
A Semantics for Advice and Dynamic Join Points
in Aspect-Oriented Programming

Mitchell Wand�
College of Computer Science

Northeastern University
360 Huntington Avenue, 161CN

Boston, MA 02115, USAwand�

s.neu.edu
Gregor Kiczales and Christopher Dutchyn

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC V6T 1Z4, Canadafgregor,
dut
hyng�
s.ub
.
a

Abstract

A characteristic of aspect-oriented programming, as embodied in As-
pectJ, is the use ofadviceto incrementally modify the behavior of a program.
An advice declaration specifies an action to be taken whenever some condi-
tion arises during the execution of the program. The condition is specified
by a formula called apointcut designatoror pcd. The events during execu-
tion at which advice may be triggered are calledjoin points. In this model
of aspect-oriented programming, join points are dynamic inthat they refer to
events during the execution of the program.

We give a denotational semantics for a minilanguage that embodies the
key features of dynamic join points, pointcut designators,and advice. This
is the first semantics for aspect-oriented programming thathandles dynamic
join points and recursive procedures. It is intended as a baseline semantics
against which future correctness results may be measured.�Work supported by the National Science Foundation under grant number CCR-9804115.

1

1 Introduction

A characteristic of aspect-oriented programming, as embodied in AspectJ [KHH+01],
is the use ofadviceto incrementally modify the behavior of a program. An advice
declaration specifies an action to be taken whenever some condition arises dur-
ing the execution of the program. The events at which advice may be triggered
are calledjoin points. In this model of aspect-oriented programming (AOP), join
points aredynamicin that they refer to events during execution. The process of
executing the relevant advice at each join point is calledweaving.

The condition is specified by a formula called apointcut designatoror pcd. A
typical pcd might look like(and (p
alls f) (pwithin g) (
flow (p
alls h)))
This indicates that the piece of advice to which this pcd is attached is to be executed
at every call to proceduref from within the text of procedureg, but only when that
call occurs dynamically within a call to procedureh.

This paper presents a model of dynamic join points, pointcutdesignators, and
advice. It introduces a tractable minilanguage embodying these features and gives
it a denotational semantics.

This is the first semantics for aspect-oriented programmingthat handles dy-
namic join points and recursive procedures. It is intended as a baseline against
which future correctness results may be measured.

This work is part of the Aspect Sandbox (ASB) project. The goal is of ASB to
produce an experimental workbench for aspect-oriented programming of various
flavors. ASB includes a small base language and is intended toinclude a set of ex-
emplars of different approaches to AOP. The work reported here is a model of one
of those exemplars, namely dynamic join points and advice with dynamic weav-
ing. We hope to extend this work to other AOP models, including static join points,
Demeter [Lie96], and Hyper/J [OT00], and to both interpreter-like and compiler-
like implementation models.

For more motivation for AOP, see [KLM+97] or the articles in [CAC01]. For
more on AspectJ, see [KHH+01].

2 A Model

We begin by presenting a conceptual model of aspect-oriented programming with
dynamic join points as found in AspectJ.

2

In this model, a program consists of a base program and some pieces ofadvice.
The program is executed by an interpreter. When the interpreter reaches certain
points, calledjoin points, in its execution, it invokes aweaver, passing to it an
abstraction of its internal state (thecurrent join point). Each advice contains a
predicate, called apointcut designator(pcd), describing the join points in which
it is interested, and a body representing the action to take at those points. It is the
job of the weaver to demultiplex the join points from the interpreter, invoking each
piece of advice that is interested in the current join point and executing its body
with the same interpreter.

So far, this sounds like an instance of the Observer pattern [GHJV95]. But
there are several differences:

1. First, when a piece of advice is run, its body may be evaluated before, after
or instead of the expression that triggered it; this specification is part of the
advice. In the last case, called anaroundadvice, the advice body may call
the primitivepro
eed to invoke the running of any other applicable pieces
of advice and the base expression.

2. Second, the language of predicates is a temporal logic, with temporal oper-
ators such as
flow illustrated above. Hence the current join point may in
general be an abstraction of the control stack.

3. Each advice body is also interpreted by the same interpreter, so its execution
may give rise to additional events and advice executions.

4. Last, in the language of this paper, as in the current implementation of As-
pectJ, the set of advice in each program is a global constant.This is in
contrast with the Observer pattern, in which listeners register and de-register
themselves dynamically.

