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Abstract

This paper provides an empirical exploration
of the “minimum description length” (MDL)
principle, in the context of learning Bayesian
belief nets (BNs). 1In one set of experi-
ments, with relatively few variables, we com-
prehensively constructed the entire set of BN-
structures, while in other tests, dealing with
larger sets of variables, we carefully subsam-
pled the space of structures. In each situa-
tion, we compared the BN with the small-
est MDL score to various other BNs, includ-
ing the “fully independent”, “complete” | and
Chow Liu networks, to see which had the best
“true likelihood” score, over the entire distri-
bution of tuples. Our findings partially char-
acterize when MDL is an appropriate heuris-
tic, and when 1t is not.

MDL, Learning, (Bayesian) Belief Nets,
Overfitting, Foundations
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1 Introduction

Bayesian belief nets (BNs) [Pea 88] provide a succinct
way to encode a general joint distribution over a set of
probabilistic variables, and they have proven to be an
effective tool for many tasks. To help produce these
needed BNs, there are now many algorithms for learn-
ing them from a set of training data. Most attempt
to find the BN that is the “closest fit” to the under-
lying distribution; typically, which has the smallest
Kullback-Liebler divergence. An obvious approach is
to seek the BN that has the smallest divergence from
the training sample. Unfortunately, this can lead to
overfitting — as the BN with the smallest divergence
from the training sample i1s not necessarily the one
with the smallest divergence from the true distribu-
tion. This is especially true as this empirical diver-

gence measure can only decrease as we expand the size

of the BN.

We therefore need some “regularizing” term, to pre-
vent our learners from simply selecting the largest pos-
sible network structure.® The “minimum description
length” (MDL) maxim serves this function. It says,
in effect, we should prefer a smaller belief net over a
larger one, unless the larger one has a significantly bet-
ter fit to the data — enough to justify the increase in
size. (We provide the details in Section 2.)

Many learning algorithms use an MDL criterion when
deciding between different BNs; many of the ap-
proaches appear to work effectively. Moreover, MDL
1s provably optimal in the limit. However, MDL is still
only a heuristic — one which does not have to work, in
the real situation where there is only a limited sample
of data.

This report provides an empirical investigation of this
principle. The next section provides the framework,
overviewing related work, belief nets and their asso-
ciated learning algorithms, and the MDL principle.
Section 3 then presents our experimental framework,
describing how we explore the space of network struc-
tures and how we evaluate the quality of the resulting
BNs. Section 4 presents our results, together with our
description of situations where MDL appears to work
most effectively, and where it does not. We conclude
with a discussion of additional areas which can extend
this investigation.

2 Background

Occam’s razor is an inductive bias that prefers “sim-
pler” hypotheses (the notion of complexity is problem-
atic) over more complex ones. Blumer et al. [Blu 86]
formalized the notion of an “Occam algorithm”, within

! As another reason to avoid huge structures, note that
they may exhaust available storage resources or fail to give
speedy responses to subsequent queries.



the PAC-learning framework [Val 84]. The basic idea
is that, if you consider only short hypotheses, then
only a small (polynomial) number of samples is nec-
essary to reject all unacceptable hypotheses; hence, if
this hypothesis space contains an acceptable hypoth-
esis, it can be found in a reasonable amount of time.
This follows simply from the observation that there are
relatively few short hypotheses. However, the same
result holds for any small set of hypotheses, regard-
less of their complexity under some arbitrary encoding
scheme. Conversely, any small set has a simple (short)
encoding scheme over its elements, even if their indi-
vidual complexity (for example, in conjunctive normal
form logic) is exponentially larger. Of course, Occam’s
ragor is merely a bias, which does not have to work
everywhere. This has prompted others to empirically
investigate its effectiveness; in particular, Murphy and
Pazzani [Mur 95] carry out an empirical investigation
of Occam’s razor (in the context of learning decision
trees) that is similar in spirit to our current investiga-
tion of the MDL principle.

