesis outperformed the complete network acrossa considerable midrange of truth complexities (Fig-ure 2)8, given a reasonable sample size. This is the be-haviour we would like to see from the MDL-hypothesis,because it suggests the heuristic is successfully han-dling over�tting. Note that this represents the bestMDL-scoring hypothesis over all 5-variable networks,whereas our results for 10 variables only show the bestout of 100 hypotheses generated.On the 10-variable networks the MDL-best hypothe-sis did not fare as well. Given that the MDL-scoredepends (roughly) exponentially on the number ofvariables, and (roughly) linearly on the sample size,the network description length dominates the MDL-score for larger numbers of variables and smaller sam-ples. On these 10-variable networks, the MDL-besthypothesis was often the independent network, espe-cially when the sample size was small (see Figures 3,4, 5).As the sample size grew, the KL-divergences fell. Forsimpler truths, the KL-divergences decreased rapidlyfor all hypothesis networks under consideration, butthe independent network performed better for verysimple truths. As the truth got more complex, thedi�erences between the di�erent hypothesis types be-came more pronounced: the Chow-Liu and indepen-dent networks were at or near the maximumerror (KL-divergence), whereas the complete network scored ator near the minimum. This was as expected: the ChowLiu and independent networks are both \dogmatic", inthat they can only accomodate to evidence to a lim-ited extent: neither converges to the truth in the limitof sample size. So we expected those networks to farepoorly when the sample size was large and the truthdid not match their assumptions. However, it did not8Section 4.1 provides a legend and summary of all ofour result �gures.

take a large sample to make this e�ect visible; it canbe seen clearly in Figure 5, where there is only 1 da-tum for every two parameters of the complete network.Overall, the complete network showed a higher rate ofconvergence than the MDL-best network, except forvery simple truths. As the sample size grew, the com-plete network dominated across a wider range of thecomplexity spectrum, and only at the extreme left (seeFigures 3, 4, 5), on very simple truths, did other net-works do better.Of the networks we compared in our 10-variable ex-periment, (Chow Liu, MDL-best, complete, and inde-pendent) the best accuracy was attained by either thecomplete or independent network at most points in thespace. At a certain point along the complexity spec-trum they \switched places". It was interesting to seehow rapid the transition was, particularly on largersamples. On the very low end of the spectrum, theindependent network dominated, then it was quicklysurpassed by the complete network which thereafterstayed fairly close to the minimum error, while theindependent network sat on almost every error peak.There wasn't much range in between for another net-work type to dominate, and this gap closed as the sam-ple size grew. The Chow Liu network was a poor per-former in general; it rarely surpassed the MDL-bestnetwork in accuracy, even when that MDL-best net-work was the result of random sampling.For a given sample size, as the complexity of the under-lying distribution increased, the correlation betweenthe MDL-score of a network and its KL-divergencewent from positive to negative. In other words, thesimpler networks were more accurate on simpler truthsand less accurate on more complex truths. While thiswas expected, there are some additional interestingdetails. For simple truths, the KL-divergence of thenetwork appears to depend logarithmically (in roughterms) on the MDL-score of the hypothesis. As thecomplexity of the underlying distribution grew, how-ever, the KL-divergence became exponentially nega-tively correlated with the MDL-score. See Figures 6, 7,8. For very small samples, the positive correlation be-tween MDL-score and KL-divergence was present, butthe negative correlation was washed out for complextruths: everything did poorly. Conversely, there wassome evidence that, as sample size increased, the cor-relation was positive for increasingly complex truths.This e�ect was weak however; we did not see this onthe 10-variable experiments.MDL-scores tended to cluster at the lower end of theirrange (see the left side of Figures 6, 7, 8). This is notterribly surprising, since we generated the hypothesesfrom a at distribution of graph sizes (in the secondexperiment), whereas the MDL-score is potentially ex-
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Figure 3: Results of BN 10 with k = 32.
0

0.5

1

1.5

2

2.5

3

3.5

4

100 1000 10000
Complexity (in bits -- log scale)