This is of course a conceptual model and is intended only to motivate the se-
mantics, not the implementation. However, this analysis highlights the major de-
sign decisions in any such language:

1. The join-point model: when does the interpreter call the weaver, and what
data does it expose?

2. The pcd language: what is the language of predicates over join points? How
is data from the join point communicated to the advice?

3. The advice model: how does advice modify the execution of the program?

3

In this paper, we explore one set of answers to these questions. Section 3
gives brief description of the language and some examples. Section 4 presents the
semantics. In section 5 we describe some related work, and insection 6 we discuss
our current research directions.

3 Examples

Our base language consists of a set of mutually-recursive first-order procedures
with a call-by-value interpretation. The language is first-order: procedures are not
expressed values. The language includes assignment in the usual call-by-value
fashion: new storage is allocated for every binding of a formal parameter, and
identifiers in expressions are automatically dereferenced.

Figure 1 shows a simple program in this language, using the syntax of ASB.
We have two pieces ofaround advice that are triggered by a call tofa
t.1 At each
advice execution,x will be bound to the argument offa
t. The program begins
by calling main, which in turn callsfa
t. The first advice body is triggered.
Its body prints thebefore1 message and then evaluates thepro
eed expression,
which proceeds with the rest of the execution. The executioncontinues by invoking
the second advice, which behaves similarly, printing thebefore2 message; its
evaluation of thepro
eed expression executes the actual procedurefa
t, which
calls fa
t recursively, which invokes the advice again. Eventuallyfa
t returns
1, which is returned as the value of thepro
eed expression. As eachpro
eed
expression returns, the remainder of each advice body is evaluated, printing the
variousafter messages.

Eacharound advice has complete control of the computation; further compu-
tation, including any other applicable advice, is undertaken only if the advice body
callspro
eed. For example, if thepro
eed in the first advice were omitted, the
output would be justbefore1: 3after1: 3 00
The value ofx must be passed to thepro
eed. If the call to pro
eed in the
second advice were changed to(pro
eed (- x 1)), thenfa
t would be called
with “wrong” recursive argument. This design choice is intentional: changing the
argument topro
eed is a standard idiom in AspectJ.

1As shown in these examples, the executable version of ASB includes types for arguments and
results. The portion of ASB captured by our semantics is untyped.

4

(run'((pro
edure void main ()(write (fa
t 3)))(pro
edure int fa
t ((int n))(if (< n 1) 1(* n (fa
t (- n 1)))))(around(and(p
alls int fa
t (int))(args (int x)))(let (((int y) 0))(write 'before1:)(write x) (newline)(set! y (pro
eed x))(write 'after1:)(write x) (write y) (newline)y))(around(and(p
alls int fa
t (int))(args (int x)))(let (((int y) 0))(write 'before2:) (write x)(newline)(set! y (pro
eed x))(write 'after2:)(write x) (write y) (newline)y))))

prints:before1: 3before2: 3before1: 2before2: 2before1: 1before2: 1before1: 0before2: 0after2: 0 1after1: 0 1after2: 1 1after1: 1 1after2: 2 2after1: 2 2after2: 3 6after1: 3 66
Figure 1: Example of around advice

5

(run'((pro
edure void main ()(write (+ (fa
t 6) (foo 4))))(pro
edure int fa
t ((int n))(if (= n 0) 1(* n (fa
t (- n 1)))))(pro
edure int foo ((int n))(fa
t n))(before (and(p
alls int fa
t (int))(args (int y))(
flow(and(p
alls int foo (int))(args (int x)))))(write x) (write y) (newline))))

prints:4 44 34 24 14 0744
Figure 2: Binding variables with
flow

Our language also includesbefore andafter advice, which are evaluated on
entry to and on exit from the join point that triggers them; these forms of advice
do not require an explicit call topro
eed and are always executed for effect, not
value.

The language of pointcut designators includes temporal operators as well. Fig-
ure 2 shows an advice that is triggered by a call offa
t that occurs within the
dynamic scope of a call tofoo. This program prints 720+24 = 744, but only
the last four calls tofa
t cause the advice to execute. The pointcut argument to
flow bindsx to the argument offoo. Our language of pcd’s includes several
temporal operators. For example,
flowtop finds the oldest contained join point
that satisfies its argument. Our semantics includes a formalmodel that explains
this behavior.

