A Semantics for Advice and Dynamic Join Points
in Aspect-Oriented Programming

Mitchell Wand
College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

wand@ccs.neu.edu

Gregor Kiczales and Christopher Dutchyn
Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 174, Canada
{gregor, cdutchyn}@cs.ubc.ca

Abstract

A characteristic of aspect-oriented programming, as efnaloth As-
pectJ, is the use afdviceto incrementally modify the behavior of a program.
An advice declaration specifies an action to be taken whersevae condi-
tion arises during the execution of the program. The coowlits specified
by a formula called gointcut designatoor pcd The events during execu-
tion at which advice may be triggered are caljeth points In this model
of aspect-oriented programming, join points are dynamthat they refer to
events during the execution of the program.

We give a denotational semantics for a minilanguage thateleb the
key features of dynamic join points, pointcut designatars] advice. This
is the first semantics for aspect-oriented programmingttaatiles dynamic
join points and recursive procedures. It is intended as alin@ssemantics
against which future correctness results may be measured.

*Work supported by the National Science Foundation undertgnamber CCR-9804115.

1 Introduction

A characteristic of aspect-oriented programming, as efedad AspectJ [KHH 01],

is the use ohdviceto incrementally modify the behavior of a program. An advice
declaration specifies an action to be taken whenever sonditiconarises dur-

ing the execution of the program. The events at which advieg be triggered
are calledoin points In this model of aspect-oriented programming (AOP), join
points aredynamicin that they refer to events during execution. The process of
executing the relevant advice at each join point is caledving

The condition is specified by a formula callegh@intcut designatoor pcd A
typical pcd might look like

(and (pcalls f) (pwithin g) (cflow (pcalls h)))

This indicates that the piece of advice to which this pcdtachied is to be executed
at every call to procedurgfrom within the text of procedurg, but only when that
call occurs dynamically within a call to procedure

This paper presents a model of dynamic join points, poindesignators, and
advice. It introduces a tractable minilanguage embodylilegé features and gives
it a denotational semantics.

This is the first semantics for aspect-oriented programrtnadg handles dy-
namic join points and recursive procedures. It is intende@ &aseline against
which future correctness results may be measured.

This work is part of the Aspect Sandbox (ASB) project. Thel goaf ASB to
produce an experimental workbench for aspect-orientedraneming of various
flavors. ASB includes a small base language and is intendeditale a set of ex-
emplars of different approaches to AOP. The work reported tsea model of one
of those exemplars, namely dynamic join points and advidh dynamic weav-
ing. We hope to extend this work to other AOP models, inclgditatic join points,
Demeter [Lie96], and Hyper/J [OTO0O], and to both interprditee and compiler-
like implementation models.

For more motivation for AOP, see [KLNVB7] or the articles in [CACO01]. For
more on AspectJ, see [KHH1].

2 A Modd

We begin by presenting a conceptual model of aspect-odgmtegramming with
dynamic join points as found in AspectJ.

2

In this model, a program consists of a base program and s@oegofadvice
The program is executed by an interpreter. When the inteEnpreaches certain
points, calledjoin points in its execution, it invokes sveaver passing to it an
abstraction of its internal state (tloeirrent join poin). Each advice contains a
predicate, called aointcut designato(pcd), describing the join points in which
it is interested, and a body representing the action to tak®soae points. Itis the
job of the weaver to demultiplex the join points from the mpteter, invoking each
piece of advice that is interested in the current join pomd axecuting its body
with the same interpreter.

So far, this sounds like an instance of the Observer pat@HJ}V95]. But
there are several differences:

1. First, when a piece of advice is run, its body may be evatlibefore, after
or instead of the expression that triggered it; this spetifia is part of the
advice. In the last case, called around advice, the advice body may call
the primitiveproceed to invoke the running of any other applicable pieces
of advice and the base expression.

2. Second, the language of predicates is a temporal logih, tesinporal oper-
ators such asflow illustrated above. Hence the current join point may in
general be an abstraction of the control stack.

3. Each advice body is also interpreted by the same intempisi its execution
may give rise to additional events and advice executions.

4. Last, in the language of this paper, as in the current impfgation of As-
pectd, the set of advice in each program is a global const@his is in
contrast with the Observer pattern, in which listenersstegiand de-register
themselves dynamically.

