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Abstract—Many clone detection tools and techniques have
been introduced in the literature, and these tools have been
used to manage clones and study their effects on software
maintenance and evolution. However, the performance of these
modern tools is not well known, especially recall. In this paper,
we evaluate and compare the recall of eleven modern clone
detection tools using four benchmark frameworks, including: (1)
Bellon’s Framework, (2) our modification to Bellon’s Framework
to improve the accuracy of its clone matching metrics, (3)
Murakamki et al.’s extension of Bellon’s Framework which adds
type 3 gap awareness to the framework, and (4) our Mutation and
Injection Framework. Bellon’s Framework uses a curated corpus
of manually validated clones detected by tools contemporary
to 2002. In contrast, our Mutation and Injection Framework
synthesizes a corpus of artificial clones using a cloning taxon-
omy produced in 2009. While still very popular in the clone
community, there is some concern that Bellon’s corpus may not
be accurate for modern clone detection tools. We investigate the
accuracy of the frameworks by (1) checking for anomalies in their
results, (2) checking for agreement between the frameworks, and
(3) checking for agreement with our expectations of these tools.
Our expectations are researched and flexible. While expectations
may contain inaccuracies, they are valuable for identifying
possible inaccuracies in a benchmark. We find anomalies in the
results of Bellon’s Framework, and disagreement with both our
expectations and the Mutation Framework. We conclude that
Bellon’s Framework may not be accurate for modern tools, and
that an update of its corpus with clones detected by the modern
tools is warranted. The results of the Mutation Framework agree
with our expectations in most cases. We suggest that it is a good
solution for evaluating modern tools.

I. INTRODUCTION

Clone detection tools locate similar source code within a
software system. By detecting and managing the clones in
their software, developers can improve and maintain software
quality, reduce development risks, prevent and detect bugs, and
more [1]. The importance of clone detection is reflected by the
number of tools published in the literature, and the frequency
of new publications. A 2013 survey by Rattan et al. [2] found
the existence of at least 70 tools, a 75% increase from the
40 tools found by Roy et al.’s [3] survey in 2009. Despite
the large number of tools, there has been little evaluation and
comparison of their performances.

Clone detection tools are commonly evaluated using the
information retrieval metrics of recall and precision. While
time consuming, precision is easily measured by validating
a random sample of a tool’s output. This is something that
tool developers do, at least informally, while testing their
tool. Recall has been much more difficult for developers to
measure as it requires knowledge of the clones that exist in
a software system. Reference data of true positive clones in
a system may be built by (1) manually inspecting the system
for clones, (2) manually validating the detection output of a
variety of tools, or (3) inserting known clones into the system.

Complete data is only possible by manual inspection, but this
is non-trivial except for toy systems. Even a small system
such as Cook, when considering only function clones, has
almost a million function pairs to examine [4]. The other
options are also difficult and time consuming, which is why
tool developers usually do not report recall. While a small
number of benchmarking frameworks have been published [5],
[6], there has been a lack of recent tool evaluation studies that
evaluate more than a few tools. Therefore, in this paper, we
evaluate the recall of eleven modern clone detection tools
using Bellon’s Framework and our Mutation and Injection
Framework.

Bellon’s Framework [5] was created for an experiment that
compared the performance of six tools contemporary to 2002.
It uses a corpus of curated clones mined from 2% of the
output of the participating tools. Murakami et al. [7] extended
Bellon’s Framework to improve the correctness of its type
3 recall measurement by making the framework gap aware.
They manually identified the gap lines in Bellon’s type 3
clone references, and modified the framework’s clone matching
metrics to ignore these gap lines. As part of this research, we
propose a modification to Bellon’s ok clone matching metric
that improves its accuracy and corrects a fault.

Our Mutation and Injection Framework [6] evaluates clone
detection tools using a corpus of artificially synthesized copy
and paste clones. The clone generation process uses clone
taxonomy based on a literature survey and validated by em-
pirical evidence [3]. This ensures that the generated clones
are both realistic and comprehensive. The framework is fully
automated, so tools can be evaluated against a very large
corpus without any manual effort required.

The contributions of this research are as follows. We
execute and compare three versions of Bellon’s framework,
including: (1) Bellon’s original version, (2) Murakami et
al.’s [7] gap aware extension of the framework, and (3) our
modification of the ok clone matching metric. We also evaluate
the tools’ recall using our Mutation Framework. Of concern
is the accuracy of Bellon’s Framework, as its reference data
is based on clones detected by tools over a decade old
(2002). These clones may not be compatible with modern
clone detection preferences such as scope, granularity, or what
constitutes a true positive clone. We evaluate our confidence
in both benchmarks by (1) checking for anomalies in their
results, (2) checking for agreement between the frameworks,
and (3) checking for agreement with our expectations. We
also compare our results with Bellon’s Framework against
those of Bellon et al.’s [5] experiment. Our expectations of the
tools’ recall are flexible and researched, including contact with
some of the tool developers. While expectations may contain
inaccuracies, they define our confidence in a benchmark’s
results. By comparing our expectations with two benchmarks,
we can get a good idea of the tools’ capabilities.



We found that the Mutation Framework measures high
recall for many of the tools. Particularly, it suggests that
ConQat, iClones, NiCad and SimCad are very good tools
for detecting clones of all types. Many of the other tools
also perform well. Clone detection users and researchers can
consider these results, along with the features of the tools, to
decide which tool is right for their use case. We find strong
agreement between the Mutation Framework and our expecta-
tions, and suggest it is a good solution for measuring the recall
of modern tools. Bellon’s Framework frequently disagrees
with our expectations and the Mutation Framework, often
measuring considerably lower recall. We found anomalies in its
results, including when we compare it against Bellon’s original
experiment. Our findings suggest that Bellon’s Framework may
not be accurate for modern tools, and that an updated corpus
built by modern tools is warranted.

II. DEFINITIONS

Code Fragment: A contiguous segment of code from a
software system. It is specified by a triple including the source
file, start line and end line (inclusive).

Clone: A pair of code fragments that are considered similar
by some definition of similarity.

Type 1: Code fragments that are syntactically identical,
except for differences in white space, layout and comments.

