
Specializing Continuations
A Model for Dynamic Join Points

Christopher J. Dutchyn
Computer Science, University of Saskatchewan

dutchyn@cs.usask.ca

ABSTRACT
By modeling dynamic join points, pointcuts, and advice in
a defunctionalized continuation-passing style interpreter, we
provide a fundamental account of these AOP mechanisms.
Dynamic join points develop in a principled and natural way
as activations of continuation frames. Pointcuts arise di-
rectly in the semantic specification as predicates identifying
continuation frames. Advice models procedures operating
on continuations, specializing the behaviour of continuation
frames. In this way, an essential form of AOP is seen, nei-
ther as meta-programming nor as an ad hoc extension, but
as an intrinsic feature of programming languages.

1. INTRODUCTION
Current programming languages offer many ways of orga-

nizing code into conceptual blocks, through functions, ob-
jects, modules, or some other mechanism. However, pro-
grammers often encounter features that do not correspond
well to these units of organization. Such features are said to
scatter and tangle with the design of a system, because the
code that implements the feature appears across many pro-
gram units. This scattering and tangling may derive from
poor modularization of the implementation; for example,
as a result of maintaining pre-existing code. But, recent
work[Coady et al., 2004, De Win et al., 2004, Spinczyk and
Lohmann, 2004] shows that, in some cases, traditional mod-
ularity constructs cannot localize a feature’s implementa-
tion. In these cases, the implementation contains features
which inherently crosscut each other.1 In a procedural lan-
guage, such a feature might be implemented as parts of dis-

1Strictly speaking, crosscutting is a three-place relation: we
say that two concerns crosscut each other with respect to
a mutual representation. The less rigorous ‘two concerns
crosscut each other’ means that they crosscut each other
with respect to an implementation that closely parallels
typical executable code. Traditional modularity constructs,
such as procedures and classes, have a close parallel between
source and executable code.
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joint procedures; in an object-oriented language, the feature
might span several methods or classes.

These crosscutting features inhibit software development
in several ways. For one, it is difficult for the programmer
to reason about how the disparate pieces of the feature in-
teract. In addition, they compound development workload
because features cannot be tested in isolation. Also, they
prevent modular assembly: the programmer cannot simply
add or delete these features from a program, since they are
not separable units. Aspect-oriented programming (aop)
is intended to provide alternative forms of modularity, to
extract these crosscutting features into their own modules.
As a result, the code more closely resembles the design.
Aop subsumes a number of different modularity technolo-
gies, some pre-existing, such as open classes and rewriting
systems, and some more unconventional, including dynamic
join points and advice. This work provides a novel seman-
tic description of this latter system of dynamic join points,
pointcuts, and advice. From this semantics, we provide a
new viewpoint to what this form of aop can modularize
well, and eliminate the ad hoc foundation for dynamic join
points, pointcuts, and advice.

By modeling dynamic join points, pointcuts, and advice in
a defunctionalized continuation-passing style interpreter, we
provide a fundamental account of these AOP mechanisms.
Dynamic join points no longer rely on intuition to provide
“well-defined points in the execution of a program”[Kiczales
et al., 2001], but arise in the language semantics in a princi-
pled and natural way as activations of continuation frames.
Pointcuts arise directly in the semantic specification as pred-
icates identifying continuation frames. Advice models pro-
cedures operating on continuations, the dual of its usual
behaviour as value transformers. Advice is shown as spe-
cializing the behaviour of continuation frames, leading us
to understand dynamic join points, pointcuts, and advice
as enabling the modularization of control in programs. In
this way, an essential form of AOP is seen, neither as meta-
programming nor as ad hoc extension, but as an intrinsic
feature of programming languages.

We begin our presentation by giving direct semantics for
an idealized procedural language, in Section 2. We trans-
form to the continuation passing semantics in Section 3, and
identify the three model elements within that semantics in
Section 4. Following a comparison of our derivation with
other accounts in Section 5, we close with observations on
how this work informs our understanding of modularity and
provides future avenues of research in Section 6.



;;program
(define-struct pgm [decls body]) ;PGM (id × decl)∗ × exp

;; declarations
(define-struct procD [ids body]) ;PROC id∗ × exp

(define-struct globD []) ;GLOBAL

;; expressions
(define-struct litX [val]) ;LIT val

(define-struct varX [id]) ;VAR id

(define-struct ifX [test then else]) ;IF exp exp exp

(define-struct seqX [exps]) ;SEQ exp∗

(define-struct letX [ids rands body]) ;LET (id × exp)∗ exp

(define-struct getX [id]) ;GET id

(define-struct setX [id rand]) ;SET id exp

(define-struct appX [id rands]) ;CALL id exp∗

(define-struct pcdX [rands]) ;PROCEED exp∗

Figure 1: Proc Abstract Syntax

2. A PROCEDURAL LANGUAGE – DIRECT
SEMANTICS

As with other semantic presentations (e.g. [Wand et al.,
2004]), we choose to work with a first-order, mutually re-
cursive procedural language, Proc. Throughout this paper,
our systems are given as definitional interpreters, as intro-
duced by Reynolds [1972], in the style of Friedman et al.
[2001]. This interpreter-based approach to modeling vari-
ous aop mechanisms originated with our work in the Aspect
Sandbox[Dutchyn et al., 2002] and related papers[Masuhara
et al., 2003, Wand et al., 2004], and was later adopted by
others, including Filman [2001]. For this specific paper, this
style of presentation emphasizes the reification of continu-
ations as data structures, thus clarifying our specialization
claim.

We begin with the usual syntax and direct-style, big-step
semantics, given in Figure 1 and Figure 2 respectively. Pro-
grams comprise a set of named mutually-recursive, first-
order procedures, and a closed, top-level expression. We
assume programs and terms are well-typed. Environments
are standard.

One important feature of this definition is that we do not
specify the order of evaluation for procedure operands. In
particular, we use the Scheme map procedure to explicitly
provide this non-deterministic behaviour.

