
Improving the Detection Accuracy of Evolutionary
Coupling by Measuring Change Correspondence

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—If two or more program entities change together (i.e.,
co-change) frequently (i.e., in many commits) during software
evolution, it is likely that the entities are related and we say
that the entities are showing evolutionary coupling. Association
rules have been used to express evolutionary coupling and two
related measures, support and confidence, have been used to
measure the strength of coupling among the co-changed entities.
However, an association rule relies only on the number of times
the entities have co-changed. It does not analyze whether the
changes are corresponding and whether the entities are really
related. As a result, association rule often reports false positives
and also, ignores important coupling among the infrequently co-
changed entities. Focusing on this issue we propose to calculate
a new measure, change correspondence, blending the idea of
concept location in a code-base to determine whether the changes
to the co-changed entities are corresponding and thus, whether
they are really related. Our preliminary investigation result on
four subject systems written in two programming languages
shows that change correspondence has the potential to accurately
determine whether two entities are related even if they co-
changed infrequently. Thus, we believe that our new measure will
help us improve the detection accuracy of evolutionary coupling.

Keywords-Association Rule; Evolutionary Coupling; Method
Co-change; Concept Location;

I. INTRODUCTION

Detection and analysis of evolutionary coupling is a promis-
ing area in the realm of software engineering research. The
central concept is that if a group (two or more) of program
entities change together (i.e., co-change) frequently (i.e., in
many commits) during software evolution, then it is likely
that the entities (in the group) are related to one another. We
say that the entities exhibit evolutionary coupling. Detection
of evolutionary coupling is important from the perspective
of software maintenance. While changing a particular entity,
E, during maintenance if we already know that E is likely
to be related with some other entities because E has shown
evolutionary coupling with them, then we can analyze whether
the changes in E will have negative effects to the other entities
and whether we need to propagate changes to these entities.

Evolutionary coupling [5] has been investigated a lot by the
existing studies resulting in a number of tools and techniques
that can help us identify the frequently co-changed entity sets.
Association rules [1] have been used to express evolutionary
coupling. If two or more entities have ever co-changed, we can
assume association rule(s) for them. Two related measures -
support and confidence have been widely used to determine
the strength of relationship of the entities in an association
rule. Higher values of these measures indicate higher likeliness

of an underlying relationship among the associated entities.
However, an association rule only emphasizes the number
of times the entities have co-changed. It does not analyze
whether the changes to the two or more co-changed entities
are really corresponding (i.e., changes in one entity required
corresponding changes to the other entities to ensure consis-
tency) and thus, whether entities are really related. As a result,
association rules sometimes report false positives and often
ignore important coupling among the infrequently co-changed
entities because of unpromising support.

Focusing on the above issue we introduce a new mea-
sure, change correspondence, to quantify the identifier corre-
spondence and constant correspondence between the changed
portions (i.e., statements) of the co-changed entities. The
basic idea of measuring change correspondence originates
from another promising research area centered on concept
location in (i.e., information retrieval from) a code-base for
a given query on the basis of semantic similarity between the
query words and the identifiers and/or comments of different
program entities (such as methods, classes) in the code-base.
We plan to quantify the semantic similarity (including exact
similarity) among the identifiers involved in the changed
portions of the co-changed entities. If it is observed that two
or more entities have co-changed and also, the identifiers in-
volved in the changed portions of these entities have semantic
similarity, then the changes to the entities are likely to be
corresponding and we can assume a better likeliness of an
existing relationship among these co-changed entities.

According to our early investigation on four subject systems
written in two programming languages (C and Java), change
correspondence has the potential to improve the detection
accuracy of evolutionary coupling. We observe that many rules
have the lowest support (support = 1) but promising change
correspondence and their constituent methods are related.
We believe that our proposed measure will complement the
existing measures to better detect evolutionary coupling.

The rest of the paper is organized as follows. Section II
describes association rule with the existing measures, Section
III motivates the necessity of change correspondence, Section
IV defines and discusses change correspondence, Section V
demonstrates the experimental steps, Section VI presents our
preliminary experimental results, Section VII discusses related
work, and Section VIII concludes the paper.