Type 2: Code fragments that are syntactically identical,
except for differences in identifier names, literal values, white
space, layout and comments.

Type 3: Code fragments that are syntactically similar with
differences at the statement level. The fragments may differ
by the addition, removal or modification of statements.

Recall: The ratio of the clones within a software system
that a tool is able to detect.

Precision: The ratio of the clones detected by a tool that
are true clones and not false positives.

III. BELLON’S FRAMEWORK

Bellon’s Framework is a product of Bellon et al.’s [5] clone
benchmarking experiment, which measured the recall of six
contemporary (2002) tools for four C and four Java systems.
The framework uses a benchmarking corpus of real clones
built by Bellon’s manual verification (“oracling”) of 2% of the
325,935 candidate clones detected by the tools. We use three
variants of this framework including the original, Murakami et
al.’s [7] gap-aware extension, and our version with an modified
ok clone matching metric.

Bellon typified and added to the corpus only the true
positives clones, as per his judgment, possibly with improve-
ments to the clones’ boundaries. This process was not formally
specified, but from the experiment’s publication [5], and from
Baker’s analysis of the experiment [8], we see that Bellon
followed a number of rules: (1) minimum clone size of six
lines including comments, (2) clone fragments may not start
or end with comments, (3) clones must be replaceable by a
function, (4) clones must be of the first three clone types, as
defined in Section II, although Bellon additionally allowed type
2 clones to contain differences in expressions, (5) boundaries
of accepted clones were expanded to the maximal size for their
clone type, (6) clones capturing repetitive regions were left in
the reporting style of the reporting tool. Due to disagreement

over type 3 similarity requirements, no formal specification
was used, and was instead left to Bellon’s judgement.

Bellon’s Framework automatically measures recall by map-
ping each of the clones detected by a tool (candidates) to
one of the clones in the corpus (references). The mapping
is produced using two clone matching metrics, the ok and
good values, which measure how well two clones match
with a value between 0.0 (total mismatch) and 1.0 (exact
match). The framework maps each candidate to the reference
that maximizes its ok and good values, with good taking
precedence as the stricter metric. A candidate is considered
an ok match of the reference it is mapped to if its ok value
exceeds some given threshold p, similarly for good match. The
framework reports ok recall and good recall as the ratio of the
references that the tool captures by the ok and good matches,
respectively.

The ok metric is shown in Eq. 1, and measures how well
clone candidate C matches reference R. F1 and F2 are a
clone’s first and second code fragments, ordered by file name,
start line, and then end line. The ok metric is based on the
contain metric, Eq 2, which measures the ratio of FA that is
contained by FB . For example, if both fragments are in the
same file, and FA includes lines 3 through 12 (inclusive) and
FB includes lines 7 through 14, then contain = 6

10 . The ok
metric is the minimum containment of F1 and F2. It measures
this for the optimal containment direction (C contains R, or
R contains C) per fragment.

ok(C,R) = min(max(contain(C.F1, R.F1),

contain(R.F1, C.F1)),

max(contain(C.F2, R.F2),

contain(R.F2, C.F2))) (1)

contain(FA, FB) =
|FA ∩ FB |
|FA|

(2)

The good metric is measured as in Eq. 3. It is based on the
overlap metric, Eq 4, which measures the ratio of the unique
source lines in FA and FB that are in both fragments. For
example, if both fragments are in the same file, FA includes
lines 1 through 10 (inclusive), and FB includes lines 5 through
15 (inclusive), then overlap = 6

15 . The good metric is the
minimum overlap of the candidate’s and reference’s first and
second fragments.

good(C,R) = min(overlap(C.F1, R.F1),

overlap(C.F2, R.F2)) (3)

overlap(FA, FB) =
|FA ∩ FB |
|FA ∪ FB |

(4)

Gap Aware Version. Murakami et al. [7] suggest that type
3 recall can be measured more correctly by ignoring the gap
lines in the type 3 references when evaluating the ok and good
metrics. A tool is then evaluated for how well it matches only
the cloned lines in a type 3 reference. To enable this, they
manually inspected Bellon’s type 3 references and identified
their gap lines. The ok and good metrics are then modified to
discard the reference’s gap lines. Specifically, C.F1 is replaced
with C.F1−G1, R.F2 by R.F2−G2, and similarly for R.F1

and C.F2 where G1 and G2 are the gap lines in the reference’s
first and second code fragments.

Our Better-OK Version. The ok match requires that either
the candidate’s or the reference’s code fragments contain some



minimum ratio of the other, using the containment direction
per fragment that maximizes this ratio. The critical flaw in the
ok metric is that it accepts either containment direction. For
benchmarking, we should only be interested in if the candidate
contains some minimum ratio of a reference. Candidates that
are contained by a reference may be a very poor detection of
that reference. For example, consider a 30 line (per fragment)
reference clone, and a 6 line candidate whose fragments are
fully contained by the reference. This candidate has an ok
metric of 1.0 for the reference, or a perfect ok match. The same
is true even if the reference is 100 lines. Obviously this is a
very poor match of the reference, and should not be accepted.
We modify Bellon’s ok metric to only consider the ratio of
the reference contained by the candidate, as shown in Eq. 5.
We call this the better ok metric or b-ok for short. To evaluate
b-ok recall, we replace Bellon’s ok metric, but do not modify
the good metric or the clone mapping procedure.
b-ok(C,R) = min(contain(R.F1, C.F1)), contain(R.F2, C.F2)))

(5)

IV. MUTATION & INJECTION FRAMEWORK

Our Mutation and Injection Framework is an automated
synthetic benchmark for evaluating clone detection tools. It
generates a customizable corpus of artificial clones using
a mutation analysis procedure. Mutation analysis is a well
studied and accepted way of evaluating software tests, and we
use similar methodologies to evaluate clone detection tools.
Clone generation begins by extracting a code fragment from
a repository of varied source code. The code fragment is
duplicated and randomly modified by a mutation operator,
which introduces a random edit following a clone taxonomy.
The framework includes 15 operators spanning the 3 clone
types, and is based on Roy and Cordy’s [3] comprehensive and
empirically validated taxonomy of the types of edits developers
make on copy and pasted code. The original and mutated code
fragments are injected into a unique copy of a subject system,
evolving the system by a single copy, paste and modify clone.
Per mutation analysis, this is repeated thousands of times to
build a large corpus of mutant systems.