Rissanen [Ris 85] introduced the minimum descrip-
tion length (MDL) principle. This principle is based
on the observation that the maximal likelihood hy-
pothesis, given some data, 1s the one that minimizes
the encoding length of the data as a two part code
where the prefix is an optimal encoding of the hy-
pothesis (given some prior distribution over the hy-
potheses), and the suffix is an optimal encoding of
the data given the hypothesis. Because the length of
an optimal encoding is determined by the probabil-
ity distribution over the code words, data compression
becomes equivalent to Bayesian induction. Usually,
however, we are lacking a principled basis for assign-
ment of prior probabilities, and so in practice the MDL
principle 1s applied under some existing, convenient,
encoding scheme. Instead of the priors determining
the encoding scheme, it is the other way around: the
encoding scheme determines the priors. As such, the
MDL principle becomes an instantiation of Occam’s
razor — 1t reflects a bias towards simpler hypotheses.

The no free lunch theorems are relevant to our re-
search because they counter any claim for a general
purpose learning algorithm. Essentially, they state
that only compressible (non-random) “truths” can be
induced from a limited sample, and furthermore, that
a learning method only does better than random sam-
pling to the extent that it exploits some background
knowledge (implicit or explicit) about the target do-
main [Wol 92].

2.1 Belief Nets

Belief nets (a.k.a. Bayesian networks, probability nets,
causal nets) represent arbitrary joint distributions, us-
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Figure 1: Simple Belief Net, Bgps

ing a network of dependencies between variables, aug-
mented with conditional probability tables that repre-
sent the nature of those dependencies [Pea 88]. Tech-
nically, a belief net B = (N, £, ©) is a directed acyclic
graph whose nodes N represent variables and whose
directed edges & represent probabilistic dependencies
between the variables. Associated with each node
N € N is a “conditional probability table” (“CPt-
able”), @ € © that provides the distribution of N’s
value as a function of the values assigned to N’s par-
ents. If all of the variables are binary, we can rep-
resent the CPtable for the node X, with k& parents
Pa(X) = {Yi,...,Y;} by a table with 2¥ rows, each
row representing one possible assignment to the node’s
parent-set. If the i!" row is indexed by (Y1,..., V) =
(y1,--.,yx) (where each y; € {0,1} is the value of the
random parent variable Y;), then the values for this
row specify P(X = 1| (Y1, ..., Y%) = {y1,...,yx) ) and
P(X =0|{(Y1,..., V) ={y1,...,ux)).? See Figure 1
for an example of such a structure.

Note that Bypy represents the complete joint distri-
bution over the three variables. While such a distri-
bution would typically require specifying 7 = 23 — 1
probabilities, this structure requires only 5. We get
this saving as the structure implicitly encodes sev-
eral independence claims — here, that P(J | H,B) =
P(J|H). (This is why Bpps does not include a link
connecting B to J.) In general, the savings, realized
due to the independencies encoded in the structure,
can be huge; this can allow us to represent distribu-
tions over a large number of variables using only a
small number of parameters [Bei 89].

Of course, a small BN can only represent a relatively
small number of possible distributions (i.e., only those
which satisfy the independence claims of the network).
A completely connected BN can represent any dis-
tribution over its variables. (This follows from the
observation that any distribution can be written as
P(X1,...,.Xp) = P(Xp)P(X1]| X2,...,. Xp)=...=
ILP(X | Xiga, -, X))

?Internally, we have supressed the superfluous P(X =

0|7) values, as P(X =0|§)=1—-P(X =1|7%).



2.2 Comparing Distributions

Most BN-learning algorithms seek a belief net that is
a good match to the underlying distribution. In the
standard situation, the learner does not have access
to the “truth” Pp. Instead, the learner receives an
empirical sample S, with associated distribution:
[{s € S|s = =}

|51
The learner seeks the the belief net that maximizes
the (log) likelihood of the data given the belief net
— le, P(S|B) = Pp(S). As the empirical sample
S 1is typically a degraded version of the original
distribution Pr, even a learned belief net B that
perfectly matches Pg will not match Ppr. But, how
close is B to Pr? One commonly used measure for
comparing two distributions is the Kullback Leibler
divergence [Kul 51]:

Pg(l‘) =

PT(l‘))
KLD(Pr; P = Pr(x)lo 1
(Prirs) = YPre)es(gs) O
(The “2” in the summation ranges over all 20(7) ag
signments to the variables.)?