We should point out that several usual constructs are
present in our syntax, but lacking from our evaluator. This
does not impair its expressiveness. In particular, the usual
constructs are

• (SEQ x1. . .) which evaluates each sub-expression in left-
to-right order, yielding the value of the last expression,
and

• (LET ([i1 x1]. . .) x) which evaluates the body x in an
environment enriched with variables in bound to the
values of the corresponding expressions xn.

As usual in the literature, these can be denoted in our lan-
guage the addition of helper procedures as seen in Figure 3.
For the sequel, we will employ these notational shorthands.

;;; evaluator – expression side
(define (eval x r) ;:(exp × env) → val

(cond [(litX? x) (litX-val x)]
[(varX? x) (lookup-env r (varX-id x))]
[(ifX? x) (eval ((if (eval (ifX-test x) r)

ifX-then

ifX-else) x) r)]
[(getX? x) (get-glob (lookup-glob (getX-id x)))]
[(setX? x) (set-glob (lookup-glob (setX-id x))

(eval (setX-rand x) r))]
[(appX? x) (let ([args (map (lambda (x) (eval x r))

(appX-rands x))]
[proc (lookup-proc (appX-id x))])

(eval (procV-body v)
(extend-env (procV-ids v)

(execF-args f)
empty-env)))]

[else (error ’eval "not an exp: ~a" x)]))

(define (evlis x∗ r) ;:(exp∗ × env) → val∗

(if (null? x∗)
()
(cons (eval (car x∗) r)

(evlis (cdr x∗) r))))

(define ∗procs∗ ‘([+ . ,(lambda (vs) (+ (car vs) (cadr vs)))]
[display . ,(lambda (vs) (display (car vs)) 0)]
[newline . ,(lambda (vs) (newline) 0)]))

Figure 2: Proc Big-step (Direct) Semantics

(SEQ x1) ≡ x1

(SEQ x1 x2 . . .) ≡ (APP foo i . . . x1)

with helper procedure

(foo . (procV (i . . . ) (SEQ x2 . . .)))

where foo is fresh, and each i . . . are the free variables of
the subsequent expressions x2 . . .

(LET () x) ≡ x

(LET ([i1 x1] . . . [in xn]) x) ≡ (APP foo i . . . x1 . . . xn)

with helper procedure

(foo . (procV (i . . . i1 . . . in) x))

where foo is fresh, and each i . . . are the free variables of
the body x

excluding i1 . . . in.

Figure 3: Proc Auxiliary Expressions



;;; frames

;; auxiliary
(define-struct testF [then else env]) ;TEST exp exp env :: !bool

(define-struct bindF [ids body env]) ;BIND id∗ exp env :: !val∗

(define-struct randF [exp env]) ;RAND exp env :: !val∗

(define-struct konsF [vals]) ;KONS val∗ :: !val

(define-struct rhsF [id]) ;RHS id :: !val

;; effective
(define-struct getF []) ;GET :: !loc

(define-struct setF [val]) ;SET val :: !loc

(define-struct callF [id]) ;CALL id :: !val

(define-struct execF [args]) ;EXEC val∗ :: !proc

Figure 4: Proc Small-step (cps) Semantics — Con-
tinuations

3. A PROCEDURAL LANGUAGE – CONTIN-
UATION SEMANTICS

In order to identify dynamic join points in a principled
way, we need to move to a continuation-passing style (cps)
implementation. Continuations, also known as goto’s with
arguments, were first identified by Strachey [2000] and Landin
[1998] to model control flow in programs. Later, Reynolds
[1993] applied them to ensure that semantics given by def-
initional interpreters yields a formal model independent of
the defining language control constructs.

The cps transformation[Danvy and Hatcliff, 1993] of our
interpreter is systematic, following closely that of Hatcliff
and Danvy [1994]. In essence, we treat each of the let ex-
pressions in the direct eval semantics as a monadic let [Moggi,
1989, 1991]. These lets express a bind operation between
the computation of an operand and the computation await-
ing that value. Continuations explicitly sequence these bind
operations, and reify the computation awaiting the value.

Usually continuations are presented as closures[Danvy,
2000], but Ager et al. [2005] provide an systematic defunc-
tionalization of these closures into tagged structures and
an apply procedure that gathers the operations of each clo-
sure. The only values that pass into the apply operation are
object-language values (integers, booleans), lists of object-
language values (as argument lists), and references (addresses
into the store or to procedures). Each tagged structure must
contain the values for each variable that the closures refer-
ence. The continuation structures required for our small-
step interpreter are given in Figure 4.

As usual in operational semantics, we introduce two aux-
iliary continuations, randF and konsF, to support multiple
arguments to procedures. These two continuations provide
a strict right-to-left evaluation order for procedure operands.
This choice is arbitrary, as explicitly declared in the direct
semantics.2 We could have supplied a non-deterministic or-
dering in the cps semantics, introducing other auxiliary con-
tinuations; but, that would distract us from our focus. The
essential notion is that these supporting continuations have
no basis in the direct semantics: they serve only to bridge
the gap between the big-step and small-step systems. A
third auxiliary continuation, rhsF serves the same purpose
with regard to the argument to setX.

2Recall that map in Scheme processes the elements in the
list in an explicitly undefined order.

Some formalisms avoid this work by silently introducing
products or tuple values. Then a polyadic procedure actu-
ally accepts a single tuple argument, and explodes the tuple
before evaluation of the body. Similarly, procedure applica-
tions would contain a hidden tupling action; paralleling our
konsF continuation behaviour.

Formal, lambda-calculus approaches eliminate the auxil-
iary continuations by currying procedures and replace polyadic
applications with multiple applications. This simplifies the
underlying formalism, allowing development of the sound-
ness proofs of the cps transformation; Thielecke [1997] pro-
vides the details.

For our restricted procedural language, the full power of
the λ-calculus is not required. Indeed, in the λ-calculus,
the testF continuation is unnecessary as well. A simple
syntactic transformation makes the consequent clauses into
thunks (parameterless closures[Danvy and Hatcliff, 1992]).
True and False become binary procedures that simply apply
one or the other thunk. In summary, we characterize randF,
konsF, and testF as auxiliary continuations.3

The defunctionalized cps definition of our interpreter is
given in Figures 5 and 6.

