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1. INTRODUCTION

A characteristic of aspect-oriented programming, as embodied in AspectJ
[Kiczales et al. 2001], is the use of advice and pointcuts to define behavior that
crosscuts the structure of the rest of the code. The events during execution at
which advice may execute are called join points. A pointcut is a set of join points.
An advice is an action to be taken at the join points in a particular pointcut.
In this model of aspect-oriented programming, join points are dynamic in that
they refer to events during the flow of execution of the program. The process of
causing the relevant advice at each join point to be executed is called weaving.

The condition is specified by a formula called a pointcut designator or pcd. A
typical pcd might look like

(and (pcall f) (pwithin g) (cflow (pcall h))).

This indicates that the piece of advice to which this pcd is attached is to be
executed at every call to procedure f from within the text of procedure g, but
only when that call occurs dynamically within a call to procedure h.

This article presents a model of dynamic join points, pointcut designators,
and advice. It introduces a tractable minilanguage embodying these features
and gives it a denotational semantics.

This is the first semantics for aspect-oriented programming that handles dy-
namic join points and recursive procedures. It is intended as a baseline against
which future correctness results may be measured.

This work is part of the Aspect Sand Box (ASB) project [Dutchyn et al. 2002;
Masuhara and Kiczales 2003]. The goal of ASB is to produce an experimen-
tal workbench for aspect-oriented programming of various flavors. ASB in-
cludes a small base language and is intended to include a set of exemplars
of different approaches to AOP. The work reported here is a model of one of
those exemplars, namely dynamic join points and advice with dynamic weav-
ing. ASB also includes other AOP models, including static join points, Demeter
[Lieberherr 1996], and Hyper/J [Ossher and Tarr 2000], and both interpreter-
like and compiler-like implementation models.

For more motivation for AOP, see Kiczales et al. [1997] or the articles in
Elrad et al. [2001]. For more on AspectJ, see Kiczales et al. [2001].

2. A MODEL

We begin by presenting a conceptual model of aspect-oriented programming
with dynamic join points as found in AspectJ.

In this model, a program consists of a base program and some pieces of advice.
The program is executed by an interpreter. When the interpreter reaches cer-
tain points, called join points, in its execution, it invokes a weaver, passing to it
an abstraction of its internal state (the current join point). Each advice contains
a formula, called a pointcut designator (pcd), describing the join points in which
it is interested, and a body representing the action to take at those points. It is
the job of the weaver to distribute the join points from the interpreter, invoking
each piece of advice that is interested in the current join point and executing
its body with the same interpreter.
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So far, this sounds like an instance of the Observer pattern [Gamma et al.
1995]. But there are several differences:

(1) When a piece of advice is run, its body may be evaluated before, after or
instead of the expression that triggered it; this specification is part of the
advice. In the last case, called an around advice, the advice body may call
the primitive proceed to invoke the running of any other applicable pieces
of advice and the base expression.

(2) The language of predicates is a temporal logic, with temporal operators such
as cflow illustrated above. Hence the current join point may in general be
an abstraction of the control stack.

(3) Each advice body is also interpreted by the same interpreter, so its execution
may give rise to additional events and advice executions.

(4) Last, in the language of this article, as in the current implementation of
AspectJ, the set of advice in each program is a global constant. This is
in contrast with the Observer pattern, in which listeners register and de-
register themselves dynamically.

This is of course a conceptual model and is intended only to motivate the
semantics, not the implementation. However, this analysis highlights the major
design decisions in any such language:

(1) The join-point model: when does the interpreter call the weaver, and what
data does it expose?

(2) The pcd language: what is the language of predicates over join points? How
is data from the join point communicated to the advice?

(3) The advice model: how does advice modify the execution of the program?

In this article, we explore one set of answers to these questions. Section 3
gives a brief description of the language and some examples. Section 4 presents
the semantics. In Section 6 we describe related work, including some of our
current research directions.

3. EXAMPLES

Our base language consists of a set of mutually-recursive first-order procedures
with a call-by-value interpretation. The language is first-order: procedures are
not expressed values. The language includes assignment in the usual call-by-
value fashion: new storage is allocated for every binding of a formal parameter,
and identifiers in expressions are automatically dereferenced.