The subject tools are executed for these mutant systems,
and their recall is measured specifically for the injected clones.
Recall is judged by a flexible subsume-based clone matching
algorithm that is parameterized by a subsume tolerance and a
clone similarity threshold. The subsume tolerance considers a
candidate to subsume a reference even if the candidate misses
the first and/or last x% of the reference clone. The clone
similarity threshold checks that the clone candidate is itself a
true positive. Additional details about the framework, including
a list of its mutation operators, can be found in our previous
publications [6], [9].

V. EXPERIMENT

Bellon’s Framework. We executed the tools for the frame-
work’s subject systems, and imported their results into the
framework. We executed the framework’s mapping and recall
evaluation procedures using a clone matching threshold of
0.70. This is the value used in Bellon et al.’s [5] original
experiment. The experiment was executed three times using
Bellon’s original clone matching metrics, Murakami’s gap line
metrics, and our ’b-ok’ metric.

Mutation and Injection Framework. We evaluated the
tools using two generated corpora, one Java and one C, of
block granularity clones. For clone synthesis, we extracted
code blocks from JDK6 and Apache Commons (Java), and
the Linux Kernel (C). We injected the clones into IPScanner
(Java) and Monit (C). For each corpus, we set the framework to
randomly extract 250 code fragments, and mutate each using
the 15 mutation operators, for a total of 3,750 clones. For
each clone, 10 mutant systems were created using random
injection locations, for a total of 37,500 unique mutant systems
per corpus. We constrained the corpora to the following
clone properties: (1) 15-200 lines in length per fragment,
(2) 100-2000 tokens in length per fragment, (3) minimum
70% similarity measured by token and by line after type 1
and 2 normalization using a diff-based algorithm, and (4)
mutations do not occur within the first and last 15% of a
fragment (mutation containment). We selected the properties
as the average default clone size and similarity defaults of
the modern tools, which we believe estimates modern clone
preferences. Typically, clone detection tools are slower for
smaller minimum clone sizes. We needed to use a larger clone
size than Bellon’s to make execution of the tools for 37,500
systems practical.

For the tool evaluation, we used a subsume tolerance of
15%, and a minimum clone similarity of 60%. By setting
the subsume tolerance to the same value as the mutation
containment, we guarantee that any candidate clone accepted
as a match of a reference has captured all clone type specific
differences (mutations) in the reference clone. For comparison
against the Bellon’s Framework results, we summarized recall
per language and per clone type by averaging the per mutation
operator results. Due to limited space, we do not report recall
per mutation operator in this paper. We do not execute Deckard
for our Java corpus as it does not support the needed language
specification (Java 1.6).

VI. THE PARTICIPANTS

Eleven modern clone detection tools are investigated in this
experiment. We used release date to judge the modernness
of the tools. The oldest release of these tools was in 2006,
while Bellon et al.’s [5] experiment was conducted in 2002.
The participating tools are listed in Table I. Ideally, we would
have included the tools of Bellon’s original experiment as par-
ticipants of our Mutation Framework benchmark to compare
the results against Bellon et al.’s original experiment. However,
Bellon’s publications [5] [10] do not list the versions of the six
participants, nor their configurations. Most of these tools are no
longer available, or the available versions are now significantly
updated (i.e., modern tools).

Configuration. Our goal is to benchmark the performance
of these tools from a user perspective. We want the results
to represent what an experienced user would receive for their
own systems. An experienced user has explored a tool’s docu-
mentation and is comfortable modifying the default settings as
required for their use case. To emulate this user, we configured
the tools by considering: (1) the tool’s default settings, (2) the
tool’s documentation, and (3) the properties of the benchmark,
including minimum clone size and clone types. For settings
that are not well documented, we experimented with the tool
to find an appropriate value. We avoided over-configuring or



TABLE I: Participating Tools

Tool Language
†Expected

Configuration for Bellon’s Corpus Configuration for Mutation FrameworkRecall (Type)
1 2 3

CCFinderX 10.2.6.4 [11] Java C min. size: 25 tokens, min. token types: 6 min. size: 50 tokens, min. token types: 12

ConQat 2012.9 [12] Java min. size: 6 lines, max. editing distance: 3, max. gap
ratio: 0.30

min. size: 15 lines, max. editing distance: 3, max. gap
ratio: 0.30

CPD 5.0.4 [13] Java min. size: 30 tokens, literal/identifier
normalization

min. size: 100 tokens, literal/identifier
normalizationC

CtCompare 3.2 [14] Java C min. size: 30 tokens, max. isomorphic relations: 6 min. size: 100 tokens, max. isomorphic relations: 3

Deckard 1.2.3 [15] Java C min. size: 30 tokens, 5 token stride, min. 90% similarity min. size: 100 tokens, 4 token stride, min. 85% simi-
larity

Duplo 0.2 [16] Java, C min. size: 6 lines, min. characters/line: 1 min. size: 15 lines, min. characters/line:1
iClones 0.1.2 [17] Java C min. size: 30, min. block size: 10, all transformations min. size: 100, min. block size: 20, all transformations

NiCad 3.4 [18] Java C clone size: 4-2500 lines, blind renaming, literal abstrac-
tion, function and block clones, max. 30% dissimilarity

clone size: 10-2500 lines, blind renaming, literal ab-
straction, function/block clones, max. 30% dissimilarity

Scorpio 2011 [19] Java min. size: 6 statements, normalize identifier/literal to
type

min. size: 15 statements, normalize identifier/literal to
type

SimCad 2.2 [20] Java C consistent identifier renaming, function/block clones consistent identifier renaming, block clones
Simian 2.3.34 [21] Java C min. size: 6 lines, normalize literals/identifiers min. size: 15 lines, normalize identifiers/literals

†e.g., = 75% Type 1 Recall, 50% Type 2 Recall, 25% Type 3 Recall

over-optimizing the tools for the benchmark, as a user would
not be able to do this for their own software systems. We also
avoided configuring the tools in a way that would maximize
recall at the sacrifice of precision. Generally, we configured
the tools for a benchmarks’ minimum clone size, and enabled
type 2 normalization features. The tool configurations for each
benchmark are summarized in Table I. Different configurations
are required due to differences in the benchmarks’ minimum
clone size. Since the properties of Bellon’s corpus are not well
known, we used more permissive settings with it.