Our construction is standard, except in three respects.
First, we extend Ager’s construction to explicitly linearize
the continuation. In Ager’s construction, each continuation
structure, representing a suspended operation awaiting the
value of some expression, would contain the rest of the con-
tinuation as a field. Only a halt continuation would not
have this, as it has nowhere to continue to. In our con-
struction, we represent the entire continuation as a list of
frames. A frame is a single element in the list representa-
tion of the continuation; it indicates the immediate action
when this continuation is activated. The remainder of the
continuation is in the tail of the list.

• push :: (frm × cont) → cont — extends an existing
continuation with another frame.

• pop :: (!val × ((frm × cont) → !val)) → cont → !val
— takes a continuation, and either

– applies the first procedure (halt) because the con-
tinuation is empty, or

– applies the second procedure (step) to the top
continuation frame and the rest of the continua-
tion.

We provide a base definition for step, called base-step for the
language absent aspects. Later we will replace step with an
aspect-aware version which dispatches appropriately. Also,
the halt continuation is represented by the empty list.

The second nonstandard construction is that our imple-
mentation lifts primitives from the direct interpreter to take
the existing continuation as an additional argument. This
allows us to provide flow control operations, such as Felleisen’s
abort[Felleisen, 1988], as primitives. This is seen in Figure 7.

Third, our implementation distinguishes the lookup of
procedures into a separate continuation, execF. Ordinarily,
we would require only one continuation, callF, to await the
evaluation of the operands into argument values. That sin-
gle continuation would be responsible for locating the de-

3These should not be confused with serious and trivial con-
tinuations[Reynolds, 1972], nor with administrative contin-
uations[Flanagan et al., 1993].



;;; evaluator – expression side
(define (eval x r k) ;: (exp × env × cont) → unit

(cond [(litX? x) (apply k (litX-val x))]
[(varX? x) (apply k (lookup-env r (varX-id x)))]
[(ifX? x) (eval (ifX-test x)

r

(push (make-testF (ifX-then x)
(ifX-else x)
r)

k))]
[(getX? x) (apply (push (make-getF)

k)
(lookup-glob (getX-id x)))]

[(setX? x) (eval (setX-rand x)
r

(push (make-rhsF (setX-id x))
k))]

[(appX? x) (evlis (appX-rands x)
r

(push (make-callF (appX-id x))
k))]

[else (error ’eval "not an exp: ~a" x)]))

(define (evlis x∗ r k) ;: (exp∗ × env × cont) → unit
(if (null? x∗)

(apply k

’())
(evlis (cdr x∗)

r

(push (make-randF (car x∗) r)
k))))

(define (halt v) ;: !val (== val → unit)
(display v)
(newline))

(define (apply k v) ;: !(cont × val)
(((pop halt

step)
k)

v))

Figure 5: Proc Small-step (cps) Semantics — Eval-
uator

;;; evaluator – continuation side
(define ((base-step f k) v) ;:(frm × cont) → !val

(cond ;; auxiliary frames
[(testF? f) (eval ((if v testF-then testF-else) f)

(testF-env f)
k)]

[(randF? f) (eval (randF-exp f)
(randF-env f)
(push (make-konsF v)

k))]
[(konsF? f) (apply k

(cons v (konsF-vals f)))]
[(rhsF? f) (apply (push (make-setF v)

k)
(lookup-glob (rhsF-id f)))]

;; non-auxiliary frames
[(getF? f) (apply k

(get-glob v))]
[(setF? f) (apply k

(set-glob v (setF-val f)))]
[(callF? f) (apply (push (make-execF v)

k)
(lookup-proc (callF-id f)))]

[(execF? f) (cond [(procV? v)
(eval (procV-body v)

(extend-env (procV-ids v)
(execF-args f)
empty-env)

k)]
[(procedure? v) (v (execF-args f) k)]
[else
(error ’exec "not a procedure: ~a" v)])]

[else (error ’step "not a frame: ~a" f)]))

(define step base-step)

Figure 6: Proc Small-step (cps) Semantics — Eval-
uator



;;; cont ::= frm∗

(define (push f k) ;:(frm × cont) → cont

(cons f k))

(define ((pop e s) k) ;:(!val × ((frm × cont) → !val)) → cont → !val

(if (null? k)
e

(s (car k) (cdr k))))

;;; primitives
(define ((lift p) vs k)

(apply (p vs) k))

;;; lifted primitives
(define ∗procs∗

‘([+ . ,(lift (lambda (vs) (+ (car vs) (cadr vs))))]
[cons . , (lift (lambda vs vs))]
[null? . , (lift (lambda (vs) (null? (car vs))))]
[display . ,(lift (lambda (vs) (display (car vs)) 0))]
[newline . ,(lift (lambda (vs) (newline) 0))]
[abort . ,(lambda (vs k) (apply (car vs) ’()))]))

(define (run s)
(let ([g (parse-prog s)])

(set! ∗procs∗ (cons (PGM-decls g) ∗procs∗))
(eval (PGM-body g) empty-env ’())))

Figure 7: Proc Small-step (cps) Semantics — Prim-
itives

sired procedure and initiating the evaluation of it’s body-
expression with the desired bindings.

Examining the direct semantics closely, we can see that
there are two let bindings present in the case of an APP

expression. Other one-step[Danvy and Nielson, 2003] and
A-normal[Flanagan et al., 1993] transformations optimize
portions of this transformation, usually the second binding.
Our more näıve approach allows us to expose the two sep-
arate operations, which will be valuable as we extend the
system to incorporate dynamic join points, pointcuts, and
advice.

4. EXPOSING AOP CONSTRUCTS
With these preliminaries, we are prepared to expose the

latent dynamic join points in Proc, and provide syntax to
denote pointcuts and advice. We need to describe three
items (quoted from [Kiczales et al., 1997]):

1. dynamic join points — “principled points in the
execution”. These will be states in the interpreter
where values are applied to non-auxiliary continuation
frames.