Figure 1 shows a simple program in this language, using a Scheme-like syn-
tax. We have two pieces of around advice that are triggered by a call to fact.1

At each advice execution, x will be bound to the argument of fact. The program
begins by calling main, which calls fact. The first advice body is triggered. Its
body prints the before1 message and then evaluates the proceed expression,

1As shown in these examples, the executable version of ASB includes types for arguments and
results. The portion of ASB captured by our semantics is untyped.
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Fig. 1. Example of around advice.

which proceeds with the rest of the execution. The execution continues by invok-
ing the second advice, which behaves similarly, printing the before2 message;
its evaluation of the proceed expression executes the actual procedure fact,
which calls fact recursively, which invokes the advice again. Eventually fact
returns 1, which is returned as the value of the proceed expression. As each
proceed expression returns, the remainder of each advice body is evaluated,
printing the various after messages.

Each around advice has complete control of the computation. Further compu-
tation, including any other applicable advice, is undertaken only if the advice
body calls proceed. For example, if the (set! y (proceed x)) in the first advice
were omitted, the output would be just

before1: 3
after1: 3 0
0

The value of x must be passed to the proceed. If the call to proceed in the second
advice were changed to (proceed (− x 1)), then fact would be called with a
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Fig. 2. Binding variables with cflow.

different recursive argument. This design choice is intentional: changing the
argument to proceed is a standard idiom in AspectJ. We explore some of the
consequences of this choice in Section 5 below.

Our language also includes before and after advice, which are evaluated
on entry to and on exit from the join point that triggers them. These forms of
advice do not require an explicit call to proceed and are always executed for
effect, not value.

The language of pointcut designators includes temporal operators as well.
Figure 2 shows an advice that is triggered by a call to fact that occurs within
the dynamic scope of a call to foo. This program prints 720+24 = 744, but only
the last four calls to fact (the ones during the call to foo) cause the advice to
execute. The pointcut argument to cflow binds x to the argument of foo. Our
language of pcd’s includes several temporal operators.

The examples shown here are from the Aspect Sand Box (ASB) [Masuhara
and Kiczales 2003]. ASB consists of a simple language of classes, methods,
and objects, called BASE, and a number of separate languages for doing differ-
ent styles of aspect-oriented programming. The intention is that the same base
language be used with different weavers, representing different models of AOP.
Here we deal with the weaver PA, which is intended to model the pointcuts-
and-advice style of AspectJ. ASB, including BASE and PA, is implemen-
ted using an interpreter written in Scheme in the style of Friedman et al.
[2001].

For the semantics, we have simplified our system still further by replacing the
object-oriented language BASE with a simple first-order procedural language
that we will call PROC, and by modifying the join point model accordingly. While
much has been left out, the language of the semantics still models essential
characteristics of AspectJ, including dynamic join points, pointcut designators,
and before, after, and around advice. The semantics presented here reflects
the design of ASB as of the summer of 2001.
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4. SEMANTICS

We use a monadic semantics, using partial-function semantics whenever possi-
ble. In general, we use lower-case Roman letters to range over sets, and Greek
letters to range over elements of partial orders.

Typical sets:

Sets

v ∈ Val Expressed Values
l ∈ Loc Locations
s ∈ Sto Stores

id ∈ Id Identifiers (program variables)
pname, wname ∈ Pname procedure names

If X is a set, we will write X ∗ to denote the set of all finite sequences of
elements of X ; if x is a typical element of X (as v is a typical element of Val
above), then x∗ will be a typical element of X ∗. If X is a set or a partial order, then
Optional(X ) denotes the set or partial order obtained by adjoining an element
None to X . If X is a partial order, then the partial order on Optional(X ) is
defined by making None incomparable to any element of X .

If X is a partial order, then (X )⊥ will denote the partial order consisting of
X with a new element ⊥ adjoined, with ⊥ ≤ x for any element x ∈ X . When
X is a set, (X )⊥ denotes the partial order obtained in a similar way, taking the
discrete partial order on X (x ≤ y iff x = y).

4.1 Join Points

A join point is an abstraction of the control stack. The portion of the program
state made visible to the advice consists of the following data:

Join points

jp ∈ JP Join Points
jp ::= 〈〉 | 〈k, pname, wname, v∗, jp〉
k ::= pcall | pexecution | aexecution

Join Point Kinds

A join point is either empty or consists of a kind, some data, and a previous
join point. The join point 〈pcall, f , g , v∗, jp〉 represents a call to procedure f
from procedure g , with a tuple of arguments v∗, and with previous join point jp.
We will also use two more classes of join points: pexecution and aexecution join
points represent execution of a procedure or advice body; in these join points the
three data fields contain empty values. The presence of these join points allows
us to use idioms like (not (cflow (axecution))) which suppresses execution
of an advice inside another advice. The wname could be omitted at the expense
of additional complication in the language of pointcut designators.
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b ∈ Bnd = [Id → Val ] Bindings
r ∈ Bnd + {Fail}

b ∨ r = b
Fail ∨ r = r

Fail ∧ r = Fail
b ∧ Fail = Fail

b ∧ b′ = b + b′

¬b = Fail
¬Fail = [ ]

Fig. 3. Algebra of pcd results.