To understand this measure, consider an optimal
character encoding of a distribution Pp. FEach of
the 29(") potential assignments z to the variables
is an atomic event, and is assigned probability
Pr(z). Tt is well known that optimal (minimal
length) encodings require —log Pr(#) bits to encode
z [Cov 91]. For a given sample S, we expect to see
|S| Pr(«) occurrences of each event; therefore, we
can encode (any sample S of) the entire distribution in

Hs = |S| > Pr(x)logPr(x)

bits. Now consider a distribution P4 (perhaps a belief
net) which approximates Pp. If our encoder was
based on these approximate probabilities, each event
x would still occur with probability Pr(«) but would
now consume —log P4(«) bits each. This means a

sample S of the “truth” would require
S| Y Pr(z) log Pa(z)
bits. The difference in encoding length is:
HT—HA = |S| KLD(PT;PA)
bits. As the factor |S| is independent of each distri-
bution, the KL divergence (Equation 1) serves as a

measure of the “accuracy” of the approximation, in-
dependent of the sample.

Note finally that, the KL divergence is always positive
and achieves a minimum of zero only when Pr(z) =
Pa(x) for all possible events x.

*We assume here and throughout the paper that all
logarithms are base 2.

2.3 BN-Learning Algorithms

Of the large body of results dealing with learning
belief nets, the most relevant points are:

Best Structure: It is NP-hard to find the best struc-
ture in general, where “best” 1s based on an MDL-like
measure [Chi 94].
learning algorithms search in the space of structures.

This explains why essentially all

As one exception to this, there is a poly-time
algorithm c¢L that finds the best tree-structured
network [Cho 68]: Let Bi... be the set of all tree-
structured belief nets (over the set of variables), where
each B € By has exactly one root (with no parents),
and every other node has exactly one parent. Then
given any sample of complete tuples S, cL(S) will
return a belief net

BCL(S) = argmax{B(S) | B € Btree}

Best CPtable Entries: Given a complete set of
training data, it is trivial to find the best (maximum-
likelihood) CPtable entries for a given structure: just
use the frequencies observed in the sample S [Coo 92].

For example, suppose our structure places the node A
as a parent of B. Assume that the sample S includes
na=o tuples that assign A to 0, and np=1 4=0 tuples
that assign B to 1 and A to 0. We would fill the
CPtable entry for P(B = 1|A = 0) with the ratio

nB:l,A:O/nA:0~
One issue is dealing with unobserved events; e.g.,
np=1,4=0 = 0, or worse na—p = 0. In the latter case,
np=14=0/na=o is undefined. A common solution is
to apply a LaPlacian correction; yielding:

np=1,A=0 + 1 (2)

P(B=1]A=0) =

na=o + |B|
where |B| represents the number of potential values
for the attribute B.

There are straightforward extensions for finding the
entries that produce the BN with the largest poste-
rior probability, given a prior distribution over net-

works [Hec 95].

2.4 Minimum Description Length

Many learners attempt to learn a good “hypothesis”
(e.g., an accurate classification function or here, an ap-
propriate belief net), based on a finite sample of train-
ing data. These learners typically search in a space of
such hypotheses; such spaces often include hypotheses
with different inherent “complexities” (e.g., different
number of parameters), where more complex hypothe-
ses are able to fit the training data better than less
complex ones. Unfortunately, a good fit to the train-
ing data does not guarantee good performance in gen-



eral. This means a learner that simply returns the
hypothesis with the best empirical fit may overfit.?

This is particularly true in our context, as a larger
belief net (one with more links) will never have a worse
empirical accuracy than a smaller net. Of course, given
an infinite quantity of training data, we may actually
want to use the complete net structure By . That 1s,
let BN g be the set of all instantations (all possible
CPtables) of this Bg structure, and note this includes
all possible joint distributions, and hence necessarily
includes the current distribution; i.e., BA k includes a
B* with 0 KL divergence.