2. pointcuts — “a means of identifying join points”.
These will be syntax for predicates over the value and
continuation frame content.

3. advice — “a means of affecting the semantics at those
join points”. This is implemented as the advice body
as a procedure applied to the continuation frame.

We will examine each of these in turn.

4.1 Dynamic Join Points

Dynamic join points are the first abstraction in our model.
Other semantic models simply list dynamic join points with-
out supporting the intuition for their selection. The underly-
ing principles are not enunciated. Identifying this principle
is a key result of this work.

For us, join points are activations of certain continuation
frames. Recall that we introduced auxiliary frames to sup-
port our eager, right-to-left evaluation order in the cps se-
mantics. Therefore, we adopt the following principle:

A dynamic join point is modeled as a state in
the interpreter where a non-auxiliary continua-
tion frame is applied to a value.

Auxiliary continuation frames do not correspond to prin-
cipled points in the execution of a program. For example,
our konsF and randF frames were arbitrarily chosen to supply
an eager, right-to-left evaluation order. With a lazy big-step
semantics, or with a different evaluation order, different aux-
iliary continuation frames would be required. Similarly, the
testF frame exists to postpone the choice of alternatives to
an ifX until the test has been evaluated first. The rhsF and
bindF auxiliary frames exist to support the single reduction
ordering that cps interpreters must support – again they are
not mandated by the big-step semantics.

Therefore, in Proc, we have four frames corresponding to
dynamic join points:

• callF (id ` !val∗)) — takes an procedure name and
constructs a frame that will consume a list of argument
values and apply the named procedure to them,

• execF (val∗ ` !proc) — stores a list of argument values
and constructs a frame that will consume a procedure
and apply it to the list of values,

• getF (id ` !loc) — takes an identifier and constructs a
frame that will consume a store location and continue
with its content,

• setF (val ` !loc) — takes a value and constructs a
frame that will consume a store location and continue
after updating its content.

The type signatures indicate the type of the information
stored in the continuation frame, followed by type of the
continuation once the frame is pushed. We use negative
types for continuations, in keeping with previous workJou-
velot and Gifford [1989], Murthy [1992]. Thielecke [1997]
explores this in detail.

In each case, a dynamic join point has various items of
information available, some from the value applied to the
continuation, some from the frame itself. These include

1. a procedure, either by name (in the case of callF) or
as an actual structure (in the case of execF),

2. a list of values corresponding to the arguments to the
procedure (in the case of callF or execF,

3. a value and a store reference (in the case of setF),

4. a store reference (in the case of getF).

Our join points are summarized in Table 1.
In our model, dynamic join points make accessible the la-

tent control structure of the language semantics. Dynamic



Dynamic Join Point

Value Consumed Frame Information

(loc iglobal) I (getF)
(loc iglobal) I (setF val)

(val∗) I (callF iproc)
(proc iproc) I (execF val

∗)

Table 1: Dynamic Join Points

;;; pointcuts

;; effective continuation frame matching
(define-struct getC [gid]) ; GETPC id

(define-struct setC [gid id]) ; SETPC id id

(define-struct callC [pid ids]) ; CALLPC id id∗

(define-struct execC [pid ids]) ; EXECPC id id∗

;; combinational
(define-struct orC [pcs]) ; ORPC pcut∗

(define-struct notC [pc]) ; NOTPC pcut

Figure 8: Proc Pointcuts — Abstract Syntax

join points correspond to continuation frames, and are mod-
eled by states within the interpreter. Our set of dynamic join
points is stable with regard to semantic changes such as al-
tering the order of evaluation, or moving from eager to lazy
evaluation.4 Other semantic changes involved in extend-
ing the big-step semantics, notably introducing new terms
(e.g. for-loops[Harbulot and Gurd, 2006]), would introduce
or modify the set of dynamic join points.

Our dynamic join points systematically align with points
in the model that are well-accepted as being semantically
meaningful. Our principle defines this systematic alignment.
In other models, some have framed dynamic join points as
program rewrite points[Aßmann and Ludwig, 1999, Roy-
choudhury and Gray, 2005]. Other accounts have dynamic
join points appear as an ad hoc list, including in our earlier
work[Wand et al., 2004]. Our principled approach provides
a more robust and elegant description.

4.2 Pointcuts
The second abstraction we must add to our model is point-

cuts. Pointcuts are syntax that provide a means to identify
our dynamic join points. We have a pointcut for identify-
ing each kind of continuation frame (join point): call, exec,
get, and set. We adopt the following syntax for pointcuts.
It contains four structures, one for each kind of dynamic join
point.

We have chosen a direct pointcut syntax, where the pro-
cedure name and the argument names are given directly in
the pointcut. In the next section, we will use the argument
names to offer access to the arguments in the advice. The
semantics of a pointcut is to examine whether the current
interpreter state matches the identified continuation frame
– both in kind and content – and the current value. This is
seen in Figure 9.

In the case of a callC pointcut, we ensure that the frame
is a callF frame, and that it holds a procedure name equal

4Changing to lazy evaluation would alter the order that join
points are encountered during the evaluation.