Our standard join-point constructors are new-pcall-jp, new-aexecution-jp,
and new-pexecution-jp, which are defined by:

Join Point Constructors

new-pcall-jp pname wname v∗ = λ jp . 〈pcall, pname, wname, v∗, jp〉
new-pexecution-jp pname = λ jp . 〈pexecution, None, pname, 〈〉, jp〉

new-aexecution-jp = λ jp . 〈aexecution, None, None, 〈〉, jp〉

4.2 Pointcut Designators

A pointcut designator is a formula that specifies the set of join points to which a
piece of advice is applicable. When applied to a join point, a pointcut designator
either succeeds with a set of bindings, or fails.

The grammar of pcd’s is given by:

Pointcut designators

pcd ::= (pcall pname) | (pwithin pname)
| (aexecution) | (pexecution)
| (args id1 . . . idn)
| (and pcd pcd) | (or pcd pcd) | (not pcd)
| (cflow pcd)
| (cflowbelow pcd) | (cflowtop pcd)

The semantics of pcd’s is given by a function match-pcd that takes a pcd and
a join point and produces either a set of bindings (a finite partial map from
identifiers to expressed values) or the singleton Fail.

Before defining match-pcd, we must define the operations on bindings and
pcd results. We write [ ] for the empty set of bindings and + for concatenation
of bindings. The behavior of repeated bindings under + is unspecified. The
operations ∨, ∧, and ¬ on the result of match-pcd are shown in Figure 3.

Note that both ∧ and ∨ are short-cutting, so that ∨ prefers its first argument.
The negation of any set of bindings (empty or not) is Fail, and the negation of
Fail is an empty set of bindings.
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match-pcd(pcall pname) 〈k, pname′, wname, v∗, jp〉
=

{
[ ] if k = pcall ∧ pname = pname′
Fail otherwise

match-pcd(pwithin wname) 〈k, pname, wname′, v∗, jp〉
=

{
[ ] wname = wname′
Fail otherwise

match-pcd(pexecution) 〈k, pname, wname, v∗, jp〉
=

{
[ ] if k = pexecution

Fail otherwise

match-pcd(aexecution) 〈k, pname, wname, v∗, jp〉
=

{
[ ] if k = aexecution

Fail otherwise

match-pcd(args id1 . . . idn) 〈k, pname, wname,
(v1, . . . , vm), jp〉

=
{

[id1 = v1, . . . , idn = vn] if k = pcall and n = m
Fail otherwise

Fig. 4. match-pcd, part 1.

The definition of match-pcd proceeds by structural induction on its first ar-
gument. The pcd’s fall into three groups.

(1) The first group, shown in Figure 4, does pattern matching on the top portion
of the join point: (pcall pname) and (pwithin pname) check the target
and within fields of the join point. (args id1 . . . idn) succeeds if the argu-
ment list in the join point contains exactly n elements, and binds id1, . . . , idn
to those values.

(2) The second group, shown in Figure 5, (and pcd pcd), (or pcd pcd), and
(not pcd), perform Boolean combinations on the results of their argu-
ments, using the functions ∧, ∨, and ¬ defined above.

(3) Last, we have the temporal operators (cflow pcd), (cflowbelow pcd), and
(cflowtop pcd), also shown in Figure 5. The pcd (cflow pcd) finds the
latest (most recent) join point that satisfies pcd. (cflowbelow pcd) is just
like (cflow pcd), but it skips the current join point, beginning its search
at the first preceding join point. (cflowtop pcd) is like (cflow pcd), but
it finds the earliest matching join point. These searches can be thought of
as local loops within the overall structural induction.