The examples shown here are from the Aspect Sandbox (ASB). ASB consists
of a base language, called BASE, and a separate language of advice and weav-
ing, called AJD. The language BASE is a simple language of procedures, classes,
and objects. Our intention is that the same base language be used with different
weavers, representing different models of AOP; AJD is intended to capture the As-

6

pectJ dynamic join point style of AOP. The relation between AJD and BASE is
intended to model the relationship between AspectJ and Java. We implemented the
base language and AJD using an interpreter in Scheme in the style of [FWH01].

For the semantics, we have simplified BASE and AJD still further by remov-
ing types, classes, and objects from the language and by slightly simplifying the
join point model; the details are listed in the appendix. While much has been
left out, the language of the semantics still models essential characteristics of As-
pectJ, including dynamic join points; pointcut designators; andbefore, after,
andaround advice.

4 Semantics

We use a monadic semantics, using partial-function semantics whenever possible.
In general, we use lower-case Roman letters to range over sets, and Greek letters
to range over elements of partial orders.

Typical sets:

Sets

v 2 Val Expressed Values
l 2 Loc Locations
s 2 Sto Stores

id 2 Id Identifiers (program variables)
pname; wname 2 Pname procedure names

4.1 Join Points

We begin with the definition of join points. We use the termjoin point to refer both
to the events during the execution of the program at which advice may run and to
the portion of the program state that may be visible to the advice. The portion of
the program state made visible to the advice consists of the following data:

7

Join points

jp 2 JP Join Points
jp ::= hi j hk; pname; wname; v�; jpi
k ::= p
all j pexe
ution j aexe
ution Join Point Kinds

A join point is an abstraction of the control stack. It is either empty or consists
of a kind, some data, and a previous join point. The join pointhp
all; f ; g; v�; jpi
represents a call to proceduref from procedureg, with argumentsv�, and with
previous join pointjp. pexe
ution andaexe
ution join points represent execu-
tion of a procedure or advice body; in these join points the three data fields contain
empty values.

4.2 Pointcut Designators

A pointcut designator is a formula that specifies the set of join points to which a
piece of advice is applicable. When applied to a join point, apointcut designator
either succeeds with a set of bindings, or fails.

The grammar of pcd’s is given by:

Pointcut designators

pcd ::= (p
alls pname) j (pwithin pname) j (args id1 : : : idn)
::= (and pcd pcd) j (or pcd pcd) j (not pcd)
::= (
flow pcd) j (
flowbelow pcd) j (
flowtop pcd)

The semantics of pcd’s is given by a functionmatch-pcdthat takes a pcd and a
join point and produces either a set of bindings (a finite partial map from identifiers
to expressed values), or the singletonFail.

Before definingmatch-pcd, we must define the operations on bindings and pcd
results. We write[℄ for the empty set of bindings and+ for concatenation of bind-
ings. The behavior of repeated bindings under+ is unspecified. The operations_,^, and: on the result ofmatch-pcdare defined by

8

Algebra of pcd results

b 2 Bnd= [Id! Val℄ Bindings
r 2 Optional (Bnd)= Bnd+fFailg

b_ r = b
Fail_r = r

Fail^r = Fail
b^Fail = Fail

b^b0 = b+b0 :Fail = [℄:b= Fail

Note that botĥ and_ are short-cutting, so that_ prefers its first argument.

We can now give the definition ofmatch-pcd. match-pcdproceeds by structural
induction on its first argument. The pcd’s fall into three groups. The first group
does pattern matching on the top portion of the join point:(p
alls pname) and(pwithin pname) check the target and within fields of the join point.(args id1 : : : idn)
succeeds if the argument list in the join point contains exactly n elements, and
binds id1, . . . , idn to those values. In full AJD, theargs pcd includes dynamic
type checks as well.

match-pcd: basic operations

match-pcd(p
alls pname)hk; pname0; wname; v�; jpi=� [℄ if k = p
all ^ pname= pname0
Fail otherwise

match-pcd(pwithin wname)hk; pname; wname0; v�; jpi=� [℄ if k = p
all ^ wname= wname0
Fail otherwise

match-pcd(args id1 : : : idn)hk; pname; wname; (v1; : : : ;vm); jpi=� [id1 = v1; : : : ; idn = vn℄ if k= p
all andn= m
Fail otherwise

The second group,(and pcd pcd), (or pcd pcd), and(not pcd), perform
boolean combinations on the results of their arguments, using the functionŝ , _,
and: defined above.