;;; matching
:MATCH id∗ val∗ (val∗ → (val × frm))

(define-struct match [ids vals prcd])

(define (match-pc c v f) ;:(pcut × val × frm) → match
(cond ;; combinational pointcuts

[(orC? c) (let loop ([pcs (orC-pcs c)])
(if (null? pcs)

#f
(or (match-pc (car pcs) v f)

(loop (cdr pcs)))))]
[(notC? c) (if (match-pc (notC-pc c) v f)

#f
(make-match ’()

’()
(lambda (nv)

(values v f))))]
;; fundamental pointcuts
[(getC? c) (and (getF? f)

(eq? (lookup-glob (getC-gid c)) v)
(make-match ’()

’()
(lambda (nv)

(values v f))))]
[(setC? c) (and (setF? f)

(eq? (lookup-glob (setC-gid c)) v)
(make-match ‘(,(setC-id c))

‘(,(setF-val f))
(lambda (nv)

(values v
(make-setF
(car nv))))))]

[(callC? c) (and (callF? f)
(eq? (callC-pid c) (callF-id f))
(make-match (callC-ids c)

v
(lambda (nv)

(values nv f))))]
[(execC? c) (and (execF? f)

(eq? (lookup-proc (execC-pid c)) v)
(make-match (execC-ids c)

(execF-args f)
(lambda (nv)

(values v
(make-execF
nv)))))]

[(advC? c)]
[else (error ’match-pc "not a pointcut: ~a" c)]))

Figure 9: Proc Pointcuts — Implementation



to the one given in the pointcut. For a execC pointcut, we
ensure that the frame is an execF frame and that the supplied
value is a procedure whose name is equal to the one given in
the pointcut. GetC, and setC pointcuts are similar, matching
the getF and setF frames respectively.

We also include two combinational pointcuts. The first is
orC, which matches any dynamic join point which matches
the first subpointcut; or, failing that, matches the second
subpointcut. This allows us to abstract a concern that cuts
across multiple procedures. For example, one might con-
sider two displayX procedures, each with a different output
format, to be a single display concern.

This combinational pointcut provides a simple specializa-
tion ordering to pointcuts; and, by extension, advice. Any
given pointcut, A, is more specialized than orC(A B) for any
distinct B pointcut. Pointcuts do not have a unique total
ordering, only a partial order. They can be totally ordered
using the standard topological sort. By extension, advice
can be ordered by this total pointcut order.

The other combinational pointcut is notC which simply
matches every join point which differs from its subpointcut.
It returns no matched values, it simple succeeds or fails.

A pointcut matches the top continuation frame, the list of
identifiers from the pointcut is returned. If a match is not
found, #f (Scheme false) is returned. In our implementa-
tion, matching against a orC pointcut yields the identifiers
for the matching sub-pointcut. This means that each sub-
pointcut must provide the same identifiers.

In our model, we adopt the principle that

pointcuts do not alter the semantic behaviour of
the program or language.

In our system, advice is solely responsible for altering be-
haviour at join points. This leads to concerns with contex-
tual pointcuts.

4.2.1 Contextual Pointcuts
It is tantalizing to consider the entire continuation for the

purposes of matching join points. If we did this, then we can
quickly and easily provide the various contextual pointcuts,
including a novel one:

• (cflowbelow pcut): climb down (towards older) the list
of frames, skipping the current frame,

• (cflow pcut): equivalent to (or pcut (cflowbelow pcut)).

• (cflowabove pcut): climb back up (towards newer) the
list of frames, skipping the current frame.5,6

These contextual pointcuts provide a mechanism for char-
acterizing join points based on their temporal context in
the control flow. The usual cflow and cflowbelow provide
the usual “within another control context” recognizer by

5With cactus stacks[Clinger et al., 1999] for threaded lan-
guages, this requires the correct path back up to be main-
tained.
6Pointcuts containing cflowabove can be rewritten us-
ing cflowbelow alone. This is clear by recognizing that
pointcuts form a regular language describing stack struc-
tures[Sereni and de Moor, 2003], and that cflowbelow and
cflowabove are the left- and right-regular descriptions. Of
course, cflowabove is expressive in the sense of Felleisen
[1991] because the tranformation requires a global rewrite
of the entire pointcut.

searching downward toward the program start. Our novel
cflowabove construct provides a way to search in the other
direction, “encloses another control context”. This is use-
ful, along with the not pointcut, to provide the equivalent
to Prolog cuts in the context search.

Unfortunately, in a language with tail call optimization,
this simplistic implementation does not work. The context
of interest may be removed from the continuation frame list
by the tail call optimization, and the desired advice will not
be triggered. In fact, deeper consideration of the contextual
pointcuts convinces us that these pointcuts actually have a
computational effect: they require the evaluator to remem-
ber where the exit from the interesting context occurs. This
is conveniently simple in non-tail call languages: popping
the identified continuation frame can serve as the marker.

If we know the pointcuts in advance, we can avoid having
the pointcut alter all matching frame behaviour by retain-
ing only the interesting frames, the ones identified in cflow

pointcuts, on the stack. This requires advance knowledge;
but can then be implemented quite efficiently[Clements and
Felleisen, 2004].

But, tail call languages require some additional mech-
anism — context may disappear before related advice is
triggered. One solution might be to include some special
context-marking continuation frame – these are called con-
tinuation marks[Clements and Felleisen, 2004], and essen-
tially provide a safe-for-space implementation of dynamic
binding. This is the mechanism applied in the AspectScheme
language[Dutchyn et al., 2006].

We choose not to add new mechanisms, and wish to cleave
to the principle that pointcuts do not change the language
semantics nor the program behaviour. Therefore, we must
supply separate implementations of these pointcuts. Fortu-
nately, Masuhara et al. [2003] provides a state-based cflow

design. It can be modelled in our language as two co-
ordinated pieces of advice. The first specialises join points
matching the control flow of interest to push the arguments
onto a stack data structure, proceed to determine the result,
pop the stack, and return that result. The second specialises
the join points of interest within the control flow to check
for available context on the stack data structure, and modify
the continuation behaviour appropriately.

In our model, pointcuts are first-order predicates for dy-
namic join points. In this general view, we are no different
from other accounts of dynamic join points, pointcuts, and
advice aop. But, pointcuts identify continuation frames at
which advice bodies are to operate. Hence, we can view ad-
vice as extending and specializing the behaviour of control
points in programs.

4.3 Advice
Now we come to the third feature of our model — advice.

A piece of advice needs to specify a means of affecting the
semantics at join points. Syntactically, it contains two parts:

1. a pointcut — which indicates which dynamic join points
are to be affected

2. an advice body — an expression

The new syntax element for advice declarations is given in
Figure 10. Advice are declarations in our model, just like
procedures. Therefore, they will be have identifiers bound
to them, just like procedures do.