II. ASSOCIATION RULE

Association rules have been widely used to represent and
investigate evolutionary coupling among program entities. We
define association rule and two existing related measures -
support and confidence in the following way.

Association Rule. An association rule [1] is an expression
of the form X => Y where X is the antecedent and Y is the
consequent. Each of X and Y is a set of one or more program
entities. The meaning of such a rule in our context is that if
X gets changed in a particular commit operation, Y also has
the tendency of getting changed in that commit operation. We
can determine the confidence of a particular association rule
by determining the support of its constituent parts.

Support and Confidence. Support is the number of commit
operations in which an entity or a group (two or more)
of entities changed together. We consider an example of
two entities E1 and E2. If E1 and E2 have ever changed
together, we can assume two association rules, E1 => E2 and
E2 => E1, from them. Suppose, E1 changed in four commits:
2, 5, 6, and 10. E2 changed in six commits: 4, 6, 7, 8, 10,
and 13. Thus, support(E1) = 4 and support(E2) = 6. However,
support(E1, E2) = 2, because E1 and E2 co-changed in two
commits: 6, and 10. Also, support(E1 => E2) = support(E2
=> E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines the
probability that Y will change in a commit operation provided
that X changed in that commit operation. We determine the
confidence of X => Y in the following way.

confidence(X => Y ) = support(X,Y )/support(X) (1)
Implications of Support and Confidence. While a higher

support value indicates a higher likeliness of an existing rela-
tionship among the co-changed entities, confidence determines
which entity has the higher probability of triggering changes
in the other entity. Let us consider two rules m1 => m2 and
m2 =>m1 consisting of the methods m1 and m2. If m1 =>m2

has a higher confidence than m2 =>m1, then there is a higher
probability that a change in m1 will require a corresponding
change in m2, and also, there is a comparatively lower
probability that a change in m2 will require a corresponding
change in m1. From this we understand that confidence is
important only when the constituent entities are related. It
might be the case that m1 and m2 co-changed several times
but they are not related. In this case, we do not need to form
any rule using m1 and m2.

In this research our goal is to determine whether the
co-changed entities are related. Thus, we do not focus on
confidence. We consider the support measure to be an indicator
of an existing relationship among the co-changed entities. In
the rest of this paper, we present and investigate our proposed
measure change correspondence in comparison with support
to determine whether change correspondence has the potential
to better identify if the co-changed entities are related.

III. MOTIVATION BEHIND CHANGE CORRESPONDENCE

The existing measures regarding association rules only rely
on the number of times a group of entities co-change. It is

widely accepted that if a group of entities has a higher support
(i.e., the entities co-changed in many commits), there is a
higher likelihood that the entities are related. However, if we
only rely on the support and confidence measures, we might
often be confronted with the following two issues.

Possibility of false negatives. In general, if a group of
entities has a lower support value, it might seem that the
entities have a lower probability of being related and thus, the
entity set is not a promising one. However, a lower support
value might have the following implications too.

(1) The entities were recently created (i.e., the entities are
newer compared to the other sets of entities with higher
support). However, they are related and might co-change
frequently during future evolution.

(2) The entities were created a while ago and also, they
are related. However, the requirements corresponding to these
two entities are stable and thus, they have not changed or co-
changed frequently.

Thus, the infrequently co-changed (for example, co-changed
only once and thus, support = 1) entities can also be related.
Support measure does not consider the above two possibil-
ities. By manually analyzing the association rules of our
subject systems we found many rules with support = 1 but
the constituent entities are related. So, if we rely only on
higher support values, we might ignore important coupling
relationships among the infrequently co-changed entity sets.

Possibility of false positives. It is also possible that a
group of entities co-changed in a number of commits but
they are not related. Such a situation is likely to occur if
there are atypical commits during system evolution. According
to the literature [7], in atypical commits unrelated entities
change together. Atypical commits can occur because of major
structural changes to the software systems.