This is of course a conceptual model and is intended only tovate the se-
mantics, not the implementation. However, this analysihlights the major de-
sign decisions in any such language:

1. The join-point model: when does the interpreter call treaver, and what
data does it expose?

2. The pcd language: what is the language of predicates owveppints? How
is data from the join point communicated to the advice?

3. The advice model: how does advice modify the executioh@fprogram?

3

In this paper, we explore one set of answers to these qusstiSection 3
gives brief description of the language and some examplagidd 4 presents the
semantics. In section 5 we describe some related work, asetion 6 we discuss
our current research directions.

3 Examples

Our base language consists of a set of mutually-recursigedider procedures
with a call-by-value interpretation. The language is fosder. procedures are not
expressed values. The language includes assignment irstia call-by-value
fashion: new storage is allocated for every binding of a frparameter, and
identifiers in expressions are automatically dereferenced

Figure 1 shows a simple program in this language, using tht&asyof ASB.
We have two pieces afround advice that are triggered by a calltact.! At each
advice executionx will be bound to the argument dfact. The program begins
by calling main, which in turn callsfact. The first advice body is triggered.
Its body prints théeforel message and then evaluates glieceed expression,
which proceeds with the rest of the execution. The execuiioinues by invoking
the second advice, which behaves similarly, printing th€ore2 message; its
evaluation of theproceed expression executes the actual procediset, which
calls fact recursively, which invokes the advice again. Eventudbyt returns
1, which is returned as the value of theoceed expression. As eachroceed
expression returns, the remainder of each advice body Isated, printing the
variousafter messages.

Eacharound advice has complete control of the computation; further maom
tation, including any other applicable advice, is undestanly if the advice body
callsproceed. For example, if theroceed in the first advice were omitted, the
output would be just

beforel: 3
afterl: 3 0
0

The value ofx must be passed to thgroceed. If the call to proceed in the
second advice were changed(iaroceed (- x 1)), thenfact would be called
with “wrong” recursive argument. This design choice is imienal: changing the
argument tgproceed is a standard idiom in AspectJ.

1As shown in these examples, the executable version of ASBdes types for arguments and
results. The portion of ASB captured by our semantics ispedy

4

(run
> ((procedure void main ()
(write (fact 3)))
(procedure int fact ((int n))
(if (<n 1)1
(* n (fact (- n 1)))))
(around
(and
(pcalls int fact (int))
(args (int x)))
(let (((int y) 0))
(write ’beforel:)

(write x) (newline)
(set! y (proceed x))
(write ’afterl:)
(write x) (write y) (newline)
¥))
(around
(and

(pcalls int fact (int))
(args (int x)))
(let (((int y) 0))
(write ’before2:) (write x)
(newline)
(set! y (proceed x))
(write ’after2:)
(write x) (write y) (newline)

¥))))

Figure 1: Example of around advice

prints:

beforel:
before2:
beforel:
before2:
beforel:
before2:
beforel:
before2:

after2:
afteri:
after2:
afterl:
after2:
afteri:
after2:
afterl:
6

W W NNNRFP =, OO

OO P, P NDNNWW

A OONN - ==

(run prints:
> ((procedure void main ()
(write (+ (fact 6) (foo 4))))
(procedure int fact ((int n))
(if (=n0) 1
(* n (fact (- n 1)))))
(procedure int foo ((int n))
(fact n)) 744
(before (and
(pcalls int fact (int))
(args (int y))
(cflow
(and
(pcalls int foo (int))
(args (int x)))))
(write x) (write y) (newline))))

NGNS
oL, N W D

Figure 2: Binding variables withflow

Our language also includegfore andafter advice, which are evaluated on
entry to and on exit from the join point that triggers thenegé forms of advice
do not require an explicit call tproceed and are always executed for effect, not
value.

The language of pointcut designators includes temporabopes as well. Fig-
ure 2 shows an advice that is triggered by a calfaft that occurs within the
dynamic scope of a call tdoo. This program prints 720+24 = 744, but only
the last four calls tfact cause the advice to execute. The pointcut argument to
cflow binds x to the argument ofoo. Our language of pcd’s includes several
temporal operators. For exampteflowtop finds the oldest contained join point
that satisfies its argument. Our semantics includes a fornaalel that explains
this behavior.