KL-Divergence as a function of Truth Complexity - 128 samples, 10 variables

MDL
K
I

MAX
MIN
CL

Figure 4: Results of BN 10 with k = 128.
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Figure 5: Results of BN 10 with k = 512.ponential on the graph size. But the KL-divergenceswere tight at this point. Taken together, this sug-gests that an MDL-learning algorithmmight do prettywell (at �nding a low MDL-score hypothesis) simplyby random sampling from network structures, or al-ternatively, by using a branch and bound approach[Suz 96].4.1 Description of the FiguresTo conclude this summary of our results, here is abrief description of the �gures we include. Note thefollowing conventions:(MDL) This is the hypothesis with the best MDLscore, out of all hypotheses under consideration.For 5 variables, we enumerate all network struc-tures exhaustively, so in that case MDL denotesthe optimal network under the MDL score. Forthe 10 variable case, MDL denotes the hypothe-sis with the best (lowest) MDL-score out of thoseseen.(K) The complete network.(I) The independent network.(MAX) The maximum error network.(MIN) The minimum error network.

(CL) The Chow Liu network.Figure 2 gives the KL-divergences of the various hy-potheses under consideration, averaged over 10 ran-domly generated data sets, for the 5-variable case.Figures 3, 4, and 5, give a similar display for the10 variable case, over three sample sizes. The ChowLiu network was not included in the randomly gener-ated sample, so it may lie outside the min-max bound-aries. Note that each point represents an average KL-divergence over the hypotheses that had the relevantproperty for a speci�c sample, so each may representan average over several di�erent network structures,except for the complete and independent networks, ofcourse. Figures 6, 7, and 8 each show an expandedview of a single column (a single truth) from (respec-tively) Figures 3, 4, and 5. That is, every hypothesisis shown, with its KL-divergence plotted as a functionof its MDL-score. The truth complexities for these �g-ures are given in bits; the numbers of their parametersare 11, 90 and 273 respectively. Note, �nally, the useof logarithmic scales on the x-axes.
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Figure 6: MDL-score vs. KLD { \simple" truth.
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Figure 7: MDL-score vs. KLD { \intermediate" truth.
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Figure 8: MDL-score vs. KLD { \complex" truth.5 ConclusionOur experiments give a partial characterization ofwhere applying the MDL principle (under a speci�cencoding scheme) will lead to improved accuracy byavoiding over�tting. We have observed its behaviour

across a range of sample sizes and truth complexities.At this point, the simplest broad characterization ofMDL that we can give is thatMDL works best when the sample size isquite large or the truth is very simple. Oth-erwise, it tends to under�t the training set.Although we did not explore the rate of convergenceof MDL (to the truth), it appears to be slower thanthe rate of convergence of the complete network.One possible criticism of our investigation is its useof random network structures as a testbed. Randomtestbeds are considered by some to be an unfair test forheuristic methods, as they do not have the characterof natural problems | i.e., the distribution of probleminstances in the \real world" need not corresponded tosimple random generation schemes. This may be true,(in fact, it almost certainly is), but unless we can givea better characterization of what those real world dis-tributions are like, we have little choice but to huntfor them in a larger space. Our goal in this researchis not to claim superiority or inferiority for any algo-rithm or cost function, but to understand better theassumptions behind those heuristics and algorithms,and make them explicit.The results reported in this paper are preliminary {further analysis of the data is needed to make ourclaims more precise. We plan to explore further therelationship between MDL and accuracy, on largerspaces of hypotheses, bigger data sets, and under otherencoding schemes. We are also interesting in theoret-ically deriving the relationships between sample size,truth complexity, hypothesis complexity and accuracy.The strength and weakness of the MDL approach isthe need to specify the priors in terms of an encodingscheme for the hypotheses. It is a learning frameworkthat must be instantiated with an encoding scheme tobe meaningful. The choice of an appropriate encodingscheme is thus a critical determinant of the successor failure of an MDL approach to learning. Our re-sults seem to indicate that, under the encoding schemewe used, the MDL-score is too strongly biased towardsimple networks. We suggest weighting the error termmore heavily, to make MDL more accurate (at the ex-pense of accepting larger networks). Also, we suggestdi�erent encoding schemes for belief nets be consid-ered. The measure of network complexity used herewas somewhat naive, in that it considers only the de-pendency structure of the network, but not the natureof those dependencies. CPtables might be representedby some more concise representation, such as decisiontrees where the leaves are distributions [Fri 96a]. Last,we propose detaching MDL from its theoretical frame-
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