Note however that Bg (over n binary variables) re-
quires specifying O(2") parameters; producing good
estimates for these values will require a large number
of training samples. To see this, notice each train-
ing sample can only affect one CPtable entry for each
node. This means we will need at least 2°~! sam-
ples just to touch each entry of the CPtable of the
“final” node (the one with n — 1 parents). To produce
meaningful values, of course, will require many more
samples.

Applying the MDL principle is one way to address the
issue of overfitting in a belief net. We can encode a
data set, given a belief net, as a 2-part code, using a
convenient representation for the BN and an optimal
encoding of the data given the probability distribution
that the belief net represents.

To describe a belief net structure, we must identify
the kxy parents of each node N € . Each parent can
be specified using [log |A]|] bits [Cov 91]. Assuming
B has binary-valued attributes, the CPtable for N
contains one probability value for each of the 2%~
possible assignments the parents of N. This gives us
a belief net description of length

Z [[log |V [Tky + d2°V]

NeN

BNDL(B) =

where d is a factor representing the length (in bits) of
a single conditional probability value.

We can draw some observations from this result. First,
more highly connected networks require longer encod-
ings. This follows immediately from the larger condi-
tional probability tables at each node. Another obser-
vation is that for networks with few nodes, the CPtable
entries consume a very large proportion of the encod-
ing length of the network. This follows from the fact
that with few nodes, there can be only few parents as
well, so d > log|N|. This suggests that BNDL(B)

may be used as a measure of complexity for a belief

*Overfitting occurs when one hypothesis scores higher
than another on the training data but does worse on the
underlying distribution.

net.?

In many cases, the probabilities are computed from a
sample S, and so can be represented by [log |S]|] bits.
This estimate is improved in [Fri 96] by recognizing
that the probabilities are roughly normally distributed
with a variance of [log|S|]~2. Based on this normal
distribution, only the low order bits are useful, and so
we can encode each CP table entry computed from a
sample S with

[log (|S1)] (3)

N | —

bits.

The MDL principle requires us to measure the length
of the data S given the belief net B. We again rely
upon an optimal encoding to give us a shortest length.
As noted above, we constructed the CPtables of B so
that it most accurately represents the distribution.
So, using B to encode each sample s € S, we require
—log (Pg(s)) bits. Each sample element will typi-
cally occur many times in S, each distinct element z
occuring with frequency:
! [{s € Sls = «}|
’ |51

Thus, our encoding of the data will require:

DDL(S; B) = = [logPp(s)]

= =Y foflog Pp(x)]

bits. The second formula requires us to sum over
each unique z in the sample set. Other implemen-
tations require the sum to be over the entire space
of potential assignments; that computation is in-
tractable, if the number of variables is large. There-
fore, [Suz 96, Chi 97] have considered methods to elim-
inate the low-order marginals and reduce the cost of
this summation.

The “MDL” belief net representing a sample S is the
Barpr, that minimizes the MDL-score, which 1s the
sum of the following two terms:

Bupr = argmin{DDL(S; Bs) + BNDL(Bs)} (4)

Bs
We observe that this MDL belief net may not be
unique.

As noted above, many BN-learning algorithm seek this
Bupr.

3 Experiments

We describe below a set of experiments designed to
investigate the effectiveness of the MDL principle in

5In fact, we will use this value as the “truth complexity”
of our base distribution in the experiments.



producing effective belief nets. In particular, we at-
tempt to characterize the true accuracy of the belief
net with the smallest (empirical) description length
over a range of truth complexities and sample sizes. In
addition, we varied the range of belief nets under ex-
amination, exhaustively scrutinizing all 5-node struc-
tures, and selectively sampling the space of 10-node
belief net structures.

3.1 Exhaustive Study (|JV|=5)

In these experiments, with 5 random binary variables,
we exhaustively generated and evaluated all 29,281
possible BN-structures BN's against 30 “true” distri-
butions.® Each distribution was represented by sample
sets ranging in size from 8 elements to 128 elements.
Further, we average over 5 runs.

For each experiment, we randomly generated 30 be-
lief net structures, cycling through all edge counts

from 0 to 10 = (g) The random structure was com-

pleted with CPtable entries uniformly generated from
{0/32, 1/32, ..., 32/32}. This gave us a “true” dis-
tribution, Biprye, with (empirical) description length
BNDL(Biye).” This BNDL(Bipy.) offers a useful
measure of the “complexity” of the world we are at-
tempting to model: it is larger for structures with more
dependencies (edges).