Different configurations may result in better or worse recall
for these tools. Wang et al. [22] refer to this as the confounding
configuration choice problem. They propose the use of a
genetic algorithm for finding tool configurations that optimize
the tools’ agreement on what is and isn’t clone code in a
software system. Using Bellon’s Framework, they demonstrate
that their configurations have a higher recall than the tools’
default configurations. In general, compared to the default
settings, their algorithm reduced minimum clone size and
enabled type 2 normalization features. Our strategy altered the
default configurations in a similar way, although our settings
are a little more cautious to prevent loss of tool precision.
We also found that that our targeted configurations perform
better then the tools’ default settings with Bellon’s Benchmark.
Some of the tools’ default configurations were optimized for
demonstration use (short execution time). Our configurations
may be more appropriate for benchmarking as configurations
that optimize agreement between the tools may restrict the
individual tools’ unique detection characteristics and strengths.

Recall Expectations. Before we executed the benchmarks,
we evaluated our expectations of each tool’s recall, which
are summarized in Table I. We assigned expected recall in
25% increments, starting at 0% but capped at 90%. We
consider a measured recall to agree with our expectation if
it is within ±12.5% of the expected value. This strategy gives
our expectations flexibility, as our expectations are educated
estimates. If agreement is found, then we are confident that the
expectation and benchmark are correct. Otherwise, we suspect
that either our expectation and/or the benchmark is inaccurate.

We chose our expectations by consulting the tools’ docu-
mentation, publication, and literature discussion [2], [3]. For

type 1 and 2 recall, we considered the normalization features
directly or indirectly supported by the tools. For type 3 recall,
we considered the tools’ similarity metrics and recommended
sensitivity. We also considered our experiences with these tools
in our other studies. Where possible, we reached out to the tool
developers for their opinions of our expectations. We were op-
timistic about the quality of the tools, and of the frameworks’
ability to evaluate them. Despite these efforts, the expectations
may still contain inaccuracies or be controversial between
clone researchers. This is why we use a generous window
(25%) around the expectation when determining agreement.
These expectations give us the ability to uniformly evaluate
our confidence in the benchmark results.

VII. RESULTS

We present and discuss the performance of the tools as
measured by Bellon’s Framework in Section VII-A. We com-
ment on observed differences between the ok and good metrics,
and discuss some anomalies in the results. In Section VII-B
we discuss how type 3 recall changes when measured by
Murakami et al.’s [7] gap aware extension of the framework,
and the performance of the tools using our b-ok metric in
Section VII-C. We compare our results with the modern tools
against Bellon et al.’s [5] original experiment in Section VII-D.
We then compare our results with the variants of Bellon’s
Framework against our expectations for these tools in Sec-
tion VII-E. In Section VII-F we present and discuss the recall
of the tools as measured by the Mutation Framework, and
compare them against our expectations. We compare the results
of the two frameworks in Section VII-G. The recall measure-
ments of the two frameworks are summarized in Figure 1,
and compared against our expectations in Table II. We sum-
marize agreement between the results and our expectations in
Table VI, and agreement between the frameworks in Table VII.

A. Bellon’s Framework Results - Original Framework

Java Type 1. Using the ok metric, most of the tools have
a recall exceeding 70%, with CPD and iClones exceeding
90%. Scorpio performs poorly, detecting less than 50%, while
CCFinderX only barely exceeds 50% recall. CtCompare and
Duplo obtain fair results, with a little more than 60% recall.
Many of these tools’ recall drops considerably when the good
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Fig. 1: Measured Recall - Benchmark Results

TABLE II: Expected Vs. Measured Recall: Mutation Framework (MF) and Bellon’s Framework (ok, b-ok, good metrics)

Language
Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian

Clone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Java

Expected
MF —
ok

b-ok
good

C

Expected — —
MF — —
ok — —

b-ok — —
good — —

= Indicates recall (0-100%) as ratio of pie filled (e.g., in this case, 75%).

metric is used. Only iClones and Simian exceed 70% recall
with the good metric.

C Type 1. Most of the tools have poorer type 1 detection
for C than Java. The exceptions are CCFinderX, which per-
forms better for C, and iClones, which has comparable results
for both languages. Only CPD, iClones and Simian exceed
70% recall with the ok metric. CCFinderX is just shy of 70%
with the ok metric, while the remainder fall below 50%. Only
iClones manages a recall over 70% with the good metric, while
CCFinderX, CPD and Simian have a recall greater than 50%.

Java Type 2. Only CPD, Deckard and NiCad exceed 70%
recall by the ok metric. CCFinderX, iClones and SimCad
exceed 50%, while the remainder fall below 35%. For the good
metric, CPD and Deckard manage to maintain a recall around
60%, while the remainder fall below 50%.

C Type 2. Again, the tools generally perform worse for C
clones. For the ok metric, only iClones and CCFinderX exceed
50% recall, while all the tools fall below 50% when the good

metric is used.

Java Type 3. For the ok metric, only CPD and NiCad
achieve a recall greater than 70%, with CPD just reaching
75%. Of the remaining tools, only Deckard exceeds 50%. With
the good metric, NiCad achieves 60%, while the remainder fall
below 25%. A notable anomaly is the type 2 detectors’ sizable
type 3 recall with the ok metric, especially CPD (75%). This
is resolved by the good metric.

C Type 3. Only iClones exceeds 50% ok recall, with
CCFinderX nearly meeting 50%. None of the tools have a
good recall more than a little beyond 25%. Some of the type
2 detectors are achieving a type 3 ok recall, while their type
3 good recall is correctly near 0%. Type 3 detectors Deckard
and NiCad have much better type 3 performance for the Java
clones, while iClones and SimCad perform better for C.