9

match-pcd: boolean operators

match-pcd(and pcd1 pcd2) jp = match-pcd pcd1 jp^match-pcd pcd2 jp
match-pcd(or pcd1 pcd2) jp = match-pcd pcd1 jp_match-pcd pcd2 jp
match-pcd(not pcd) jp = :(match-pcd pcd jp)
Last, we have the temporal operators(
flow pcd), (
flowbelow pcd), and(
flowtop pcd). The pcd(
flow pcd) finds the latest join point that satisfies

pcd. (
flowbelow pcd) is just like (
flow pcd), but it skips the current join
point, beginning its search at the first preceding join point; (
flowtop pcd) is
like (
flow pcd), but it finds the earliest matching join point. These searches can
be thought of local loops within the overall structural induction.

match-pcd: temporal operators

match-pcd(
flow pcd)hi= Fail
match-pcd(
flow pcd)hk; pname; wname; v�; jpi= match-pcd pcdhk; pname; wname; v�; jpi_ match-pcd(
flow pcd) jp

match-pcd(
flowbelow pcd)hi= Fail
match-pcd(
flowbelow pcd)hk; pname; wname; v�; jpi= match-pcd(
flow pcd) jp

match-pcd(
flowtop pcd)hi= Fail
match-pcd(
flowtop pcd)hk; pname; wname; v�; jpi= match-pcd(
flowtop pcd) jp_ match-pcd pcdhk; pname; wname; v�; jpi

4.3 The Execution Monad

To package the execution, we introduce a monad:

T(A) = JP�Sto! (A�Sto)?
This is a monad with three effects: a dynamically-scoped quantity of typeJP, a

10

store of typeSto, and non-termination. It says that a computation runs givena join
point and a store, and either produces a value and a store, or else fails to terminate.
The monad operations ensure thatJP has dynamic scope and thatStois global:

Monad operations

return v= λ jp s: lift (v;s)
let v(E1 in E2= λ jp s:case (E1 jp s) of?)?

lift (v)) ((λv:E2) v jp s)
We write

let v1 (µ1; : : : ;vn (µn in E

for the evident nestedlet.

We will have the usual monadic operations on the store; for join points we will
have a single monadic operatorsetjp. setjp takes a functionf from join points to
join points and a mapg from join points to computations. It returns a computation
that appliesf to the current join point, passes the new join point tog, and runs the
resulting computation in the new join point and current store:

setjp

setjp : (JP! JP)! (JP! T(A))! T(A)= λ f g:λ jp s:(g (f jp)) (f jp) s

The lift operation induces an order onT(A) for anyA. In general, we will use
Greek letters for metavariables ranging over partial orders and Roman letters for
metavariables ranging over sets. We will use the following domains:

11

Domains

χ 2 T(Val) Computations
π 2 Proc= Val� ! T(Val) Procedures
α 2 Adv= JP! Proc! Proc Advice
φ 2 PE= Pname! Proc Procedure Environments
γ 2 AE= Adv� Advice Environments
ρ 2 Env= [Id! Loc℄�WName�Proceed Environments

WName= Optional(Pname) Within Info
Proceed= Optional(Proc) pro
eed Info

A procedure takes a sequence of arguments and produces a computation. An
advice takes a join point and a procedure, and produces a new procedure that is
either the original procedure wrapped in the advice (if the advice is applicable
at this join point) or else is the original procedure unchanged (if the advice is
inapplicable). Procedures and advice do not require any environment arguments
because they are always defined globally and are closed (mutually recursively) in
the global procedure- and advice- environments.

The distinguishedWNamecomponent of the environment will be used for
tracking the name of the procedure (if any) in which the current program text re-
sides. Similarly, the distinguishedProceedcomponent will be used for thepro
eed
operation, if it is defined. We writeρ(%within), ρ[%within= : : :℄, ρ(%pro
eed),
andρ[%pro
eed= : : :℄ to manipulate these components.