The examples shown here are from the Aspect Sandbox (ASH.cd8sists
of a base language, called BASE, and a separate languagevioé aohd weav-
ing, called AJD. The language BASE is a simple language afgatores, classes,
and objects. Our intention is that the same base languagsdaewith different
weavers, representing different models of AOP; AJD is idéghto capture the As-

pectd dynamic join point style of AOP. The relation betweelDAand BASE is
intended to model the relationship between Aspect] and Yéwamplemented the
base language and AJD using an interpreter in Scheme inyileso${ FWHO1].

For the semantics, we have simplified BASE and AJD still ferthy remov-
ing types, classes, and objects from the language and bwtlgligimplifying the
join point model; the details are listed in the appendix. M/much has been
left out, the language of the semantics still models esslecttiaracteristics of As-
pectd, including dynamic join points; pointcut designsi@ndbefore, after,
andaround advice.

4 Semantics

We use a monadic semantics, using partial-function seasawtenever possible.
In general, we use lower-case Roman letters to range overased Greek letters
to range over elements of partial orders.

Typical sets:
Sets
v € Val Expressed Values
| € Loc Locations
s € Sto Stores
id € 1Id Identifiers (program variables)
pnamewname € Pname procedure names

4.1 Join Points

We begin with the definition of join points. We use the tgaim pointto refer both
to the events during the execution of the program at whichcadway run and to
the portion of the program state that may be visible to thécadvThe portion of
the program state made visible to the advice consists oblleving data:

Join points

p € JP Join Points
jp == () | (k pnamewnamev’,jp)
K = pcall | pexecution | aexecution Join Point Kinds

A join point is an abstraction of the control stack. It is eitempty or consists
of a kind, some data, and a previous join point. The join p@etll, f, g, v*, jp)
represents a call to procedufefrom procedureg, with arguments/*, and with
previous join poinfp. pexecution andaexecution join points represent execu-
tion of a procedure or advice body; in these join points thedtdata fields contain
empty values.

4.2 Pointcut Designators

A pointcut designator is a formula that specifies the set iof pwints to which a
piece of advice is applicable. When applied to a join poimpatcut designator
either succeeds with a set of bindings, or fails.

The grammar of pcd’s is given by:

Pointcut designators

pcd::= (pcalls pname | (pwithin pname | (args id; ... idy)
= (and pcd pcd | (or pcd pcd | (not pcd)
= (cflow pcd) | (cflowbelow pcd) | (cflowtop pcd)

The semantics of pcd’s is given by a functioratch-pcdhat takes a pcd and a
join point and produces either a set of bindings (a finiteiglamap from identifiers
to expressed values), or the singleteail.

Before definingnatch-pcdwe must define the operations on bindings and pcd
results. We writd] for the empty set of bindings and for concatenation of bind-
ings. The behavior of repeated bindings ungdas unspecified. The operations
A, and- on the result ofnatch-pcdare defined by

Algebra of pcd results

b € Bnd=[ld— Val Bindings
r € Optional (Bnd)= Bnd+{Fail}

bvr=b Fail Ar = Fall —Fail =]
Failvr=r bAFail = Falil -b = Fall
bAD =b+1

Note that botm andV are short-cutting, so that prefers its first argument.

We can now give the definition ahatch-pcd match-pcdoroceeds by structural
induction on its first argument. The pcd’s fall into three gws. The first group
does pattern matching on the top portion of the join poipicalls pname and

(pwithin pname check the target and within fields of the join poitargs id; ...

succeeds if the argument list in the join point contains #xat elements, and
bindsidy, ..., id, to those values. In full AJD, thergs pcd includes dynamic
type checks as well.

match-pcd basic operations

match-pcdpcalls pname (k, pnamé wnamev*, jp)
R if K=pcall A pname= pnamé
~ | Fail otherwise

match-pcdpwithin wname (k, pnamewnamé, v*, jp)
I if K=pcall A wname= wnamé
Fail otherwise

match-pcdlargs id; ... id,) (k, pnamewname (vi,...,Vn), Jp)
_ J lidy=vy,....idy=Vy] if k=pcallandn=m
- | Fall otherwise

The second grougiand pcd pcd, (or pcd pcd, and(not pcd), perform
boolean combinations on the results of their argumentagusie functionsz, Vv,
and- defined above.

idn)

match-pcd boolean operators

match-pcdand pcd; pcd,) jp = match-pcd pcgjp A match-pcd pcgljp
match-pcdor pcd; pcd,) jp = match-pcd pedjp vV match-ped pegljp
match-pcdnot pcd) jp = —(match-pcd pcd jp