The possibilities of false positives and false negatives
mentioned above could be minimized if we could have a
mechanism of automatically inspecting the changes to the co-
changed entities and determining whether the changes are re-
lated (i.e., corresponding). From this perspective, we introduce
a new measure Change Correspondence with an expectation
of automatically determining whether the changes to the co-
changed entities are related. To the best of our knowledge, our
approach is the first one considering automatic code inspection
to improve the detection accuracy of evolutionary coupling.

IV. CHANGE CORRESPONDENCE

For one change in a particular method, there can be corre-
sponding changes to several other methods in the same commit
operation. However, which type of change in one method will
require which other types of changes in other methods has not
yet been studied properly. According to our observation, a very
small change in one method can sometimes require a compar-
atively larger change in another method. Changes (in a code-
base) in most cases are dependent on the objective (derived
from a client request) and context. Automatic identification
of change correspondence still remains a challenge. However,



we plan to blend the idea of concept location with association
rule mining technique in order to address this challenge.

A. Identifier correspondence
Identifiers are the names given to different program enti-

ties such as variables, methods, classes, packages, interfaces,
structures, unions, etc. Our idea of incorporating identifier
correspondence measure is described below.

The underlying idea. Concept location in a code-base [2],
[9] using semantically similar words is a promising research
area which has been explored much resulting in a great many
studies, techniques and tools. The basic idea is that for a given
query (consisting of one or more words) we identify program
entities (e.g., methods) containing the same or semantically
similar words (in terms of identifiers and comments). The
program entities obtained as the query result are likely to
implement the underlying concept of the query and thus,
are expected to be related. Our plan of measuring identifier
correspondence is based on this central concept which we can
incorporate in our context in the following way.

We consider two methods m1 and m2 which have co-
changed in a particular commit. The list of identifiers involved
in the added, deleted or modified lines of m1 is list1. Similarly,
the list regarding m2 is list2. We determine whether some of
the identifiers in list1 are the same or semantically similar to
some of the identifiers in list2. If such similarity is observed,
we can assume a better likeliness of an existing relationship
among the co-changed methods m1 and m2. Thus, we believe
that concept location techniques can be used to improve the
detection accuracy of evolutionary coupling.

Calculation of Identifier Correspondence. Let us con-
sider an association rule consisting of two methods m1 and
m2 that co-changed in a number of commits during the whole
period of evolution of a software system. Suppose, C is the set
of these commits. For each commit, we determine the identifier
correspondence between the modified (i.e., added, deleted, or
changed) lines (i.e., statements) of these two methods. Let
us consider a particular commit, cεC. We determine the list
of identifiers involved in the modified lines of m1 in this
commit (c). We denote this list by Lm1,c. The corresponding
list considering m2 is Lm2,c. We calculate the identifier
correspondence of m1 and m2 for commit c using Eq. 2.

IDCorrm1,m2,c = (
∣LSm1,m2,c∣
∣Lm1,c∣

+ ∣LSm2,m1,c∣
∣Lm2,c∣

) × 1

2
(2)

Here, IDCorrm1m2c is the identifier correspondence be-
tween the modified lines of m1 and m2 considering commit c.
LSm1,m2,c is the list of identifiers from Lm1,c that are seman-
tically similar to some identifiers in Lm2,c. In the same way,
LSm2,m1,c is the corresponding list of identifiers from Lm2,c.
Finally, we determine the overall identifier correspondence
considering each of the commits in the set C (i.e., considering
the whole period of evolution) in the following way.

OverallIDCorrm1,m2 =
∑cεC IDCorrm1,m2,c

∣C ∣ (3)

Justification of the Equations. Observing Eq. 2 and Eq.
3, we can easily determine that the highest value of overall

identifier correspondence regarding two co-changed methods
is 1 and the lowest possible value is 0. Eq. 2 demonstrates that
for a particular commit c, the identifier correspondence of two
co-changed methods m1 and m2 can be 1 if for each of the
identifiers in one list (Lm1,c or Lm2,c) we get a semantically
similar (also includes exact similarity) identifier in the other
list. In such a situation, we can have a higher expectation
that the changes to the two methods are corresponding and
also, the methods are related. However, if we cannot infer
any semantic similarity at all, then it is very unlikely that
the changes are corresponding and thus, the methods are not
likely to be related. Identifier correspondence is zero in this
situation. Finally, we believe that our equations for calculating
identifier correspondence are reasonable and these equations
essentially reflect our intention.