4.4 Expressions

We can now give the semantics of expressions. We give here only a fragment:

12

Semantics of expressions

E [[e℄℄ 2 Env! PE! AE! T(Val)
E [[(pname e1 : : : en)℄℄ρφγ= let v1 (E [[e1℄℄ρφγ ; : : : ; vn (E [[en℄℄ρφγ

in (enter-join-pointγ(new-pcall-jp pname(ρ %within) (v1; : : : ;vn))(φ(pname))(v1; : : : ;vn))
E [[(pro
eed e1 : : : en)℄℄ρφγ= let v1 (E [[e1℄℄ρφγ ; : : : ; vn (E [[en℄℄ρφγ

in ρ(%pro
eed)(v1; : : : ;vn)
In a procedure call, first the arguments are evaluated in the usual call-by-value

monadic way. Then, instead of directly calling the procedure, we useenter-join-point
to create a new join point and enter it, invoking the weaver toapply any relevant
advice. Contrast this with thepro
eed expression, which is like a procedure call,
except that the special procedure%pro
eed is called, and no additional weaving
takes place. The functionnew-call-jp: JP! JP builds a new procedure-call join
point following the grammar in section 4.1.

4.5 enter-join-point, the Weaver and Advice

enter-join-pointis the standard entry to a new join point. It takes a list of advice
γ, a join-point builderf , a procedureπ, and a list of argumentsv�. It produces a
computation that builds a new join point using functionf , calls the weaver to wrap
all the advice inγ around procedureπ, and then applies the resulting procedure to
v�.

13

enter-join-point

enter-join-point: AE! (JP! JP)! Proc! Proc= λ γ f π v� : setjp f (λ jp0 : weaveγ jp0 π v�)
The weaver is the heart of the system. It takes a list of advice, a join point,

and a procedure. It returns a new procedure that consists of the original procedure
wrapped in all of the advice that is applicable at the join point. To do this, the
weaver attempts to apply each piece of advice in turn. If there is no advice left, then
the effective procedure is just the original procedureπ. Otherwise, it calls the first
advice in the list, asking it to wrap its advice (if applicable) around the procedure
that results from weaving the rest of the advice around the original procedure.

So we want(weavehα1; : : : ;αni jp π) = (α1 jp (α2 jp : : : (αn jp π) : : :))
This becomes a straightforward bit of functional programming:

The weaver

weave: AE! JP! Proc! Proc= λ γ jp π :case γ ofhi) π
α :: γ0) α jp (weaveγ0 jp π)

This brings us to the semantics of advice. A piece of advice, like an expression,
should take a procedure environment and an advice environment, and its meaning
should be a procedure transformer. Our fundamental model isaround advice. If
the advice does not apply in the current join point, then the procedure should be
unchanged. If the advice does apply, then the advice body should be executed with
the bindings derived from the pcd, and with%pro
eed set to the original procedure
(which may be either the starting procedure or a procedure containing the rest of the
woven advice). However, there are two subtleties: first, thebody of the advice is to
be executed in a newaexe
ution join point, so we useenter-join-pointto build
the new join point and invoke the weaver. This is potentiallyan infinite regress, so

14

most advice pcd’s will include an explicitp
alls conjunct to avoid this problem.
Second, in this case, the innerv� is not used; the advice body can retrieve it using
anargs pcd.before andafter advice are similar;%pro
eed is not bound, and we use the
monad operations to perform the sequencing.

Semantics of advice

A [[(around pcd e)℄℄φγ : JP! Proc! Proc= λ jp π v� :P CD[[pcd℄℄ jp(λρ:enter-join-pointγ
new-aexecution-jp(λv� :E [[e℄℄(ρ[%within= None; %pro
eed= π℄)φγ))hi)(π v�)

A [[((before pcd) e)℄℄φγ : JP! Proc! Proc= λ jp π v� :P CD[[pcd℄℄ jp(λρ:enter-join-pointγ
new-aexecution-jp(λv� : let v1 (E [[e℄℄(ρ[%within= None; %pro
eed= None℄)φγ;

v2 ((π v�)
in v2)hi)(π v�)

A [[((after pcd) e)℄℄φγ : JP! Proc! Proc= λ jp π v� :P CD[[pcd℄℄ jp(λρ:enter-join-pointγ
new-aexecution-jp(λv� : let v1 ((π v�);

v2 (E [[e℄℄(ρ[%within= None; %pro
eed= None℄)φγ
in v1)hi)(π v�)

The functionP CD[[�℄℄ takes four arguments: a pcd, a join point, a function

15

k from environments to computations (the “success continuation”), and a com-
putation χ (the “failure computation”), and it produces a computation. It calls
match-pcdto match the pcd against the join point. Ifmatch-pcdsucceeds with a
set of bindings,P CD creates an environment containing a fresh location for each
binding, and invokes the success continuation on this environment, producing a
new computation. Otherwise, it returns the failure computation.