Last, we have the temporal operatgestlow pcd), (cflowbelow pcd), and
(cflowtop pcd). The pcd(cflow pcd) finds the latest join point that satisfies
pcd. (cflowbelow pcd) is just like (cflow pcd), but it skips the current join
point, beginning its search at the first preceding join po{rtt lowtop pcd) is
like (cflow pcd), but it finds the earliest matching join point. These seadam
be thought of local loops within the overall structural ictan.

match-pcd temporal operators

match-pcdcflow pcd) () = Fail
match-pcdcflow pcd) (k, pnamewnamev*, jp)
= match-pcd pcdk, pnamewname V¥, jp) V match-pcd(cflow pcd) jp

match-pcdcflowbelow pcd) () = Fail
match-pcd(cflowbelow pcd) (k, pnamewnameVv*, jp)
= match-pcdicflow pcd)jp

match-pcdcflowtop pcd) () = Fall
match-pcdcflowtop pcd) (k, pnamewnameVv*, jp)
= match-pcdcflowtop pcd) jpV match-pcd pcdk, pnamewnameVv*, jp)

4.3 The Execution Monad

To package the execution, we introduce a monad:
T(A) =JPx Sto— (Ax Sto |
This is a monad with three effects: a dynamically-scopedtityeof type JP, a

10

store of typeStg and non-termination. It says that a computation runs gavgamn
point and a store, and either produces a value and a storsediads to terminate.
The monad operations ensure thiRthas dynamic scope and tHaiiois global:

Monad operations

returnv=Ajp s.lift (v,s)
letv<E1inE;
=Ajps.case (E1jps) of
1l=1
lift (v) = ((AV.E2) Vijp 9

We write
letvi < W;...;Vn <<= I in E

for the evident nesteldt.

We will have the usual monadic operations on the store; fargoints we will
have a single monadic operatatjp. setjp takes a functiorf from join points to
join points and a mag from join points to computations. It returns a computation
that appliesf to the current join point, passes the new join poing,tand runs the
resulting computation in the new join point and currentestor

setjp

stjp: (JP— JP) — (JP—= T(A)) — T(A)
=Afg.Ajps.(g(f jp)) (fjp) s

The lift operation induces an order @r{A) for anyA. In general, we will use
Greek letters for metavariables ranging over partial aréerd Roman letters for
metavariables ranging over sets. We will use the followiomdins:

11

Domains

X € T(Val Computations
m € Proc=Val* — T(Val) Procedures
o € Adv=JP— Proc— Proc Advice
¢ € PE=Pname— Proc Procedure Environments
y € AE=Adv Advice Environments
p € Env=[ld — Loc x WNamex Proceed Environments
WName= Optional(Pname) Within Info
Proceed= Optional(Proc) proceed Info

A procedure takes a sequence of arguments and produces atediomn An
advice takes a join point and a procedure, and produces a rumedure that is
either the original procedure wrapped in the advice (if tbeiee is applicable
at this join point) or else is the original procedure unclehgif the advice is
inapplicable). Procedures and advice do not require anyamient arguments
because they are always defined globally and are closed dityutacursively) in
the global procedure- and advice- environments.

The distinguishedVNamecomponent of the environment will be used for
tracking the name of the procedure (if any) in which the aurggogram text re-
sides. Similarly, the distinguishd®toceedcomponent will be used for theroceed
operation, if it is defined. We writg(within), p[4within =...], p(%proceed),
andp[/proceed = ...] to manipulate these components.

4.4 Expressions

We can now give the semantics of expressions. We give heyeadrgment:

12

Semantics of expressions

(€] € Env— PE— AE— T(Val)

Z[[(pname ¢ ... e))]pyy
= letvi <= Z[e]pgy; ... Vo = E[enllpgy
in (enter-join-pointy
(new-pcall-jp pnamép %within) (Vi,...,Vn))
(¢(pname)
(V1,...,Vn))

E[(proceed € ... ey]pey
=letvi < Elerlpgy; -.; v < E[enlpey
in p(%proceed) (v1,...,Vn)

In a procedure call, first the arguments are evaluated inghalcall-by-value
monadic way. Then, instead of directly calling the procedure usenter-join-point
to create a new join point and enter it, invoking the weaveagply any relevant
advice. Contrast this with theroceed expression, which is like a procedure call,
except that the special procedtgroceed is called, and no additional weaving
takes place. The functionew-call-jp: JP — JP builds a new procedure-call join
point following the grammar in section 4.1.