In most cases, recall measured using the good metric is
considerably lower than recall measured by the ok metric.
Bellon’s Framework suggests that the modern tools are bad



at detecting a clone’s precise boundaries. However, for the
type 1 and 2 clones, this may be due to Bellon’s oracling
process. When he accepted a clone he would change the
clone’s boundaries (if needed) to the maximal size of its
reported clone type [8]. It is possible that the accepted clone
could have been contained within a larger clone of a higher
clone type. Likely, the tools prefer to report the larger clone of
the higher type. The ok metric (contain) will accept this larger
clone as a match, but the good metric (precise capture) is likely
to reject it. For this reason, the good metric may be too strict
for the type 1 and type 2 clones. However, our proposal of the
b-ok metric shows why the ok metric is too permissive.

However, the ok metric may be too weak for measuring
type 3 recall. A number of type 2 detection tools were receiving
sizeable type 3 recalls with the ok metric. Since these tools
cannot detect type 3 clones, the ok metric must be permissive
enough to sometimes accept clones which only capture the
type 1 or 2 portions of the type 3 clone. When measuring
type-specific recall, this is undesirable. The good metric was
appropriately measuring near-zero recall for these tools.

Overall, we found that many of the tools performed well
for type 1 Java clones, and a few had good performance for
type 2 Java clones, when the ok metric is used. Performance
was generally weaker for C clones, and most tools performed
poorly for both language’s type 3 clones. The type 2 clone
detectors were surprisingly able to achieve a type 3 recall
when the ok metric was used, while the type 3 detectors are
struggling to detect type 3 clones, even when measured by the
permissive ok metric.

B. Bellon’s Framework Results - Murakami Extension

Murakami et al. [7] suggest that type 3 recall is more
correctly measured when Bellon’s ok and good metrics ignore
the gap lines in the type 3 references. We found that ignoring
the gap lines has minimal impact on the tools’ ok and good
type 3 recall. Compared to Bellon’s original metrics, the tools’
gap-ignoring type 3 recall has an absolute change of no more
than ±1.5%, with two exceptions. CPD’s type 3 ok recall for
Java has an absolute increase of 7.2%, and iClones’s type 3
good recall for C an increase of 3.7%. Ignoring these outliers,
the average absolute change was ±0.48%. This means that it
is extremely rare for these tools to fail to capture a type 3
reference due to reporting only the cloned regions but not the
non-cloned regions.

Murakami et al. investigated this difference for NiCad,
Scorpio and CDSW. Their experiment found significant differ-
ences in type 3 recall for Scorpio and CDSW. Their experiment
agrees with ours that ignoring gap lines has negligible effect on
NiCad’s recall. Our disagreement over Scorpio may be due to
how we handled Scorpio’s output. Of our subject tools, Scorpio
is unique in that it does not report code fragments as source
line regions. It is PDG-based, and reports code fragments
as sets of (possibly non-sequential) program elements. We
converted these to continuous line regions using the source
lines of the earliest and latest program elements as the start and
end lines. Murakami et al. do not mention how they handled
this in their experiment.

While ignoring gap lines had minimal effects in our ex-
periment, Murkami’s gap line data is still valuable. It can be

TABLE III: OK to BetterOK - Relative Change in Recall
Java Clone Types (%) C Clone Types (%)

Tool 1 2 3 1 2 3

1 Duplo -16 -93 -100 -15 -75 -94
CPD - - - -5 -55 -92

2

CCFinderX -3 -18 -81 -7 -18 -88
CPD -3 -3 -81 - - -

CtCompare -1 1 -89 -8 -24 -89
Simian -3 -26 -94 -8 -43 -91

3

ConQat -4 -25 -57 - - -
Deckard -11 -22 -64 -16 -22 -63
iClones -7 -37 -58 -1 -8 -53
NiCad -9 -27 -12 -8 -10 -16

Scorpio -9 -14 -15 - - -
SimCad -10 -31 -22 -10 -9 -22

Avg: Tool Doesn’t Support - -93 -89 - -65 -91
Avg: Tool Does Support -7 -21 -38 -9 -19 -39

Avg: All -7 -27 -61 -9 -29 -68

used to evaluate the correctness of clone detection tools that
identify gap lines in their reported clones. Bellon’s Framework
is designed to handle clone detection tools that report code
fragments as continuous source line regions. Knowing the
locations of gaps in the type 3 references may make it possible
to adapt Bellon’s Framework to support tools that report
code fragments as discontinuous source line regions without
(approximate) conversions of their output.

C. Bellon’s Framework Results - The Better OK Metric

The recall of the tools using our b-ok metric are compared
against Bellon’s ok recall in Figure 1. The relative change
in recall going from Bellon’s ok recall to our b-ok recall
is summarized in Table III, with the tools grouped by the
maximum clone type they are able to detect. We also average
the relative change across the tools, including specifically for
tools that support or do not support particular clone types. The
tools’ recall decreases when our b-ok metric is used, with the
exception of a marginal increase in CtCompare’s Java type 2
recall. The decrease in recall means that there are candidates
reported by the tool that are 70% contained by references in
the benchmark, but none of these candidates contain 70% of
these references. Likely, the tool reported only a small (<70%)
portion of these references, which is why our b-ok metric
rejects them as a match. While recall generally decreased, an
increase is possible (CtCompare) because Bellon’s Framework
maps each candidate to the reference that maximizes its good
and then ok values. By replacing the ok metric by the b-ok
metric, the mapping can change in such a way that more
references are matched given the matching threshold (70%).

Tools lacking type 3 support lose the majority of their recall
(81-100%), and similarly for tools lacking type 2 support (55-
93%). This improves the anomaly we found in Bellon’s ok
recall for which the tools’ have sizable recalls for clone types
they don’t support. With Bellon’s ok metric, a tool could match
a type 3 reference by reporting a candidate that captures even
a minuscule type 1 or 2 region within the reference, or a
minuscule type 1 region in a type 2 reference. Our improved
metric will only accept these cases when the detected lower
clone type region is at least 70% of the reference clone. This
appears to be rare, as the average b-ok recall for clone types
a tool does not support is 4% with a maximum of 15%.