For each sample size k € {8,16,32,64,128}, we gen-
erated k tuples from this Biy. distribution, S =
S(Btrye, k), which we used to instantiate each struc-
ture B € BN 5 using frequency estimates with a LaPla-
cian correction (Equation 2). We then used Equation 4
to compute the MDL-score of the instantiated B(S).

We then computed the (true) KL divergence
KLD( Birue; B(S)) between each of these instantiated
B(S)s and Birye. For comparison, we also investi-
gated how well other “distinguished structures” fared,
in particular

SWhile graph isomorphism is not an issue here, more
than one graph structure may represent the same depen-
dency relationships. FE.g., two belief nets are equivalent if
they have the same arcs and the same v-structure. There-
fore, unique belief net structures are actually acyclic graphs
where compelled edges have an enforced direction, but the
others can be chosen arbitrarily (but only once). Chicker-
ing [Chi 95] characterizes the equivalence classes of belief
net structures, and [Chi 97] provides an O(n® + ) algo-
rithm for determining the class for a given structure. We
decided not to push on this “uniqueness” issue, as it will
not alter our results in any way.

"The (empirical) description length requires a value for
d corresponding to the bit-length of a single CPtable entry.
We use d = [log 33], because we admit 33 different values.
We could not use Equation 3 to reduce this quantity as that
improvement requires the CPtable entries to be normally
distributed, which is clearly false.

Br: the independent structure (containing no links),
which is necessarily the BN requiring the fewest
bits to encode;

Bg: the “complete” structure (containing every pos-
sible link), which is necessarily the BN requiring
the most bits to encode;

Ber: the optimal tree-structured net that crL would
return, containing exactly |A| — 1 links.

For each By and value of &k, we actually drew 5
samples and computed their average MDL and KLD
scores. We did this for a total of 30 different “true”
distributions (i.e., thirty different randomly generated
Btrues)~

3.2 Stochastic Study (|| = 10)

It is possible that we will encounter some effect due
to the fact that |A'| = b is relatively small. We there-
fore wanted to “scale” to larger classes of structures.
Here, we chose || = 10 variables. Unfortunately,
the combinatorics prevent us from continuing to ex-
amine all possible structures. We therefore decided to
stochastically sample from the space of these struc-
tures, taking care to include a wide range of “candi-
date” structures. That is, if we generated structures
using the obvious “include each edge with probabil-
ity 1/2”, we would include mostly structures that had
~ 1/2(2) of the possible arcs, and so we probably not
see either the near-independent nor the near-complete
structures. We therefore biased the search, to increase
the chance of including at least one structure with each

of 0,1,..., (Z) arcs.

Here, we produced 100 different candidate graphs —
call this set BA'1p — making sure that this set included
the special graphs mentioned above (By, Bg). We also
computed Ber (S), which varies with the dataset. We
then ran the same basic set of experiments. Because
our BN 1y is much smaller then BA'5, we were able to
perform more intensive testing. We allowed 10 data
samples to be generated from each of the 100 By,y.s.

4 Results

As stated in the previous section, our investigation
involved two separate experiments, one in which we
considered as hypotheses all network structures over
5 variables and one in which we sampled hypotheses
from the space of 10 variable structures. In each case,
we varied truth complexity and sample size, and mea-
sured true error (KL-divergence from the underlying
distribution; Equation 1) as well as the MDL-score
(the description length based on an error term and a
network complexity term; Equation 4).



KL-Divergence as a function of Truth Complexity - 128 samples, 5 variables
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Figure 2: Results of BA'5 with k = 128.

In the 5-variable networks, we see that the MDL-
hypothesis outperformed the complete network across
a considerable midrange of truth complexities (Fig-
ure 2)8, given a reasonable sample size. This is the be-
haviour we would like to see from the MDL-hypothesis,
because it suggests the heuristic is successfully han-
dling overfitting. Note that this represents the best
MDL-scoring hypothesis over all 5-variable networks,
whereas our results for 10 variables only show the best
out of 100 hypotheses generated.