4.5 enter-join-pointthe Weaver and Advice

enter-join-pointis the standard entry to a new join point. It takes a list ofieglv

y, a join-point builderf, a procedurat, and a list of argumentg. It produces a
computation that builds a new join point using functigrralls the weaver to wrap
all the advice iny around procedurg, and then applies the resulting procedure to
V*.

13

enter-join-point

enter-join-point: AE — (JP — JP) — Proc — Proc
=Ayf v .satjp f (A jp’. weavey jp’ Tt V¥)

The weaver is the heart of the system. It takes a list of agddgein point,
and a procedure. It returns a new procedure that consiste afriginal procedure
wrapped in all of the advice that is applicable at the joinnpoiTo do this, the
weaver attempts to apply each piece of advice in turn. I&tieeno advice left, then
the effective procedure is just the original procedar®©therwise, it calls the first
advice in the list, asking it to wrap its advice (if applicaphround the procedure
that results from weaving the rest of the advice around thyggnal procedure.

So we want
(weave(ds,...,0n) jp T) = (ag jp (az jp ... (0p jp 10)...))
This becomes a straightforward bit of functional programmni

The weaver

weave AE — JP — Proc — Proc
=Ayjp Tt.case y of
()=
a:y = ajp(weavey jp 1)

This brings us to the semantics of advice. A piece of advike dn expression,
should take a procedure environment and an advice envinatpraied its meaning
should be a procedure transformer. Our fundamental modglasnd advice. If
the advice does not apply in the current join point, then tleegdure should be
unchanged. If the advice does apply, then the advice bodydbhe executed with
the bindings derived from the pcd, and withroceed set to the original procedure
(which may be either the starting procedure or a proceduragung the rest of the
woven advice). However, there are two subtleties: firstpibdy of the advice is to
be executed in a newexecution join point, SO we usenter-join-pointto build
the new join point and invoke the weaver. This is potentialtyinfinite regress, so

14

most advice pcd’s will include an expligiicalls conjunct to avoid this problem.
Second, in this case, the inngris not used; the advice body can retrieve it using

anargs pcd.

before andafter advice are similarjproceed is not bound, and we use the
monad operations to perform the sequencing.

Semantics of advice

A4[[(around pcd € JJgy: IJP — Proc— Proc
=Ajp v . PCD[pcd]jp
(Ap. enter-join-pointy
new-aexecution-jp
(Av* . E[e](p[hwithin = None %proceed = T1)@y))

)
(V')

A[((before pcd) e)]gy: JP— Proc— Proc
=Ajp v . PCD[ped]jp
(Ap. enter-join-pointy
new-aexecution-jp
(AV*. let vi < E[€](p[hwithin = None %proceed = None)qy,
Vo < (TTVY)
invy)

(eve)

4[[((after pcd) e)]gy:IP— Proc— Proc
=Ajp v . PCD[pcd]jp

(Ap. enter-join-pointy
new-aexecution-jp
(AV*. let v < (TTVY);

Vo <= E£[[€] (p[4within = None %proceed = None)gy
in Vl)

)

(V)

The function?CD[] takes four arguments: a pcd, a join point, a function

15

k from environments to computations (the “success contiondt and a com-
putationx (the “failure computation”), and it produces a computatidh calls
match-pcdto match the pcd against the join point. nifatch-pcdsucceeds with a
set of bindings® CD creates an environment containing a fresh location for each
binding, and invokes the success continuation on this enmient, producing a
new computation. Otherwise, it returns the failure comipora

Semantics of pcd’'s

PCD[pcd] : IP— (Env— T(Val)) — T(Val) — T(Val)
= A jp kx.case(match-pcd pcd jpof

Fail = x
X1 =Vi,...,% = Vp| =
let I, < alloc(va); ... ;1n < alloc(vy)

ink(x =l1,...,% =In))

4.6 Proceduresand Programs

Finally, we give the semantics of procedures and whole progr The meaning
of a procedure in a procedure and advice environment is d pnugledure envi-
ronment. In this environment, the name of the procedure imthdo a procedure
that accepts some arguments and entgrsxacution join point, possibly weav-
ing some advice. When the advice is accounted for, the angisnage stored in
new locations, and the procedure body is executed in ancemaent in which the
formal parameters are bound to the new locations.