On average, the relative decrease in recall is larger for



TABLE IV: New Vs. Old Experiment - OK Metric
OK Metric GOOD Metric

Java 1 2 3 1 2 3

AVG new 73.6 52.5 37.2 54.4 32.1 14.1
old 61.6 48.9 26.5 43.5 33.0 4.1

MAX new 95.6 87.7 75.1 81.1 60.7 61.4
old 94.9 85.3 61.6 67.3 48.9 7.5

C 1 2 3 1 2 3

AVG new 53.8 31.7 32.8 39.3 17.3 10.4
old 52.8 36.6 32.9 41.7 25.8 8.8

MAX new 96.0 60.9 57.4 79.9 39.9 26.1
old 85.7 79.8 68.3 79.0 68.1 22.2

higher clone types, considering only the tools that support the
respective types. Type 3 recall reduction was significant for
some of the type 3 tools, with ConQat, Deckard and iClones
losing over half of their recall when our b-ok metric is used.
Even these advanced tools are only reporting small (<70%)
regions of the references that were matched by Bellon’s ok
match. What is unknown is if this is due to a deficiency
in these tools, or disagreement with Bellon’s definition of a
type 3 clone, particularly the amount of dissimilarity allowed.
The other type 3 tools had less significant reductions (12-
16% relative decreases). Overall, our correction to Bellon’s
ok metric has a considerable effect on the measured recall.

D. Bellon’s Framework - Modern Vs. Original Experiment

Our expectation is that clone detection has significantly
evolved since Bellon’s original experiment in 2002, especially
for type 3 detection. In this section, we examine if Bellon’s
Framework supports this expectation by comparing our results
with the modern tools against the results of Bellon’s original
experiment. In order to compare the two experiments, we
calculated the average and maximum ok and good recalls
across the tools of the individual experiments (Table IV).

Java. In general, the new tools outperform the old for
the Java clones with both the ok and good metric. However,
the average recall of the new tools is not as significant of
an improvement as we expected. At most, the modern tools
lead the old tools by 12%, and fall behind by 1% in one
case. Considering the best performing of the new and old
tools (maximum), the new tools perform consistently better.
The increase in maximum recall is marginal with the ok
metric, except for type 3 clones (+15%). The new tools have
a considerably higher maximum good type 3 recall (+54%).
This advantage is from NiCad, while the other modern tools
had negligible good type 3 recall.

C. For the C clones, both the new and old tools have a
very similar average recall by both metrics, with the old tools
having up to 10% better recall for type 2 clones. Considering
the best performing of the tools, the old tools mostly perform
better, with the new tools having only a slight advantage in
type 3 detection with the good metric (+3.9%).

The difference in type 3 recall between the old and new
tools is strange. Only for the Java clones by the good metric
does the best of the new tools outclass the old tools for type
3 detection. In the other cases, the difference is only 3-15%,
with the best of the newer tools performing worse for type 3
C clones by the ok metric. Type 3 clone detection has been
an area of focus in clone detection since Bellon’s original

TABLE V: CCFinder vs. CCFinderX
OK GOOD

Clone Types 1 2 3 1 2 3
CCX-Java 50.5 60.7 36.7 38.2 32.7 4.3
CC-Java 88.0 85.3 30.9 42.5 48.9 6.3
CCX-C 68.3 54.7 47.8 55.8 34.9 5.0
CC-C 85.7 79.8 68.3 79.0 68.1 13.0

experiment, so we expected the new tools to perform much
better than the old. This suggests that Bellon’s corpus does
not have sufficient type 3 representation to accurately judge
these modern tools.

These two experiments are not exactly equivalent. The
old tools have the advantage that Bellon’s clone references
are based off the clones the old tools detected. However, the
modern tools have the advantage of up to a decade of clone
detection research. Even if the the new tools did not contribute
to the benchmark, they are the state of the art and should not
have a problem detecting clones found by their predecessors.

It is interesting to compare CCFinderX to its direct prede-
cessor, CCFinder, that participated in the original experiment
(Table V). We can reasonably assume that CCFinderX (2009)
should be an improvement over CCFinder (2002). However,
CCFinderX’s recall is considerably lower than CCFinder’s for
all clone types and both metrics, with the exception of a
6% lead in Java type 3 ok recall. The exception is likely an
anomaly, as both versions of CCFinder lack type 3 support. In
the original experiment, CCFinder was executed for its default
settings, while we executed CCFinderX with more permissive
settings than its modern default. It is possible that CCFinderX’s
core algorithm is less aggressive in detecting clones, possibly
to increase precision. Or perhaps CCFinderX’s preferences
of what constitutes a true positive clone has changed, and
disagrees with Bellon’s definitions. Having a previous version
that contributed to the corpus, we expected CCFinderX to
be somewhat attuned to the benchmark. That CCFinderX
performs considerably worse than CCFinder suggests that
clone preferences have changed, and that the modern tools
cannot be accurately judged by Bellon’s corpus.

E. Bellon’s Framework Variants Vs. Expectations

In this section we compare the tools’ recall as measured by
Bellon’s Framework, using both its original and our improved
metrics, against our expectations for these tools. Since we
created our expectations in 25% increments, we consider
measured recall to agree with our expectations if their absolute
difference is 12.5% or less. Measured recall is compared
against our expectations in Table II, and their agreement is
summarized in Table VI.

Type 1. The ok recall agrees with our expectations for 6
of the 11 Java tools, but for only 2 of the 9 C tools. Three of
these tools lose agreement when our b-ok metric is used. In the
cases of disagreement, the recall measurements are generally
considerably lower than our expectations. Only iClones (Java
and C) and Duplo (Java) agree with our expectations with the
good metric. The good recall of the remainder is considerably
lower than our expectations. We expected these tools (with the
exception of Duplo) to have a type 1 recall around 90%. These
tools remove type 1 differences when they parse or pre-process



TABLE VI: Agreement Between Measured and Expected Recall, Mutation Framework (MF) and Bellon’s Framework

Language
Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian % AgreeClone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Java

Expected -
MF — 90.0%
ok 30.3%

b-ok 30.3%
good 24.2%

C

Expected — — -
MF — — 74.1%
ok — — 14.8%

b-ok — — 29.6%
good — — 29.6%

= Agree (±12.5%) = Disagree = Recall (0, 25, 50, 75, 90%)

input code. By configuring the tools with the benchmark’s
minimum clone size, it should be trivial for these tools to
detect the simple type 1 clones. At the very least, the tools
should detect the type 1 references as components of larger
type 2 or type 3 clones, which would be accepted by the ok
and b-ok metrics if not the good metric. It is strange that recall
is further from our expectations in the C cases, despite the tools
advertising full C language support.