4.3 The Execution Monad

We structure our semantics using a monad [Moggi 1991; Wadler 1992]. A monad
consists of a datatype transformer T and two families of operations returnA
and seqAB with types

returnA : A → T (A)
seqAB : T (A) → (A → T (B)) → T (B)
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match-pcd(and pcd1 pcd2) jp = match-pcd pcd1 jp
∧match-pcd pcd2 jp

match-pcd(or pcd1 pcd2) jp = match-pcd pcd1 jp
∨match-pcd pcd2 jp

match-pcd(not pcd) jp = ¬(match-pcd pcd jp)

match-pcd(cflow pcd) 〈〉 = Fail
match-pcd(cflow pcd) 〈k, pname, wname, v∗, jp〉

= match-pcd pcd 〈k, pname, wname, v∗, jp〉
∨ match-pcd(cflow pcd) jp

match-pcd(cflowbelow pcd) 〈〉 = Fail
match-pcd(cflowbelow pcd) 〈k, pname, wname, v∗, jp〉

= match-pcd(cflow pcd) jp

match-pcd(cflowtop pcd) 〈〉 = Fail
match-pcd(cflowtop pcd) 〈k, pname, wname, v∗, jp〉

= match-pcd(cflowtop pcd) jp
∨ match-pcd pcd 〈k, pname, wname, v∗, jp〉

Fig. 5. match-pcd, part 2.

The intention is that if A is a set of values, then T (A) is a model of computations
of that type, possibly including side effects. returnA maps an element a ∈ A into
the “constant computation” that always returns a; seqAB cf is the computation
which, when run, first runs c; if that computation returns the value a, then it
runs the computation (fa).

For example, in the state monad, a computation of type A can be modelled
by an element of Sto → (A × Sto), so we can define

T (A) = Sto → (A × Sto)
returnA = λ s . (a, s)

seq AB = λ c . λ f · λ s . ((λ (a, s′) . ((fa)s′))(cs))

These operations only define the “pure” operations; effects are defined by
additional operators. For example, if the store consisted of a single integer
(so Sto = Int), we might define additional operations

get : T (Int)
= λ s . (s, s)

put : Int → T (Int)
= λ n . λ s . (1, n)

Here get is an integer-valued computation that returns the contents of the
single location in the store and put is an operation that takes an integer n and
returns a computation that takes the store s and returns 1, leaving n in the
store. Thus a computation that increments the store and returns the old value
can be written as:

seq(get, (λn. seq(put(n + 1), λd. return n)).

We will omit the subscripts on return and seq, as we have above, whenever they
are clear from context. The example also illustrates that the most common use of
seq is in the form seq(E1, λ v . E2). For this we use the syntax let v ⇐ E1 in E2,
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where v is bound in E2. Using this notation, the preceding example might be
written as:

let n ⇐ get in let d ⇐ put(n + 1) in return n

let is similar to the Haskell do syntax [Peyton Jones et al. 1999]. We write

let v1 ⇐ c1; . . . ; vn ⇐ cn in E

for the evident nested let. In this notation our example would appear as:

let n ⇐ get; d ⇐ put(n + 1) in return n

let and seq are interdefinable; we will define our advice monad using let.
These operations must obey a number of algebraic laws [Moggi 1991], which

will guarantee, for example, that seq is associative, and that let behaves in
the expected ways. Our monad will obey these laws, and we will not need to be
concerned with the details.

There are standard ways of constructing monads for various effects. For our
language, we introduce a monad:

T (A) = JP → Sto → (A × Sto)⊥

This is a monad with three effects: a dynamically-scoped quantity of type JP,
a store of type Sto, and nontermination. It says that a computation runs given
a join point and a store, and either produces a value and a store, or else fails to
terminate. The monad operations are defined as follows:

Monad operations

return v = λ jp s . (v, s)
let v ⇐ E1 in E2

= λ jp s . case (E1 jp s) of
⊥ ⇒ ⊥
(v, s′) ⇒ ((E2 v) jp s′)

The operation return returns the value, leaving the store unchanged and
forgetting its join point. let v ⇐ E1 in E2 is a computation that, given a join
point jp and a store s, does the following: first, it runs E1 in the current join
point and store. If this computation denotes ⊥ (that is, if it fails or does not
terminate), then the entire computation fails with denotation ⊥. If it returns a
value v and a store s′, then the computation (E2 v) is run using the new store
s′, but the original join point jp. These definitions ensure that JP has dynamic
scope and that Sto is global.

For the store, we will have monadic operations alloc, which allocates a new
location and returns it, deref, which takes a location and returns its value in
the store, and setref, which takes a location and value and updates the location
accordingly.