;;; declarations
(define-struct advD [pc body]) ;DECL +:= ADVICE pcut exp

Figure 10: Proc Advice Declaration – Abstract Syn-
tax

(BEFORE pcx) ≡ (AROUND pc (SEQ x proceed))

(AFTER pc x) ≡ (AROUND pc (APP foo (proceed)))

with fresh helper procedure

(foo . (procV (v) (SEQ x v)))

Figure 11: Proc Before and After Advice

In our system, all advice is around advice. That is, it
has control over, and alters the behaviour of, the underlying
dynamic join point. Our advice may proceed that dynamic
join point zero, one, or many times. This does not restrict
the generality of our model, as common before and after

advice are the two possible orderings of the advice body
and proceed, shown in Figure 11.

Semantically, an advice resembles a procedure. The point-
cut part identifies the affected dynamic join points, and pro-
vides binding names for the arguments of the dynamic join
point. In our model the advice body acts like a procedure
body, but its locus of application differs.

A procedure is usually applied to some values to yield
another value. For example, the procedure pick in the fol-
lowing code:

(define (pick b) (if x 1 2))

(+ (pick #t) 3)

is applied to #t to yield a new value 1. Filinski [1989] first
recognized that pick transforms the continuation of the pro-
cedure application from

(lambda (n) ; await number, add three, halt
(+ n 3))

to
(lambda (b) ; await boolean

(let ([n (if b 1 2)]) ; select number
((lambda (n) (+ n 3)) ; original continuation
n))) ; given the selected number

One way to discern this different mode of application
is to consider the types of the elements involved. Jou-
velot and Gifford [1989] recognized that the type of the
original continuation is !number (read as consumes num-
ber), and that applying pick has extended the continua-
tion to consume a boolean (typed !boolean). Pick has type
boolean→ number when considered as a value transformer,
and has type !number →!boolean as a continuation trans-
former[Strachey, 2000].

In Filinski’s symmetric lambda calculus[Filinski, 1989], pro-
cedures could be applied in either way: to values, yielding
new values; or to continuations, yielding new continuations.
In our model, advice provides this similar procedure appli-
cation to continuations. We present our semantics in five
parts – advice elaboration and matching, altered step/prim

to support advice execution, a new step/weave to weave ad-
vice into the execution of the program, advice invocation,
and last, the proceed expression.

First, we recognize that advice is a declaration; hence we

need to elaborate the advice declarations, in the same trivial
way we did for procedure declarations. This is displayed in
Appendix A.

Matching is also shown in Figure 12. We simply walk
the elaborated list of advice, comparing the pointcuts and
returning a match containing the pointcut-match identifiers
and the advice itself. It also contains details on how to
proceed, but we will examine those later.

Pointcuts not only provide parameters at the applica-
tion site, but also automate the application of advice to all
matching dynamic join points. This universal application
of advice extends the semantics of matching dynamic join
points to contain additional behaviour.

A subtle difference is that advice can extend the behaviour
of a join point, by calling proceed, a new expression in our
Proc language. It takes a set of arguments and passes them
on to the next advice, or the underlying dynamic join point
if all advice has been invoked. The syntax for proceed, as
well as the extension of eval is given in Figure 13.

In order for proceed to work, we need to provide the re-
maining matched advice, and a representation of the orig-
inal join point. This is done by binding a special variable,
’%proceed into the environment for the advice. It contains
the remaining advice, if any, and the original procedure
name (in the case of a callF dynamic join point), the origi-
nal procV or procedure (in the case of an execF dynamic join
point).

Recalling our principle that dynamic join points corre-
spond to frame activations, we recognize that our new frame,
advF defines a new set of dynamic join points that may be
matched against. By construction, all of our declarations
are bound to identifiers, advice declarations will also have
names. Hence, we naturally provide an advice execution
dynamic join point, and its associated matching operation.
By construction, all activations of advF frames are processed
by adv-step, so the weaving of additional behaviour is auto-
matic. The call structure that makes this so is:

• apply calls adv-step

• adv-step looks for matching advice

– if there is none, base-step provides the fundamen-
tal behaviour of the dynamic join point

– if there are matches, we evaluate arguments and
push an advice execution dynamic join point

;;advice matching against frames/join points
(define (((adv-step advs) f k) v) ;:adv∗ → (frm × cont) → !val

(let loop ([advs advs])
(cond [(null? advs) ((base-step f k) v)]

[(match-pc (caar advs) v f) =>

(lambda (m)
(eval (cdar advs)

(extend-env ‘(%proceed %advs . ,(match-ids m))
‘(,(match-prcd m)

,(cdr advs) . ,(match-vals m))
empty-env)

k))]
[else (loop (cdr advs))])))

(define step adv-step) ;;redefinition

Figure 12: Proc Advice – Matching



;;; proceed needs a new advice-execution frame
;; – hence, a new join point
ADV (val∗ rightarrow val+frm) adv∗ :: !val

(define-struct advF [v->v+f advs])

;;; evaluator – expression side
(define (eval x r k) ;:(exp × env × cont) → unit

(cond . . .
[(pcdX? x) (evlis (pcdX-rands x)

r
(push
(make-advF (lookup-env r ’%proceed)

(lookup-env r ’%advs))
k))]

[else (error ’eval "not an exp: ~a" x)]))

;;; evaluator – continuation side
(define ((base-step f k) v) ;:(frm × cont) → !val

(cond . . .
;; non-auxiliary frames
. . .
[(advF? f)
(let-values ([(v1 f1) ((advF-v->v+f f) v)])

(((adv-step (advF-advs f)) f1 k) v1))]
[else (error ’step "not a frame: ~a" f)]))

Figure 13: Proc Advice – Proceed

• proceed expressions do the same to extract the next
advice or the final dynamic join point and initiate it’s
execution.

In our model, an advice body provides new behaviour for
each dynamic join point (control point) identified by the
advice’ pointcut. This new behaviour extends the original
because advice may contain additional program operations.
This new behaviour specializes the original because the orig-
inal behaviour is available through the proceed expression.