On the 10-variable networks the MDL-best hypothe-
sis did not fare as well. Given that the MDL-score
depends (roughly) exponentially on the number of
variables, and (roughly) linearly on the sample size,
the network description length dominates the MDL-
score for larger numbers of variables and smaller sam-
ples. On these 10-variable networks, the MDL-best
hypothesis was often the independent network, espe-
cially when the sample size was small (see Figures 3,

4,5).

As the sample size grew, the KL-divergences fell. For
simpler truths, the KL-divergences decreased rapidly
for all hypothesis networks under consideration, but
the independent network performed better for wvery
stmple truths. As the truth got more complex, the
differences between the different hypothesis types be-
came more pronounced: the Chow-Liu and indepen-
dent networks were at or near the maximum error (KL-
divergence), whereas the complete network scored at
or near the minimum. This was as expected: the Chow
Liu and independent networks are both “dogmatic”, in
that they can only accomodate to evidence to a lim-
ited extent: neither converges to the truth in the limit
of sample size. So we expected those networks to fare
poorly when the sample size was large and the truth
did not match their assumptions. However, it did not

8Section 4.1 provides a legend and summary of all of
our result figures.

take a large sample to make this effect visible; it can
be seen clearly in Figure 5, where there is only 1 da-
tum for every two parameters of the complete network.
Overall, the complete network showed a higher rate of
convergence than the MDL-best network, except for
very simple truths. As the sample size grew, the com-
plete network dominated across a wider range of the
complexity spectrum, and only at the extreme left (see
Figures 3, 4, 5), on very simple truths, did other net-
works do better.

Of the networks we compared in our 10-variable ex-
periment, (Chow Liu, MDL-best, complete, and inde-
pendent) the best accuracy was attained by either the
complete or independent network at most points in the
space. At a certain point along the complexity spec-
trum they “switched places”. It was interesting to see
how rapid the transition was, particularly on larger
samples. On the very low end of the spectrum, the
independent network dominated, then it was quickly
surpassed by the complete network which thereafter
stayed fairly close to the minimum error, while the
independent network sat on almost every error peak.
There wasn’t much range in between for another net-
work type to dominate, and this gap closed as the sam-
ple size grew. The Chow Liu network was a poor per-
former in general; it rarely surpassed the MDL-best
network in accuracy, even when that MDL-best net-
work was the result of random sampling.

For a given sample size, as the complexity of the under-
lying distribution increased, the correlation between
the MDL-score of a network and its KL-divergence
went from positive to negative. In other words, the
simpler networks were more accurate on simpler truths
and less accurate on more complex truths. While this
was expected, there are some additional interesting
details. For simple truths, the KL-divergence of the
network appears to depend logarithmically (in rough
terms) on the MDL-score of the hypothesis. As the
complexity of the underlying distribution grew, how-
ever, the KL-divergence became exponentially nega-
tively correlated with the MDL-score. See Figures 6, 7,
8. For very small samples, the positive correlation be-
tween MDL-score and KL-divergence was present, but
the negative correlation was washed out for complex
truths: everything did poorly. Conversely, there was
some evidence that, as sample size increased, the cor-
relation was positive for increasingly complex truths.
This effect was weak however; we did not see this on
the 10-variable experiments.

MDL-scores tended to cluster at the lower end of their
range (see the left side of Figures 6, 7, 8). This is not
terribly surprising, since we generated the hypotheses
from a flat distribution of graph sizes (in the second
experiment), whereas the MDL-score is potentially ex-



KL-Divergence as a function of Truth Complexity - 32 samples, 10 variables
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KL-Divergence as a function of Truth Complexity - 512 samples, 10 variables
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Figure 5: Results of BA 19 with k = 512.

ponential on the graph size. But the KL-divergences
were tight at this point. Taken together, this sug-
gests that an MDL-learning algorithm might do pretty
well (at finding a low MDL-score hypothesis) simply
by random sampling from network structures, or al-
ternatively, by using a branch and bound approach

[Suz 96].