For join points we will have a single monadic operator setjp. setjp takes
a function f from join points to join points and a map g from join points to
computations. It returns a computation that, given a join point jp and a store
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s, applies f to the current join point, passes the new join point (f jp) to g , and
runs the resulting computation (g (f jp)) on the new join point (f jp) and the
current store s. This is a somewhat convoluted operation, but it turns out to be
well-matched to our application. Translating this into a λ-term, we get:

setjp

setjp : (JP → JP) → (JP → T(A)) → T(A)
= λ f g . λ jp s . (g (f jp)) (f jp) s

Since the codomain of T (A) is the partial order (A × Sto)⊥, each T (A) has an
order defined by:

c ≤ c′ ⇐⇒ (∀ jp s)((c jp s) ≤ (c′ jp s))

and from this order we can define additional domains with the usual pointwise
order:

Domains

χ ∈ T (Val) Computations
π ∈ Proc = Val ∗ → T (Val) Procedures
α ∈ Adv = JP → Proc → Proc Advice
φ ∈ PE = Pname → Proc Procedure Environments
γ ∈ AE = Adv∗ Advice Environments
ρ ∈ Env = [Id → Loc] × WName × Proceed

Environments
WName = Optional(Pname) within Info
Proceed = Optional(Proc) proceed Info

A procedure takes a sequence of arguments and produces a computation.
An advice takes a join point and a procedure, and produces a new procedure
that either is the original procedure wrapped in the advice (if the advice is
applicable at this join point) or else is the original procedure unchanged (if
the advice is inapplicable). Procedures and advice do not require any envi-
ronment arguments because they are always defined globally and are closed
(mutually recursively) in the global procedure- and advice-environments.

The distinguished WName component of the environment will be used
for tracking the name of the procedure (if any) in which the current program
text resides. Similarly, the distinguished Proceed component will be used for
the proceed operation, if it is defined. We write ρ(%within), ρ[%within = . . .],
ρ(%proceed), and ρ[%proceed = . . .] to manipulate these components.

4.4 Expressions

We can now give the semantics of expressions. Figure 6 shows some key
fragments.
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E[[e]] ∈ Env → PE → AE → T (Val)

E[[(pname e1 . . . en)]]ρφγ

= let v1⇐ E[[e1]]ρφγ ; . . . ; vn⇐ E[[en]]ρφγ

in (enter-join-point γ

(new-pcall-jp pname (ρ %within) (v1, . . . , vn))
(φ (pname))
(v1, . . . , vn))

E[[(proceed e1 . . . en)]]ρφγ

= let v1⇐ E[[e1]]ρφγ ; . . . ; vn⇐ E[[en]]ρφγ

in ρ (%proceed) (v1, . . . , vn)

Fig. 6. Semantics of expressions.

In a procedure call, first the arguments are evaluated in the usual call-by-
value monadic way. Then, instead of directly calling the procedure, we use
enter-join-point to create a new join point and enter it, invoking the weaver to
apply any relevant advice. Contrast this with the proceed expression, which is
like a procedure call, except that the special procedure %proceed is called, and
no additional weaving takes place.

4.5 The Weaver and Advice

enter-join-point is the standard entry to a new join point. It takes a list of
advice γ , a join-point transformer f , a procedure π , and a list of arguments
v∗. It produces a computation that builds a new join point using function f ,
and then calls the weaver. The weaver then builds a new procedure, which is
applied to v∗ in the new join point. All this is accomplished using the monadic
operation setjp:

enter-join-point

enter-join-point : AE → (JP → JP) → Proc → Proc
= λ γ fπ. λv∗ . setjp f (λjp′

. (weave γ jp′
π ) v∗)

The weaver takes a list of advice, a join point, and a procedure. It returns
a new procedure that consists of the original procedure wrapped in all of the
advice that is applicable at the join point. To do this, the weaver attempts to
apply each piece of advice in turn. If there is no advice left, then the effective
procedure is just the original procedure π . Otherwise, it calls the first advice in
the list, asking it to wrap its advice (if applicable) around the procedure that
results from weaving the rest of the advice around the original procedure.

The Weaver

weave : AE → JP → Proc → Proc
= λγ jpπ . case γ of

〈〉 ⇒ π

α : : γ ′⇒ α jp (weave γ ′ jp π )
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Thus we have

(weave 〈α1, . . . , αn〉 jp π ) = (α1 jp (α2 jp · · · (αn jp π ) · · ·)).
This brings us to the semantics of advice, shown in Figure 7. A piece of

advice, like an expression, should take a procedure environment and an advice
environment, and its meaning should be a procedure transformer like the α’s
above. Our fundamental model is around advice. If the advice does not apply in
the current join point, then the procedure should be unchanged. If the advice
does apply, then the advice body should be executed with the bindings derived
from the pcd, and with %proceed set to the original procedure (which may be
either the starting procedure or a procedure containing the rest of the woven
advice). However, there are two subtleties: first, the body of the advice is to be
executed in a new aexecution join point, so we use enter-join-point to build the
new join point and invoke the weaver. This is potentially an infinite regress, so
most advice pcd’s will include an explicit pcall conjunct to avoid this problem.
Second, in this case, the inner v∗ is not used; the advice body can retrieve it
using an args pcd.

before and after advice are similar. %proceed is not bound, and we use the
monad operations to perform the sequencing.