5. COMPARISON TO OTHER SEMANTICS
We compare our dynamic join point schema to those of

other semantic models. The first two are semantic models
are joint work between this author and others.

5.1 Aspect Sandbox
In joint work, Dutchyn et al. [2002] and Wand et al.

[2004], this author developed a number of semantic models
of aspect-oriented programs, both for object-oriented and
procedural languages. That work provides a model of a
first-order, mutually-recursive procedural programming lan-
guage. In that semantic model, three kinds of dynamic join
points were constructed ex nihilo: pcall, pexecution, and
aexecution. This work develops the principle behind the
intuition of those three dynamic join point kinds.

Our model also eliminates some of the irregularities in
these other implementations. For instance, because Wand
et al. [2004] implements a direct semantics, it maintains a
separate stack of dynamic join points rather than relying
on structured continuations to do this. Further, it relies on
thunks to delay execution of proceed; in our semantics, this
arises within from the continuation structure.

We focus on the core semantic model for our system,
therefore we have avoided the more extensive pointcut lan-
guages found in mainstream languages. We adopt conven-
tions from early versions of AspectJ[Kiczales et al., 2001].
Current version of AspectJ provides a pointcut calculus with
separate binding combinators (e.g. args, and target), as well

as pattern matching and other features. In our model, &&

provides no additional expressive power, so we do not in-
clude it.

Some Aspect Sandbox pointcuts are lexical, such as within
which restricts join point matches to those which occur dur-
ing the evaluation of the expressions within a specific pro-
cedure. It can be characterized as join points which appear
with no intervening frames; as this is the situation where
lexical and dynamic scoping coincide. But, this pointcut is
strongly dependent on the textual representation of the pro-
gram. As a result, programmers can easily re-modularize or
abstract their code to retain what appears to be the same
join point sequencing; but unwittingly introduce or elimi-
nate join points from those identified by this pointcut.

Within is dramatically at odds with the dynamic join point
and advice model. Indeed, it can mislead programmers into
believing that dynamic join points are expressions and that
aspect-oriented programming is simply a program genera-
tion/rewriting technique. Our model shows how join points
and advice aspects arise from the semantics of a language,
not from the syntax of a language. Within is possible wiht
our framework, based on the observation that lexical scope
coincides with dynamic scope, until another lexical scope
intervenes. So, within can be implemented similar to our
cflow example, with a third piece of advice that masks the
stack data structure once another lexical scope is entered.
The join points identifying a new scope are the execution
join points; available through the exec pointcut.

In summary, our pointcut language provides is a reason-
able fit for our model approach.

5.2 AspectScheme
The author contributed the semantic description of Aspect-

Scheme[Dutchyn et al., 2006] and the online implementa-
tion[Dutchyn, 2006]. AspectScheme models join points as
procedure applications in context of other in-progress pro-
cedure applications. It depends on novel continuation marks
to express the structure of the continuation stack, and relies
on macros to provide weaving whenever a procedure is ap-
plied. This is practical solution for extending Scheme, where
continuations are available only as opaque procedures—their
structure cannot be examined. This work simplifies the As-
pectScheme semantic presentation to recognize that contin-
uation marks are not required, provided Ager et al. [2005]’s
defunctionalized continuation model is available.

AspectScheme offers only a single kind of dynamic join
point, a procedure application in the context of pending
procedures. This corresponds to our execF dynamic join
point, but with additional context. But, because dynamic
join points are first-class objects, temporally ordered lists of
procedures and arguments in AspectScheme, the program-
mer can extend the set of pointcuts by writing their own.
This expressiveness is put to good use in showing practical
applications of advice.

5.3 PolyAML and µABC
Dantas et al. [2005] provide a PolyAML, a polymorphic

aspect-oriented programming language. It is implemented in
two levels, a polymorphic surface syntax, which is translated
into a monomorphic dynamic semantics, FA. Their focus
is on type-checking, and around aspects are incompatible
with that goal. They can only support oblivious[Filman and
Friedman, 2004] aspects, which must be before and after



only. A later paper,[Dantas et al., to appear] solves the
typing difficulties with around advice, using novel local type
inference techniques.

Their monomorphic machine is described in terms of con-
text semantics[Ager et al., 2003]. Briefly, a context is an
expression with a hole, which the current redex will plug,
once it reduces to a value. The machine shifts into deeper
and deeper contexts until values can be directly computed,
either as literals or variable references. Once all the holes are
plugged in a redex, it is reduced to a value and plugged into
its pending context. Danvy et al. investigated the equiv-
alence between context semantics and continuation seman-
tics. PolyAML’s label method for providing aspects in monomor-
phic context semantics appears to be equivalent to AspectScheme’s
continuation marks in a continuation semantics.

It would be interesting to attempt to remove the labels
from their FA core calculus by reifying the actual continu-
ation structures. We expect that the principled set of dy-
namic join points would again become apparent, rather than
imposed externally.

Bruns et al. [2004] provides an untyped core calculus for
aspects. As Dantas et al. [2005] note, this core calculus
strongly resembles their FA monomorphic context seman-
tics. Again, labels are used to annotate a context and pro-
vide an understanding of dynamic join points. They support
full around advice, but make no attempt to supply static type
checking or inference.

5.4 Other Related Work
Several other semantic formulations for aspects have been

offered.
Douence et al. [2001] considers dynamic join points as

events, and provides oblivious aspects. This is done by pro-
viding a custom sequencing monad that recognizes computa-
tions, and wraps them with the additional behaviour of the
advice. Unfortunately, this is insufficient to allow around

advice to alter the parameters of the wrapped computation.
Only the option to proceed with the original arguments is
available.

Andrews [2001] provides a process-calculus description of
aspects. Oblivious aspects are provided. But, constrained
by encapsulated processes, full around aspects are not possi-
ble.

Clifton and Leavens [2006] further explored the idea of
split call and exec join points; a distinction that originated
in Wand et al. [2002].