Type 2. Recall measurements agree with our expectation
for tools that do not support type 2 clones (Duplo, CPD for C),
at least by the b-ok and good metrics. Of the tools supporting
type 2 detection, CPD’s (Java) agrees with our expectations
by both the ok and b-ok metrics, as well as Deckard (Java)
by only the ok metric. Otherwise, none of the tools’ type 2
recalls agree with our expectations. Generally, their type 2
recall is considerably lower than our expectations. We expected
many of these tools to have near 90% recall for type 2 clones.
Most support the required type 2 normalizations (literal values,
identifier names), which reduces type 2 detection to simple
type 1 detection. It is therefore suspicious that not only do
these results not agree with our expectations, but that the
results do not mirror the type 1 results. This is at least partially
due to Bellon’s oracling process, which allowed type 2 clones
to have an identifier or literal in one fragment be replaced by
an expression in the other, as found by Baker [8]. The modern
tools would consider these replacements to be near-miss gaps,
and consider them to be type 3 clones. In this case the type 2
detectors would fail to report them, while the type 3 detectors
may find them similar enough to report. However, this oracling
error may not be too pronounced as the best performing Java
type 2 detector is CPD, which lacks type 3 support.

Type 3. Considering the type 2 detectors, the b-ok and
good recalls agree with our expectations (0% recall), with the
exception of CPD for Java clones and the b-ok recall. The
strong agreement is because these metrics generally will not
accept a type 2 candidate as a match of a type 3 reference.
With the exception of duplo, the type 2 detectors’ type 3
ok recall does not agree with the expectation. As mentioned
previously, the ok metric is allowing candidates detecting even
only small regions of the type 3 clone as matches. Considering
the type 3 detectors, none of the tools’ type 3 recalls agree
with our expectations. The only exception is Deckard whose
Java type 3 ok recall agrees with our expectations. However,
its b-ok and good Java type 3 recalls are considerably lower
than our expectations. Considering Bellon’s type 3 references

were found by tools contemporary to 2002, and modern
tools are considered to excel at near-miss clone detection, it
is strange that they perform so far under our expectations.
Perhaps the corpus simply does not have a large or diverse
enough representation of type 3 clones to evaluate modern
tools. Or perhaps Bellon’s type 3 references disagree with the
modern tool’s type 3 clone preferences (e.g., scope, minimum
similarity, true vs. false positive, etc.).

Recall measured by Bellon’s Framework is generally lower
than our expectations. A common belief in the clone commu-
nity is that our clone detection techniques are very mature and
have high recall. The disagreement between our expectations
has two possible and potentially overlapping conclusions: (1)
the modern clone detection tools are not as proficient as we
believe, i.e., our expectations are incorrect, or (2) Bellon’s
Framework does not accurately measure the performance of
modern tools. To gain further insight into this question, we
consider the results of the Mutation Framework below.

F. Mutation Framework Results vs. Expectations

In this section we discuss the recall of the tools as measured
by the Mutation Framework, and compare these against our ex-
pectations for the tools. As the granularity of our expectations
was 25%, we consider the measured and expected recalls to
agree if they have an absolute difference no greater than 12.5%.
The tools’ recall by the Mutation Framework are shown in
Figure 1, and compared against our expectations in Table II.
Agreement with expectations is summarized in Table VI.

Type 1. The Mutation Framework measures a very high
recall (> 90%) for most of these tools across both languages.
Scorpio’s and Simian’s recall is a little lower at 80%. These
results agree with our expectations of the tools. Duplo has poor
type 1 recall, as it doesn’t normalize for formatting differences,
which is within our expectations for Java but not for C. While
CtCompare has strong recall for the Java clones, its type 1
performance was considerably weaker for the C clones, and
outside of our expectations. Deckard’s recall for C is also
below our expectations, at 59%.

Type 2. The framework also measures very high recall
(>90%) for most of the tools that support type 2 detection.
CPD falls a little behind the top performers, with a Java recall
of 81%. These results match our expectations. The framework
correctly identifies that Duplo and CPD (for C) do not support
type 2 clones, with a near 0% recall. CtCompare does not



support literal value normalization and recommends limits on
identifier normalization, so we are not surprised by its lower
recall for Java (64%), although its recall for C (53%) is
lower than anticipated. Scorpio’s recall falls just outside our
expectations, with a recall of 76%. CCFinderX is also less than
our expectations, with 67% for Java and 76% for C. Deckard’s
type 2 recall matches its type 1, 59% and is considerably less
than we expected.

Type 3. iClones and NiCad have near-perfect recall
(>95%) for both languages, while ConQat (89%) and SimCad
(90%) also achieve very high recall. These results match our
expectations for these tools. The framework correctly identifies
the tools that lack type 3 support, with near 0% recall. The
framework measures recall outside of our expectations for
Scorpio (76%) and Deckard (56%).

Compared to the other type 3 detectors, Scorpio and
Deckard have lower recalls. Notable is how consistent their
recall is across the clone types. To prevent bias between recall
measurements, the Mutation Framework uses the same original
code fragments with each of the 15 mutation operators, and
injects each of the 15 resulting clones at the same locations in
the subject system. Therefore Scropio and Deckard may not
have any deficiency for any particular clone type, but rather
failed to detect these clones due to general deficiencies in its
parser or detection algorithms.