4.1 Description of the Figures

To conclude this summary of our results, here is a
brief description of the figures we include. Note the
following conventions:

(MDL) This is the hypothesis with the best MDL
score, out of all hypotheses under consideration.
For 5 variables, we enumerate all network struc-
tures exhaustively, so in that case MDL denotes
the optimal network under the MDL score. For
the 10 variable case, MDL denotes the hypothe-
sis with the best (lowest) MDL-score out of those
seen.

(K) The complete network.
(I) The independent network.
(MAX) The maximum error network.

(MIN) The minimum error network.

(CL) The Chow Liu network.

Figure 2 gives the KL-divergences of the various hy-
potheses under consideration, averaged over 10 ran-
domly generated data sets, for the 5-variable case.
Figures 3, 4, and 5, give a similar display for the
10 variable case, over three sample sizes. The Chow
Liu network was not included in the randomly gener-
ated sample, so it may lie outside the min-max bound-
aries. Note that each point represents an average KL-
divergence over the hypotheses that had the relevant
property for a specific sample, so each may represent
an average over several different network structures,
except for the complete and independent networks, of
Figures 6, 7, and 8 each show an expanded
view of a single column (a single truth) from (respec-
tively) Figures 3, 4, and 5. That is, every hypothesis
1s shown, with its KL-divergence plotted as a function
of its MDL-score. The truth complexities for these fig-
ures are given in bits; the numbers of their parameters
are 11, 90 and 273 respectively. Note, finally, the use
of logarithmic scales on the z-axes.

course.
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Figure 6: MDL-score vs. KLD - “simple” truth.
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Figure 7: MDL-score vs. KLD - “intermediate” truth.
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Figure 8: MDL-score vs. KLD - “complex” truth.

5 Conclusion

Our experiments give a partial characterization of
where applying the MDL principle (under a specific
encoding scheme) will lead to improved accuracy by
avoiding overfitting. We have observed its behaviour

across a range of sample sizes and truth complexities.
At this point, the simplest broad characterization of
MDL that we can give is that

MDL works best when the sample size is
quite large or the truth is very simple. Oth-
erwise, it tends to underfit the training set.

Although we did not explore the rate of convergence
of MDL (to the truth), it appears to be slower than
the rate of convergence of the complete network.

One possible criticism of our investigation is its use
of random network structures as a testbed. Random
testbeds are considered by some to be an unfair test for
heuristic methods, as they do not have the character
of natural problems — i.e., the distribution of problem
instances in the “real world” need not corresponded to
simple random generation schemes. This may be true,
(in fact, it almost certainly is), but unless we can give
a better characterization of what those real world dis-
tributions are like, we have little choice but to hunt
for them in a larger space. Our goal in this research
is not to claim superiority or inferiority for any algo-
rithm or cost function, but to understand better the
assumptions behind those heuristics and algorithms,
and make them explicit.

The results reported in this paper are preliminary —
further analysis of the data is needed to make our
claims more precise. We plan to explore further the
relationship between MDL and accuracy, on larger
spaces of hypotheses, bigger data sets, and under other
encoding schemes. We are also interesting in theoret-
ically deriving the relationships between sample size,
truth complexity, hypothesis complexity and accuracy.

The strength and weakness of the MDL approach is
the need to specify the priors in terms of an encoding
scheme for the hypotheses. It is a learning framework
that must be instantiated with an encoding scheme to
be meaningful. The choice of an appropriate encoding
scheme 1s thus a critical determinant of the success
or failure of an MDL approach to learning. Our re-
sults seem to indicate that, under the encoding scheme
we used, the MDL-score is too strongly biased toward
simple networks. We suggest weighting the error term
more heavily, to make MDL more accurate (at the ex-
pense of accepting larger networks). Also, we suggest
different encoding schemes for belief nets be consid-
ered. The measure of network complexity used here
was somewhat naive, in that it considers only the de-
pendency structure of the network, but not the nature
of those dependencies. CPtables might be represented
by some more concise representation, such as decision
trees where the leaves are distributions [Fri 96a]. Last,
we propose detaching MDL from its theoretical frame-



work, given that that framework rests on an unrealistic
assumption (an optimal encoding for hypotheses) to
allow for modifications that make it more appropriate
for a given learning task.
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