Kojarski and Lorentz [2005] consider composition of mul-
tiple aspect extensions to a base language. Our work in-
dicates that, for pointcut-and-advice aspects, there seems
to be a natural extension, which modularizes over the dy-
namic semantic of the language. Preliminary work suggests
that the same principled approach can be applied to other
phases [Cardelli, 1988] in a programming language, lead-
ing to several other extensions such as static join points (as
in AspectJ). The compositional behaviour of these different
phases remains to be explored.

Endoh et al. [2006] also use the CPS transformation to
expose join points; their interest is to reduce the number of
advice kinds (e.g. after returning). This work aims at
a more fundamental understanding of pointcuts and advice
AOP, and attempts to expose the principles underlying it.
As a result, our work identifies an additional join point, the
advice-execution join point (which AspectJ provides with-

out explanation). Furthermore, we takes view that advice
specialize continuation behaviour, leading to a principled
understanding of the modularity that AOP can provide.

6. SUMMARY
Aspect-oriented programming (aop) is crosscutting-mod-

ularity technology. It comes in a variety of forms, including
open classes and dynamic join points. The former example
provide separation of concerns that involve data modular-
ity. This paper demonstrates that the latter provides sep-
aration of concerns invested in modularizing (identifying,
specializing and isolating) control structures. Although un-
surprising, this characterization of different kinds of aspects
based on what they modularize is powerful. It fundamen-
tally sharpens our understanding what dynamic aspects are,
and therefore enables us to construct and apply them effec-
tively.

Our construction has intriguing parallels with object-or-
iented programming. From one perspective, objects provide
a way for programmers to group related data fields, tag-
ging them so that late-bound operations can be supplied.
Our construction appears to generalize to grouping related
continuation frames, tagging them so that late-bound oper-
ations can be supplied.

One example of this sort of aspect hierarchy would be a
base aspect that provides the state-based implementation
of cflow. By extending that abstract aspect with two point-
cuts and the desired advice, we provide modular instances
of cflow and its ilk; thus eliminating them from the base
language. The language remains expressive and becomes
simpler.

The duality between values and continuations may offer
some insight into what dynamic join point-based aop is ef-
fective at modularizing. We believe that a full-fledged as-
pect, intended to capture a crosscutting feature, combines
multiple pointcuts and advice into an abstract control type
paralleling ubiquitous abstract data type. Our implemen-
tation highlights the existence of a dispatch to late-bound
advice specializing the behaviour of that continuation frame.
Can this be extended to give a unified understanding of as-
pects and objects as dual similar to value and continuation
duality?

Furthermore, our construction suggests that an appropri-
ate type theory for dynamic join points should be built on
the ones for continuations. In particular, we are investi-
gating the negative types of [Griffon, 1990, Murthy, 1992]
which characterize continuations, and the more recent work
of Shan [2003] and Biernacki et al. [2006] who look at polar-
ized types for delimited continuations[Biernacka et al., 2005,
Shan, 1999] of which our frames are a degenerate example.

In summary, our work provides a well-founded implemen-
tation of aspects with three key properties:

1. Dynamic join points, pointcuts, and advice aspects are
modeled directly in continuation semantics; without
the need for extraneous labels or continuation marks,

2. Principled dynamic join points arise naturally, as con-
tinuation frames, from describing programming lan-
guages in continuation semantics, and

3. Advice acts as a procedure on these continuation frames,
providing specialized behaviour for them.



We give a formal model of dynamic join points, pointcuts,
and advice built on the well-understood processes of conver-
sion to continuation-passing-style, and defunctionalization.
We demonstrate that dynamic join points arise naturally
in this formulation, as continuation frames. Therefore, ad-
vice can specialize their behaviour directly in our construc-
tion. Furthermore, we demonstrate that, in our model, cflow
corresponds to a continuation context, and interacts poorly
with tail-call optimizations, but can be recognized as a state
effect.

In this way, we provide a fundamental account of these
AOP mechanisms that arises naturally from the semantic
description of the language. Our model is by construction,
not ad hoc. Our model does not entail pre-processing or
other meta-programming techniques.
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APPENDIX
A. PROC ELABORATOR

;;; Elaborator

(define ∗globs∗ #f) ;: (id × boxed-val)∗

(define ∗procs∗ #f) ;: (id × proc/prim)∗

(define ∗advs∗ #f) ;: (pc × adv)

;; values – val ::= constant — procedure
(define-struct procV [ids body]) ;; PROC id∗ exp

(define init-val 0) ;: val

;; location LOC ::= ref val (ie. box)

(define (lookup-glob i) ;: id → loc
(let ([i+b (assq i ∗globs∗)])

(if i+b

(cadr i+b)
(error ’glob "not found: ~a" i))))

(define (lookup-proc i) ;: id → proc
(let ([i+p (assq i ∗procs∗)])

(if i+p

(cadr i+p)
(error ’proc "not found: ~a" i))))

(define (get-glob l) ;: loc → val
(unbox l))

(define (set-glob l v) ;: (loc × val) → val
(let ([ov (unbox l)])

(set-box! l v)
ov))

(define ((lift o) v∗ k) ;: (val∗ → val) → (val∗ × cont) → !val
(apply k (o v∗)))

(define (elab! prims i+d∗) ;: ((id × !(val∗ × cont))∗ × (id × decl))∗ → unit
(set! ∗globs∗ ’())
(set! ∗procs∗ prims)
(set! ∗advs∗ ’())
(for-each (lambda (i+d)

(let ([d (cdr i+d)]
[i (car i+d)])

(cond [(procD? d) (set! ∗procs∗ ‘((,i ,(make-procV (procD-ids d)
(procD-body d)))

. ,∗procs∗))]
[(globD? d) (set! ∗globs∗ ‘((,i ,(box init-val ))

. ,∗globs∗))]
[(advD? d) (set! ∗advs∗ ‘((,(advD-pc d) . ,(advD-body d))

. ,∗advs∗))]
[else (error ’elab "not a decl: ~a" d)])))

i+d∗)
(set! step (adv-step ∗advs∗)))

Figure 14: Proc Elaborator