Semantics of pcd’s

P CD[[pcd℄℄ : JP! (Env! T(Val))! T(Val)! T(Val)= λ jp kχ:case (match-pcd pcd jp)of
Fail) χ[x1 = v1; : : : ;xn = vn℄)

let l1 (alloc(v1); : : : ; ln (alloc(vn)
in k([x1 = l1; : : : ;xn = ln℄)

4.6 Procedures and Programs

Finally, we give the semantics of procedures and whole programs. The meaning
of a procedure in a procedure and advice environment is a small procedure envi-
ronment. In this environment, the name of the procedure is bound to a procedure
that accepts some arguments and enters apexe
ution join point, possibly weav-
ing some advice. When the advice is accounted for, the arguments are stored in
new locations, and the procedure body is executed in an environment in which the
formal parameters are bound to the new locations.

16

Semantics of procedure declarations

P [[(pro
edure pname(x1 ... xn) e)℄℄ : PE! AE! PE= λφγ :[pname=
λv� :(enter-join-pointγ(new-pexecution-jp pname)(λw: let l1 (alloc(w#1) ; : : : ; ln (alloc(w#n)

in(E [[e℄℄[x1 = l1; : : : ; xn = ln;%within= pname; %pro
eed= None℄ φ γ))
v�)℄

We have formulated the semantics of procedures and advice asbeing closed in
a given procedure environment and advice environment. A program is a mutually
recursive set of procedures and advice, so its semantics is given by the fixed point
over these functions. We take the fixed point and then apply the proceduremain to
no arguments.

Semantics of programs

P GM [[(proc1 : : : procn adv1 : : : advm)℄℄ : T(Val)= run(fix(λ(φ;γ):(∑n
i=1(P [[proci ℄℄φγ);hA [[advj ℄℄φγimj=1)))

run(φ;γ) = E [[(main)℄℄[℄φγ

Here the notationh: : :imj=1 denotes a sequence of lengthm, and the notation
∑n

i=1 denotes the concatenation operator on bindings, discussedon page 8.

This completes the semantics of the core language.

5 Related Work

Aspect-oriented programming is presented in [KLM+97], which shows how sev-
eral elements of prior work, including reflection [Smi84], metaobject protocols
[KdR91], subject-oriented programming [HO93], adaptive programming [Lie96],
and composition filters [AWB+94] all enable better control over modularization

17

of crosscutting concerns. A variety of models of AOP are presented in [CAC01].
AspectJ [KHH+01] is an effort to develop a Java-based language explicitlydriven
by the principles of AOP.

Flavors [WM81, Can82], New Flavors [Moo86], CommonLoops [BKK+86]
and CLOS [Ste90] all supportbefore, after, andaround methods.

Andrews [And01] presents a semantics for AOP programs basedon a CSP for-
malism, using CSP synchronization sets as join points. His language is an impera-
tive language with first-order procedures, like ours, but itdoes not allow procedures
to be recursive. His language includesbefore, after, andaround advice, but his
pcd’s contain neither boolean nor temporal operators.

Lämmel [Läm01] presents static and dynamic operational semantics for a small
OO language with a method-call interception facility somewhat different from
ours. His system allows dynamic registration of advice, butdoes not treataround
advice.

Douence, Motelet, and Sudholt [DMS01] present an event-based theory of
AOP. They present a domain-specific language for defining “crosscuts” (equiva-
lent to our pointcuts). Their language is very powerful, butits semantics is given
by a rewriting semantics, which makes the meaning of its programs obscure.

6 Future Work

We are currently developing a translator from AJD(BASE) to BASE that removes
all advice by internalizing the weaving process. We hope to do this in a way that
will facilitate a correctness proof.

We plan to extend the ASB suite by adding implementations of the core con-
cepts of other models of AOP and weaving, including static join points, Demeter
[Lie96], and Hyper/J [OT00]. We hope to develop a theory of AOP that accounts
for all of these.

References

[And01] James H. Andrews. Process-algebraic foundations of aspect-oriented
programming. InProceedings of the Third International Conference
on Metalevel Architectures and Separation of CrosscuttingConcerns
(Reflection 2001), volume 2192 ofLecture Notes in Computer Science,

18

pages 187–209, Berlin, Heidelberg, and New York, September2001.
Springer-Verlag.