In this preliminary investigation, we consider only the com-
mon identifiers involved in the modified lines of both methods.
In this case, LSm1,m2,c = LSm2,m1,c = Lm1,c ∩Lm2,c.

B. Constant Correspondence

We also plan to determine Constant Correspondence by
measuring the extent the modified lines of the co-changed
methods involve the same constant(s). However, we did not
consider constant correspondence in this preliminary study.

V. EXPERIMENTAL STEPS

In this section we describe the experimental steps involved
in extraction of method association rules from software evo-
lution history and calculation of identifier correspondence for
each rule. Before extracting association rules we perform some
preliminary steps discussed briefly in the following paragraph.

For a particular subject system, we at first extract all of
its revisions (as mentioned in Table I) from an open-source
SVN repository. Then we detect and store methods from
each of the revisions applying CTAGS. We detect method
genealogies considering all the revisions following a procedure
proposed by Lozano and Wermelinger [7]. Genealogy of a
particular method helps us to inspect the evolution of the
method. After genealogy detection, we detect changes between
every two consecutive revisions and map these changes to the
already detected methods. As we have already detected method
genealogies, after mapping the changes to the methods we
can easily determine how a particular method changed during
software evolution. For the details of these preliminary steps
we refer the interested readers to our earlier work [8].

Extraction of Method Association Rules. After complet-
ing the preliminary steps, we extract method association rules
considering every possible method pair.

Method pair. If two methods m1 and m2 co-changed (i.e.,
changed together) in at least one commit during evolution, we
form a pair (m1, m2) consisting of these two methods.

According to the above definition, if n methods co-changed
in a particular commit operation, we construct (n

2
) method

pairs (i.e., every possible pair) from these. If n = 4, count of
method pairs = 6. From a method pair (m1, m2) we determine
two association rules, m1 =>m2 and m2 =>m1. The supports



Fig. 1. Calculation of identifier correspondence for method m1 and m2 for the commit operation applied on revision r

of these two association rules are the same, however, their
confidences can be different. We determine all method pairs
as well as method association rules from each of our candidate
subject systems. We determine identifier correspondence for a
particular method pair in the following way.

Calculation of Identifier Correspondence. We consider
a method pair (m1, m2). We at first determine the list of
commits where they co-changed. We consider a particular
commit c in this list. Suppose, the commit c was applied on
revision r. Fig. 1 shows the sequential steps for calculating
identifier correspondence of method pair (m1, m2) for the
commit applied on revision r.

As shown in the figure (cf., Fig. 1), for each of the methods
(m1 and m2), we collect two snapshots - (1) the snapshot in
revision r and (2) the snapshot in revision r + 1. Revision
r + 1 was created because of the commit c on revision r.
Suppose, the snapshots of m1 and m2 in revision r are Sm1,r

and Sm2,r respectively. In the same way, the snapshots of these
methods in revision r + 1 are Sm1,r+1 and Sm2,r+1. For each
of the methods, we determine the diff of the corresponding
snapshots as indicated in Fig. 1. diff gives us output in terms
of addition (addition of lines in the new snapshot), deletion
(deletion of lines from the previous snapshot), and change
(change of one or more lines in the previous snapshot and the
corresponding changed lines in the new snapshot). Analyzing
the diff -output regarding a particular method (m1 or m2) we
extract the followings.