The function PCD[[−]] takes four arguments: a pcd, a join point, a function
k from environments to computations (the “success continuation”), and a com-
putation χ (the “failure computation”), and it produces a computation. It calls
match-pcd to match the pcd against the join point. If match-pcd succeeds with a
set of bindings,PCD creates an environment containing a fresh location for each
binding, and invokes the success continuation on this environment, producing
a new computation. Otherwise, it returns the failure computation.

Semantics of pcd’s

PCD[[pcd]] : JP → (Env → T (Val)) → T (Val) → T (Val)
= λ jp k χ . case (match-pcd pcd jp) of

Fail ⇒ χ

[x1 = v1, . . . , xn = vn] ⇒
let l1 ⇐ alloc(v1); . . . ; ln ⇐ alloc(vn)
in k([x1 = l1, . . . , xn = ln])

4.6 Procedures and Programs

Finally, we give the semantics of procedure declarations and whole programs.
The meaning of a procedure declaration in a procedure and advice environment
is a procedure environment containing a single binding. In this binding, the
name of the procedure is bound to a procedure that accepts some arguments and
enters a pexecution join point, weaving any applicable advice from the advice
environment along the way. When the advice is accounted for, the arguments are
stored in new locations, and the procedure body is executed in an environment
in which the formal parameters are bound to the new locations, as is typical in
call-by-value languages.
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A[[((around pcd) e)]]φγ : JP → Proc → Proc
= λ jp π v∗.

PCD[[pcd]]jp
(λρ.enter-join-point γ

new-aexecution-jp
(λv∗. E[[e]](ρ[%within = None,

%proceed = π ])φγ )
〈〉)

(π v∗)

A[[((before pcd) e)]]φγ : JP → Proc → Proc
= λ jp π v∗.

PCD[[pcd]]jp
(λρ.enter-join-point γ

new-aexecution-jp
(λv∗. let

v1⇐ E[[e]](ρ[%within = None,
%proceed = None])φγ ;

v2⇐(π v∗)
in v2)

〈〉)
(π v∗)

A[[((after pcd) e)]]φγ : JP → Proc → Proc
= λ jp π v∗.

PCD[[pcd]]jp
(λρ.enter-join-point γ

new-aexecution-jp
(λv∗. let

v1⇐(π v∗);
v2⇐ E[[e]](ρ[%within = None,

%proceed = None])φγ

in v1)
〈〉)

(π v∗)

Fig. 7. Semantics of advice.

Semantics of procedure declarations

P[[(procedure pname (x1 . . . xn) e)]] : PE → AE → PE
= λ φ γ . [pname =

λv∗ . (enter-join-point γ

(new-pexecution-jp pname)
(λw . let l1 ⇐ alloc(w↓1) ;

...
ln ⇐ alloc(w↓n)

in (E[[e]][x1 = l1, . . . , xn = ln,
%within = pname,
%proceed = None] φ γ ))

v∗)]
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((procedure void main () (fib 19))

(procedure int fib ((int x)) (fib x))

(around

(and

(pcall int fib (int))

(args (int n)))

(if (< n 2) 1

(let (((int n1) (proceed (- n 1)))

((int n2) (proceed (- n 2))))

(+ n1 n2))))))

Fig. 8. Convoluted fibonacci function.

We have formulated the semantics of procedures and advice as being closed
in a given procedure environment and advice environment. A program is a
mutually recursive set of procedures and advice, so its semantics is given by
the fixed point over these functions. We take the fixed point and then apply the
procedure main to no arguments.

Semantics of programs

PGM[[(proc1 . . . procn adv1 . . . advm)]] : T (Val)
= run

(
fix

(
λ(φ, γ ) .

( ∑n
i=1(P[[proci]]φγ ), 〈A[[adv j ]]φγ 〉m

j=1

)))

run(φ, γ ) = E[[(main)]][]φγ

Here the notation 〈· · ·〉m
j=1 denotes a sequence of length m, and the notation∑n

i=1 denotes the concatenation operator on bindings, discussed on page 896.
This completes the semantics of the core language.

5. LESSONS LEARNED

One of the standard claims for formal methods is that they shed light on the
system being studied. We therefore discuss some of what we learned in the
process of formalizing this language.