16

Semantics of procedure declarations

P[[(procedure pname (x; ... X,) ©)]:PE— AE— PE
= A@y.[pname=
AV*. (enter-join-pointy
(new-pexecution-jp pname
(Aw. let I3 < alloc(wll) ;...; I, < alloc(wln)
in(glelxi=1l1, ..., Xn=1In,
Jwithin = pname J%proceed = None @y))

vl

We have formulated the semantics of procedures and advioeirg closed in
a given procedure environment and advice environment. 4rpro is a mutually
recursive set of procedures and advice, so its semantidgeis gy the fixed point
over these functions. We take the fixed point and then applptbcedureain to
no arguments.

Semantics of programs

PGM[(proc, ... proc, adw ... aduy)] : T(Val)
= run(fixA(@.y)- (Y L1 (2 [proc]ay), (aladvi@y)T,)))

run(@,y) = £[(main)]|[Jey

Here the notatior.. .)T”:l denotes a sequence of length and the notation
YL, denotes the concatenation operator on bindings, discusspége 8.

This completes the semantics of the core language.

5 Related Work

Aspect-oriented programming is presented in [KLSF], which shows how sev-
eral elements of prior work, including reflection [Smi84]etaobject protocols
[KdR91], subject-oriented programming [HO93], adaptiveggamming [Lie96],
and composition filters [AWB94] all enable better control over modularization

17

of crosscutting concerns. A variety of models of AOP are gme=d in [CACO1].
Aspect] [KHH 01] is an effort to develop a Java-based language expliditiyen
by the principles of AOP.

Flavors [WM81, Can82], New Flavors [M0086], CommonLoopKH3"86]
and CLOS [Ste90] all suppobefore, after, andaround methods.

Andrews [And01] presents a semantics for AOP programs basedCSP for-
malism, using CSP synchronization sets as join points. afiglage is an impera-
tive language with first-order procedures, like ours, bdb#s not allow procedures
to be recursive. His language includesfore, after, andaround advice, but his
pcd’s contain neither boolean nor temporal operators.

Lammel [LamO01] presents static and dynamic operatiomalamntics for a small
OO0 language with a method-call interception facility sorhatwvdifferent from
ours. His system allows dynamic registration of advice,dmés not treadround
advice.

Douence, Motelet, and Sudholt [DMSO01] present an evergdlseory of
AOP. They present a domain-specific language for definingssmuts” (equiva-
lent to our pointcuts). Their language is very powerful, sisemantics is given
by a rewriting semantics, which makes the meaning of itsqammg obscure.

6 FutureWork

We are currently developing a translator from AJD(BASE) S that removes
all advice by internalizing the weaving process. We hopedtthis in a way that
will facilitate a correctness proof.

We plan to extend the ASB suite by adding implementationdefcore con-
cepts of other models of AOP and weaving, including stafic pmints, Demeter
[Lie96], and Hyper/J [OT00]. We hope to develop a theory offAthat accounts
for all of these.

References

[And01] James H. Andrews. Process-algebraic foundatidmsmect-oriented
programming. InProceedings of the Third International Conference
on Metalevel Architectures and Separation of Crosscut@agcerns
(Reflection 2001 volume 2192 of ecture Notes in Computer Science

18

[AWB +94]

[BKK *86]

[CACO1]

[Can82]

[DMS01]

[FWHO1]

[GHIV95]

[HO93]

[KdR91]

pages 187-209, Berlin, Heidelberg, and New York, Septerabet.
Springer-Verlag.

Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmaarg] Aki-

nori Yonezawa. Abstracting Object Interactions Using Cosifion
Filters. In Rachid Guerraoui, Oscar Nierstrasz, and Miéhetill, ed-
itors, Proceedings of the ECOOP’93 Workshop on Object-Based Dis-
tributed ProgrammingLNCS 791, pages 152-184. Springer-Verlag,
1994.

D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefind

F. Zdybel. CommonLoops: merging Common Lisp and object-
oriented programming. IRroceedings ACM Conference on Object-
Oriented Programming Systems, Languages, and Applicatimages
17-29, October 1986.

Communications of the ACMolume 44:10. ACM, October 2001.
special issue on Aspect-Oriented Programming.