[AWB+94] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans,and Aki-
nori Yonezawa. Abstracting Object Interactions Using Composition
Filters. In Rachid Guerraoui, Oscar Nierstrasz, and MichelRiveill, ed-
itors, Proceedings of the ECOOP’93 Workshop on Object-Based Dis-
tributed Programming, LNCS 791, pages 152–184. Springer-Verlag,
1994.

[BKK+86] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,and
F. Zdybel. CommonLoops: merging Common Lisp and object-
oriented programming. InProceedings ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
17–29, October 1986.

[CAC01] Communications of the ACM, volume 44:10. ACM, October 2001.
special issue on Aspect-Oriented Programming.

[Can82] H. I. Cannon. Flavors: A non-hierarchical approach to object-
oriented programming. Symbolics, Inc., 1982.

[DMS01] Remi Douence, Olivier Motelet, and Mario Sudholt. Aformal defi-
nition of crosscuts. InProceedings of the Third International Confer-
ence on Metalevel Architectures and Separation of Crosscutting Con-
cerns (Reflection 2001), volume 2192 ofLecture Notes in Computer
Science, pages 170–186, Berlin, Heidelberg, and New York, Septem-
ber 2001. Springer-Verlag.

[FWH01] Daniel P. Friedman, Mitchell Wand, and ChristopherT. Haynes.Es-
sentials of Programming Languages. MIT Press, Cambridge, MA,
second edition, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and JohnVlissides.De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley, Massachusetts, 1995.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming
(A critique of pure objects). In Andreas Paepcke, editor,Proceedings
ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 411–428. ACM Press, October 1993.

[KdR91] Gregor Kiczales and Jim des Rivieres.The art of the metaobject pro-
tocol. MIT Press, Cambridge, MA, USA, 1991.

19

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. InProceed-
ings European Conference on Object-Oriented Programming, volume
2072 ofLecture Notes in Computer Science, pages 327–353, Berlin,
Heidelberg, and New York, 2001. Springer-Verlag.

[KLM +97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg,
and New York, 1997.

[Läm01] Ralf Lämmel. Semantics of Method Call Interception. In Work-
shop Aspekt-Orientierung der GI-Fachgrupppe 2.1.9 Objektorientiere
Software-Entwicklung, 3.- 4. Mai 2001, Universität Paderborn, 2001.
Technical Report tr-ri-01-223 Universität-Gesamthochschule Pader-
born, available atwww.
wi.nl/~ralf.

[Lie96] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, 1996.

[Moo86] D. A. Moon. Object-oriented programming with Flavors. In Norman
Meyrowitz, editor,Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 1–8, New
York, NY, November 1986. ACM Press.

[OT00] Harold Ossher and Peri Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. InProceedings of the 22nd International Con-
ference on Software Engineering, June 4-11, 2000, Limerick, Ireland,
pages 734–737, 2000.

[Smi84] Brian C. Smith. Reflection and semantics in Lisp. InConf. Rec. 11th
ACM Symposium on Principles of Programming Languages, pages
23–35, 1984.

[Ste90] Guy L. Steele.Common Lisp: the Language. Digital Press, Burlington
MA, second edition, 1990.

[WM81] D. Weinreb and D. A. Moon. Flavors: Message passing inthe LISP
machine. A. I. Memo 602, Massachusetts Institute of Technology, A.I.
Lab., Cambridge, Massachusetts, 1981.

20

A Language Comparison

Full AJD contains the following features not in the core language captured by the
semantics of this paper. None represent difficult extensions for the semantics.� classes, methods, and objects.� declared types for bound variables (as illustrated in the examples of sec-

tion 3).� static type checking (anargs pcd includes types for its arguments, as in our
examples; at present these must be checked dynamically).� additional join points at: method calls, method executions, object construc-
tions, field references and field assignments.� The pcd operatorsand andor take an arbitrary number of arguments.

AspectJ provides a sophisticated advice ordering mechanism, where advice is
first ordered from most general to most specific, and within classes with equal
specificity, orders the advice by qualifier (before, after, or around). AJD is
working toward this capability, but the current stable implementation only provides
the qualifier-based ordering, wherearound advice is executed around any relevantbefore andafter advice. In the semantics, advice is ordered by its appearance
in the program text.

The examples of section 3 were in written and executed in fullAJD except for
the following:� the output was edited to improve formatting� in the current implementation, eligiblearound advice is executed in reverse

order from its appearance in the program text. The example infigure 1 was
edited, reversing the order of advice declarations, to be consistent with the
left-to-right semantics of the core language.

21