5.1 Some Pathological Programs

Figure 8 shows an unusual program. To understand this code, consider the call
(fib 19) in main. This call matches the pcd of the advice, so the advice body is
executed with n bound to 19. The advice body then calls proceed on the value
18. This causes the body of fib to be executed with x bound to 18. However, the
body of fib is another call to fib, so the advice is executed again with n bound
to 18. This process continues recursively, and the program correctly calculates
the fibonacci function.

One could transform any recursive procedure similarly, moving the body of
the procedure into the advice. This process may be understood as defining the
procedure as the trivial infinitely-looping procedure, with the advice helping the
procedure by managing the recursion, including terminating when possible.
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((procedure int main () (times 3 5))

(procedure int times ((int x0) (int y0)) (loop x0 0))

(procedure int loop ((int x) (int acc)) (loop x acc))

(around

(and

(pcall int loop (int int))

(args (int x) (int acc))

(cflow (and

(pcall int times (int int))

(args (int x0) (int y0)))))

(if (= 0 x)

acc

(proceed (- x 1) (+ acc y0))))))

Fig. 9. Convoluted multiplication function.

Figure 9 shows a still more convoluted program. This program is a variation
on the standard implementation of multiplication as repeated addition, which
might be written in a conventional imperative language as:

proc (int x0, int y0) {
x = x0; acc = 0;
while x != 0 {
x = x-1;
acc = acc + y0;
};

return acc; }.

The inner loop is realized as the recursive procedure loop, and the body
of the loop is moved into the advice, as before. The new wrinkle here is the
variable y0. Although y0 is not an argument to the inner loop, it is available in
the join point and is bound by the cflow. The cflow effectively allows access to
dynamically-bound variables.

Of course, neither of these programs represents recommended AOP program-
ming style, but they illustrate the power of advice. Only the program in Figure 9
begins to illustrate the power of pointcuts to refer to join points in ways that
crosscut the program structure, which is the more novel and important part of
AOP.

5.2 Arguments to proceed

In our language, proceed takes as its arguments the arguments to the under-
lying procedure. This is a reasonable choice in our language, when advice is
typically wrapped around procedure calls. However, it leads to an intriguing
discontinuity: if there is only one applicable advice at a procedure call, then
proceed is bound to the execution of the underlying procedure body, and the ar-
gument to proceed is passed to the procedure, as in the preceding examples. If,
however, there are two pieces of applicable around advice, then proceed in the
first advice is bound not to the execution of the procedure, but to the execution
of the second advice, as in Figure 1. But the variables of an advice body are
bound by its pointcut descriptor, not from any arguments that the advice might
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be passed. To see this, note in the semantics of advice that the outermost v∗ does
not occur free within the success branch of PCD[[−]]. Hence the argument to the
proceed is ignored. For example, in Figure 1, if the first advice were changed to

(around
. . .

(let (((int y) 0))
. . .

(set! y (proceed 23))
. . .

y))

the program would behave just as it did before.
In addition to this semantic discontinuity, this means that multiple around

advice interacts in a somewhat surprising way: the outermost advice gets to
decide whether or not the procedure (along with any inner advice) gets executed,
but the innermost advice gets to decide what parameters are passed to the
procedure body (discarding any contributions from outer advice). Among other
things, this makes the notion of “precedence” problematical for around advice
in this design.

AspectJ uses a different design for the arguments to proceed. In AspectJ,
the proceed form takes as arguments the values exposed by the around’s point-
cut. This is convenient, since in AspectJ, pointcut designators have explicitly
declared bound variables, for example:

(int i) : call(int Foo.m(int)) && args(i)

whereas the arguments to a pointcut designator in ASB must be reconstructed
from the pcd.

However, not every argument exposed in a pointcut may be meaningfully
changed. For example, in the pointcut

(and
(pcall int fact (int))
(args (int y))
(cflow
(and
(pcall int foo (int))
(args (int x)))))

it is not clear what it might mean to change the value of x, since that refers to
a procedure call that has already taken place.

In response to these issues, the design of ASB has evolved since the 2001
snapshot on which this semantics was based. For example, one version of ASB,
in Spring, 2002, separated the variables of a pcd into those that may be mean-
ingfully changed and those that may not. However, this design does not help
with the problem of passing information to an inner around advice. One could
imagine writing the arguments back into the join point. But then the data in
the join point would no longer be causally connected to the underlying program.
Worse yet, the inner advice was selected for execution based on the original join
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point; with the modified join point, the inner advice might no longer even be
applicable. The version of ASB as of October, 2002 [Dutchyn et al. 2002] has
proceed evaluate its parameters, but the values of the parameters are ignored
entirely. This design precludes the tricks of Figures 8 and 9.