H. 1. Cannon. Flavors: A non-hierarchical approach to object-
oriented programmingSymbolics, Inc., 1982.

Remi Douence, Olivier Motelet, and Mario Sudholt. fégxmal defi-
nition of crosscuts. IfProceedings of the Third International Confer-
ence on Metalevel Architectures and Separation of CroisguCon-
cerns (Reflection 2001yolume 2192 ol ecture Notes in Computer
Sciencepages 170-186, Berlin, Heidelberg, and New York, Septem-
ber 2001. Springer-Verlag.

Daniel P. Friedman, Mitchell Wand, and ChristopfieHaynes. Es-
sentials of Programming LanguagesMIT Press, Cambridge, MA,
second edition, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and Jissides.De-
sign Patterns: Elements of Reusable Object-Oriented SodtvAddi-
son Wesley, Massachusetts, 1995.

William Harrison and Harold Ossher. Subject-oreghprogramming
(A critique of pure objects). In Andreas Paepcke, edisaoceedings
ACM Conference on Object-Oriented Programming Systems; La
guages, and Applicationpages 411-428. ACM Press, October 1993.

Gregor Kiczales and Jim des Rivierd&e art of the metaobject pro-
tocol. MIT Press, Cambridge, MA, USA, 1991.

19

[KHH*01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kerseleffrey
Palm, and William G. Griswold. An overview of AspectJ.Pnoceed-
ings European Conference on Object-Oriented Programmialyime
2072 ofLecture Notes in Computer Sciengages 327-353, Berlin,
Heidelberg, and New York, 2001. Springer-Verlag.

[KLM T97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, <ktaeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Asgeeented
programming. In Mehmet Aksit and Satoshi Matsuoka, edjt8ro-
ceedings European Conference on Object-Oriented Progiagm
volume 1241, pages 220-242. Springer-Verlag, Berlin, elbitg,
and New York, 1997.

[LamO01] Ralf Lammel. Semantics of Method Call Intercepti In Work-
shop Aspekt-Orientierung der Gl-Fachgrupppe 2.1.9 Objedmtiere
Software-Entwicklung, 3.- 4. Mai 2001, Unive&iPaderborn 2001.
Technical Report tr-ri-01-223 Universitat-Gesamthathde Pader-
born, available atww.cwi.nl/"ralf.

[Lie96] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Pattern$WS Publishing Company, 1996.

[Moo86] D. A. Moon. Object-oriented programming with Flago In Norman
Meyrowitz, editor,Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicatipages 1-8, New
York, NY, November 1986. ACM Press.

[OTO0] Harold Ossher and Peri Tarr. Hyper/J: multi-dimensi separation
of concerns for Java. IRroceedings of the 22nd International Con-
ference on Software Engineering, June 4-11, 2000, Limelieland,
pages 734—737, 2000.

[Smi84] Brian C. Smith. Reflection and semantics in LispClonf. Rec. 11th
ACM Symposium on Principles of Programming Languagesyes
23-35, 1984.

[Ste90] Guy L. SteeleCommon Lisp: the LanguagPigital Press, Burlington
MA, second edition, 1990.

[WM81] D. Weinreb and D. A. Moon. Flavors: Message passinghanLISP
machine. A. I. Memo 602, Massachusetts Institute of TeamlA.l.
Lab., Cambridge, Massachusetts, 1981.

20

A Language Comparison

Full AJD contains the following features not in the core laage captured by the
semantics of this paper. None represent difficult exterssionthe semantics.

e classes, methods, and objects.

e declared types for bound variables (as illustrated in themgptes of sec-
tion 3).

e static type checking (asirgs pcd includes types for its arguments, as in our
examples; at present these must be checked dynamically).

e additional join points at: method calls, method executiatgect construc-
tions, field references and field assignments.

e The pcd operatorsnd andor take an arbitrary number of arguments.

AspectJ provides a sophisticated advice ordering meamanifiere advice is
first ordered from most general to most specific, and withassts with equal
specificity, orders the advice by qualifisseffore, after, or around). AJD is
working toward this capability, but the current stable iempentation only provides
the qualifier-based ordering, whereound advice is executed around any relevant
before andafter advice. In the semantics, advice is ordered by its appearanc
in the program text.

The examples of section 3 were in written and executed inXlld except for
the following:

¢ the output was edited to improve formatting

e in the current implementation, eligibieround advice is executed in reverse
order from its appearance in the program text. The examigune 1 was
edited, reversing the order of advice declarations, to sistent with the
left-to-right semantics of the core language.

21