● The lines deleted from the snapshot in revision r
● The lines added to the snapshot in revision r + 1
● The lines in the snapshot in revision r that were changed
● The changed lines in the snapshot in revision r + 1

We refer these four types of lines as modified lines as a
whole. For each method we determine the modified lines.
We apply a lexical analyzer (CCFinderX 1 ) on these modified
lines to determine the identifiers involved in these lines.
Suppose the list of unique identifiers (i.e., each identifier is
considered only once in the list) regarding the modified lines
in m1 is list1 and the list of unique identifiers regarding
m2 is list2. From these two lists we determine the common
identifiers. Then, according to the equation Eq. 2, we deter-
mine the identifier correspondence for method pair (m1, m2)
regarding commit operation c. By determining the identifier

1CCFinderX: http://www.ccfinder.net/ccfinderx.html

TABLE I
SUBJECT SYSTEMS

Systems Lang. Domains LOC Revisions
Ctags C Code Def. Generator 33,270 774
QMailAdmin C Mail Management 4,054 317
jEdit Java Text Editor 1,91,804 4000
Plandora Java Project Management 94,076 73

TABLE II
STATISTICS REGARDING THE RULES WITH THE LOWEST SUPPORT

Ctags QMail jEdit Plandora
Admin

No. of Rules (all rules in the system) 3660 1331 229140 12587
% of Rules that are LSR 89% 49.6% 97% 97.2%
% of LSR that have IDCorr > 0 28% 41.3% 13.9% 48%
% of LSR that are Target Rules 21% 9.3% 13% 35%
% of Target Rules that are True Pos-
itives

98% 94% 90% 92%

IDCorr = Identifier Correspondence
LSR = Lowest-Support Rules (i.e., The rules with support = 1)

correspondence of the methods m1 and m2 for each of the
commits where they co-changed, we determine the overall
identifier correspondence using Eq. 3.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We conducted our preliminary investigation on four subject
systems listed in Table I. We investigated what proportion of
the unpromising (because of lower support) rules have promis-
ing identifier correspondence and their constituent methods are
related. In this preliminary study, we consider the rules with
the lowest support value (i.e., support = 1) as the unpromising
rules because, the constituent methods in such a rule has the
lowest likeliness of being related according to the implication
of support measure (Section II). From these rules (with support
= 1), we automatically identify our target rules.

Taget Rule. A target rule is a rule with the lowest support
(support = 1) but a higher identifier correspondence. We
consider an identifier correspondence of at least 0.5 as a
promising one in this preliminary experiment.

We manually analyze 50 target rules from each of the
candidate systems to determine whether they are true positives.

True Positive. We consider a target rule as a true positive,
if according to our manual analysis, the changes to the
constituent methods are corresponding and also, the methods
are related.

In Table II, we present statistics regarding the lowest-
support rules (support = 1), target rules, and true positives. We



see that for most of the subject systems (except QMailAdmin),
almost 90% of the total rules have the lowest support. If we
ignore all of these rules because of their unpromising support
value, we have the possibility of missing important coupling
relationship among the constituent methods of these rules.
However, in case of each of the subject systems we see that for
a considerable amount of these lowest-support rules, identifier
correspondence > 0. We also show the percentages of the
lowest support rules that are our target rules. Promisingly,
most of the target rules (at least 90%) that we manually
analyzed are true positives in case of each of the candidate
systems. Thus, according to our investigation, these rules
(i.e., true positives) with promising identifier correspondence
should not be ignored although they have unpromising support
and rather, should be considered as promising ones. We can
extract important coupling relationship from the constituent
methods of each of these rules. As an example of a true
positive, we can mention a rule (with identifier correspon-
dence = 0.6) consisting of two methods - (1) adduser (file:
user.c) and (2) onevalidonly (file: alias.c) from our candidate
system QMailAdmin. These methods co-changed in only one
commit applied on revision 143. However, the changes to these
methods are corresponding and, the methods are related.

During manual analysis we found that in case of a number
of rules (with lowest support) only parts of the identifiers are
similar. For some rules (in Ctags), some constants involved
in the modified lines of the two methods were common.
According to our analysis these rules seemed to be promising
and the constituent methods seemed to be related. However, as
we considered only exact similarity of identifiers and did not
consider constant correspondence, these rules had an identifier
correspondence of zero. However, according to our analysis in
this preliminary investigation we plan to do the followings in
order to extend our research work.