5.3 Type Safety for proceed

Although the language captured by our semantics is untyped, we have consid-
ered some typing issues.

In general, it appears difficult or impossible to deduce a type for the proce-
dure bound to proceed. In our language, we would have to deduce a type for
proceed in the presence of disjunction and negation in the pointcut descriptors.
In AspectJ, this problem is even more difficult because pointcut descriptors may
be abstract.

AspectJ deals with this probem by imputing the return type of a proceed to
be the same as the return type of the advice. This is unsound in general, since
the value returned by the proceed depends on the code under the join point,
not on the code in the advice.

Even if we could assign a sound type to proceed, the architecture of the
system requires that the result type of proceed be invariant, that is, neither
covariant nor contravariant, in the presence of subtyping. To demonstrate this,
imagine we had a program with a procedure f : () -> A and an advice that
we might write in our Scheme-like syntax, but with types, as

(B around
(pcall A f ())
(proceed))

where A is the declared result type of f and B is the declared result type of the
advice. Such an advice, which merely calls the underlying procedure, should be
typable. But if this is to be well-typed, then the value of (proceed) (known to
be of type A), must be of type B. So we must have A < B.

On the other hand, consider the advice

(B around
(pcall A f ())
(new B))

If this advice is to be well-typed, then the value of the advice body (known to
be of type B), must be of type A in order to be substitutable for the original call
to f. So B < A.

This invariance appears to be part of the essential semantics of proceed,
independent of how the arguments are to be treated.

6. RELATED WORK

Aspect-oriented programming is presented in Kiczales et al. [1997], which
shows how several elements of prior work, including reflection [Smith 1984],
metaobject protocols [Kiczales and des Rivieres 1991], subject-oriented pro-
gramming [Harrison and Ossher 1993], adaptive programming [Lieberherr
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1996], and composition filters [Aksit et al. 1994] all enable better control over
modularization of crosscutting concerns. A variety of models of AOP are pre-
sented in Elrad et al. [2001]. AspectJ [Kiczales et al. 2001] is a Java-based
language explicitly driven by the principles of AOP.

Flavors [Weinreb and Moon 1981; Cannon 1982], New Flavors [Moon 1986],
CommonLoops [Bobrow et al. 1986] and CLOS [Steele 1990] all support before,
after, and around methods.

De Meuter [1997] essays an explanation of AOP in terms of monads. He
introduces aspects by modifying the seq function to take additional arguments.
This has the effect of making advice part of the metalanguage rather than of the
language itself. Also it is not clear when such a modified seq function would
satisfy the monad laws. In our system, seq is fixed and satisfies the monad
laws; different join point models can easily be accomodated.

Andrews [2001] presents a semantics for AOP programs based on a CSP
formalism, using CSP synchronization sets as join points. His is an imperative
language with first-order procedures, like ours, but it does not allow procedures
to be recursive. His language includes before, after, and around advice, but
his pcd’s contain neither Boolean nor temporal operators.

Douence et al. [2001] present an event-based theory of AOP. They present
a domain-specific language for defining “crosscuts” analagous to our pointcuts.
Their language is very powerful, but its semantics is given by a rewrit-
ing semantics. Thus the semantics depends on details of the rewriting algo-
rithm. We believe that our definition of match-pcd represents a significant
improvement.

Lämmel [2002] presents static and dynamic operational semantics for a
small OO language with a method-call interception facility. His system allows
dynamic per-object attachment of advice, but does not treat around advice, with
the attendant possibility of never executing the underlying method, nor does
he deal with cflow-like pointcuts.

Masuhara et al. [2002] show how to compile a language like PA(BASE) into
Scheme by partially evaluating the interpreter.

Tucker and Krishnamurthi [2003] present an operational semantics for an
extension of pointcuts and advice to higher-order languages. Walker et al. [2003]
present a core calculus for first-class aspects, which they claim is applicable to
multiple languages, including both higher-order and object-oriented languages.

Masuhara and Kiczales [2003] present several other models of AOP and
weaving in ASB, including static join points, Demeter [Lieberherr 1996], and
Hyper/J [Ossher and Tarr 2000], and present a general model in which such
systems can be described.

Jagadeesan et al. [2003] deal with the correctness of static weaving: that
is, translating a program with aspects into a program in the same language
without aspects. They present an operational semantics for an untyped base
language with classes and objects. They then extend the language with point-
cuts and advice. They give a direct operational semantics for the language with
advice, and a translation from the language with advice to an equivalent lan-
guage without advice, and show that the translation preserves the operational
semantics. However, their translation does not deal with cflow-like pointcuts.
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