(1) Identifier splitting and extracting semantic similarity
between identifier-parts involving state of the art tools and
techniques being used in concept location in code-base.

(2) Incorporation of constant correspondence.
(3) Rigorous analysis regarding the capability of our pro-

posed measure change correspondence in detecting corre-
sponding changes as well as in improving the precision and
recall in detecting evolutionary coupling incorporating large
subject systems of different programming languages.

(4) Investigation on whether change correspondence can
also be used in predicting future co-change candidates con-
sidering method level granularity.

We believe that if properly implemented, change corre-
spondence can help us improve the detection accuracy of
evolutionary coupling.

VII. RELATED WORK

Association rules were introduced by Agarwal et al. [1] and
have been frequently used to find associated or co-changing
program artifacts (also known as frequent itemsets). Gall et
al. [5] introduced an approach for discovering logical depen-
dencies analyzing the evolutionary coupling (or co-changing)

of different program modules. Zimmermann et al. [11] used
association rules with support, and confidence to represent
the co-change relationships among different program artifacts.
Jafar et al. [6] performed a comprehensive study on macro co-
changes considering file level granularity and introduced the
patterns, macro co-changes and diphase macro co-changes,
that can help in retrieving file level coupling.

The existing studies related to association rules mainly
depended on the support measure to assume the likeliness of
an existing relationship among the entities in a rule. None of
these studies proposed an automatic code inspection approach
to improve the accuracy in determining whether the co-
changed entities are in fact related. We propose a new measure
Change Correspondence that involves automatic inspection
of the modified lines of the co-changed entities with an
expectation to improve the detection accuracy of evolutionary
coupling. Moreover, we conduct our study considering a finer
granularity, at the method level, while most of the existing
studies were conducted at the file level.

VIII. CONCLUSION

In this paper, we propose a new measure Change Corre-
spondence with an aim to improve the detection accuracy of
evolutionary coupling. Calculation of this measure involves
automatic inspection of the modified source code lines of
the co-changed methods to infer whether the changes are
corresponding on the basis of the semantic similarity of
the identifiers involved in the modified lines. Our idea of
determining identifier similarity originates from the promising
research area centered around concept location in a code-
base. From our preliminary investigation result on four subject
systems written in two programming languages (C, and Java)
we believe that our proposed measure change correspondence,
in association with the existing ones, has the potential to
improve the detection accuracy of evolutionary coupling.

REFERENCES

[1] R. Agrawal, T. Imieliski, A. Swami, “Mining association rules between
sets of items in large databases”, Proc. ACM SIGMOD, 1993, Vol. 22,
Issue 2, pp. 207–216.

[2] B. Cleary , C. Exton, “Assisting Concept Location in Software Compre-
hension”, PPIG, 2007, pp. 42 – 55.

[3] M. D’Ambros, M. Lanza, M. Lungu, “Visualizing co-change information
with the evolution radar”, TSE, 2009, vol. 35, no. 5, pp. 720–735.

[4] D. Beyer, A. E. Hassan, “Animated visualization of software history using
evolution storyboards”, Proc. WCRE, 2006, pp. 199–210.

[5] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history”, Proc. ICSM, 1998, pp. 190–199.

[6] F. Jaafar, Y. Gueheneuc, S. Hamel, G. Antoniol, “An Exploratory Study
of Macro Co-changes”, Proc. WCRE, 2011, pp. 32–334.

[7] A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227–236.

[8] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed
Method Groups: A Case Study on Open Source Systems”, Proc. CAS-
CON, 2012, pp. 205 – 219.

[9] G. Sridhara, E. Hill, L. Pollock, K. Vijay-Shanker, “Identifying Word
Relations in Software: A Comparative Study of Semantic Similarity
Tools”, Proc. ICPC, 2008, pp. 123 – 132.

[10] A. Vanya, R. Premraj, and H. v. Vliet, “Interactive Exploration of Co-
evolving Software Entities”, Proc. CSMR, 2010, pp. 260 – 263.

[11] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining version
histories to guide software changes”, Proc. ICSE, 2004, pp. 563–572.