Overall, there is strong agreement between our expected re-
call and the Mutation Framework’s results. Agreement is found
in 30 out of 33 Java cases, and 20 out of 27 C cases. In the
cases of disagreement, the Mutation Framework consistently
measured a lower recall. Strong agreement suggests confidence
in the accuracy of the Mutation Framework. We did not notice
any anomalies in the Mutation Framework’s results.

G. Bellon’s Framework vs Mutation Framework

In this section we directly compare the recall measure-
ments of Bellon’s Framework and the Mutation Framework.
Since the two benchmarks were constructed differently (mined
versus synthetic clones), we consider them to agree if the
measured recalls are within 15%. Agreement between the
frameworks is show in Table VII. Despite the differences in
their approaches, it is reasonable to expect the frameworks
to agree. The Mutation Framework tests the tools against a
comprehensive (and empirically validated) taxonomy of the
types of differences that can occur between clones. The base
code fragments used for synthesis and injection locations in
the subject system are randomly varied to ensure variety. We
expect that if tools perform well for the Mutation Framework’s
synthesized clones, that this performance should transfer to
clones naturally produced by developers.

However, in very few cases do these frameworks agree.
They agree on the type 1 recall of CPD (Java), Duplo, iClones
and Simian, as well as the type 2 recalls of CCFinderX (Java),
CPD and Duplo. For CCFinderX (type 2, Java) and Simian
(type 1, C), this agreement is only with Bellon’s ok recall.
We have shown that the ok recall can be unreliable. The
frameworks agree in the cases where a tool does not support
a particular clone type if either the b-ok or good recalls are
considered. The frameworks disagree in some of these cases
when the ok recall is used, which supports our findings that the

ok metric can lead to incorrect recall measurements for clone
types a tool doesn’t support. In all other cases, the frameworks
disagree on the tools’ recall. Generally, the Mutation Frame-
work measures a higher recall in these cases. With Bellon’s
Framework, the tools generally had lower recall for C clones,
but this is not common in the Mutation Framework results.

Disagreement between the frameworks over NiCad and
SimCad is not suspicious. These tools detect clones at the
code block granularity: code that starts and ends with matched
brackets, i.e., ’{...}’. The Mutation Framework generates
clones at this granularity to support more tools. Tools that
search at a lower granularity (i.e., within code blocks) do not
have a disadvantage with the Mutation Framework. However,
NiCad and SimCad may fail to detect clones in Bellon’s corpus
that are much smaller than a code block. Despite this, NiCad
has the top Java type 3 recall by Bellon’s Framework.

It is particularly strange that the frameworks disagree for
type 1 and type 2 recall. When the Mutation Framework
measures a high recall for these types, it has certified that
the tool can handle all 10 of the variations in type 1 and
type 2 clones from the clone taxonomy. Many of the modern
tools received this certification. As per mutation analysis, the
Mutation Framework mutates only a single random difference
into the reference clones. The tools detect type 1 and type 2
clones by removing or normalizing these differences during
parsing or pre-processing steps. Therefore, the tools should
have no problems detecting type 1 and type 2 clones, no
matter the density of the type 1 and type 2 features. It is odd
that Bellon’s Framework measures considerably lower type 1
and 2 recall for some of the tools that have very high recalls
by the Mutation Framework. It is possible that this is due to
changes in clone detection preferences between the 2002 tools
and the modern tools. Detection preferences may include clone
granularity, scope, what constitutes a true positive, what clones
are useful to report, and so on.

The frameworks do not agree on the type 3 recall of any
of the type 3 tools, with the Mutation Framework consistently
measuring a higher recall. The Mutation Framework shows that
most of the type 3 detectors are able to handle the types of dif-
ferences that can occur between type 3 clones. We constrained
the Mutation Framework to generate clones with similarity
no less than 70%. Bellon provided no specification for his
type 3 clones. It may be that Bellon’s type 3 clones contain
a higher degree of dissimilarity, more than the tools allow,
which would result in a lower recall from Bellon’s framework.
It is also possible that Bellon’s corpus does not have sufficient
type 3 representation to accurately measure recall. Bellon’s
corpus was built using tools contemporary to 2002, when type
3 detection was not as well developed. However, is is strange
that the modern tools are not able to detect more of the type 3
clones found by their “outdated” predecessors. This suggests
that type 3 preferences have changed, and the modern tools
target a newer specification.

The Mutation Framework has a much stronger agreement
with our expectations than Bellon’s Framework, as shown in
Table VI. The Mutation Framework agrees with our expecta-
tions in 90% (Java) and 74.1% (C) of the cases, while Bellon’s
Framework only agrees in 24.2-30.3% (Java) and 14.8-29.6%
(C), depending on the metric used. We suspect that in the
cases where neither tool agrees with our expectation, that



TABLE VII: Mutation Framework (MF) vs. Bellon’s Framework (ok, b-ok, good) - = Agree (±15%) = Disagree

Language Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian
% AgreeClone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Java
MF vs ok - - - 23.3%

MF vs b-ok - - - 36.7%
MF vs good - - - 26.7%

C
MF vs ok - - - - - - 14.8%

MF vs b-ok - - - - - - 33.3%
MF vs good - - - - - - 29.6%

our expectation is incorrect. Bellon’s strong disagreement with
our expectation, and the suspicions we raise about its results,
suggest that it is not accurate for modern tools. The Mutation
Framework’s strong agreement with out expectations suggest
that it may be a good solution for evaluating the modern tools.
In cases where the Mutation Framework disagrees with our
expectations, we suspect that our expectation is incorrect, and
the Mutation Framework accurate.

VIII. THREATS TO VALIDITY

There are three primary threats to the validity of this
study. (1) Our expectations of the tools’ recall may not be
accurate. We maximized our accuracy by consulting the tools’
documentation, publication, literature surveys, and developers
(when available). Furthermore, we allowed a ±12.5% range
around our expectation to compensate for some inaccuracy.
We used these expectation ranges as a baseline for our
confidence in the benchmarks. (2) The tool configurations
may not be optimal. We created targeted configurations by
consulting the tools’ defaults and documentation, which is
how the average user would configure the tools for their use
cases. While other configurations might give higher recall, our
configurations measure the recall the average user can expect.
(3) The Mutation Framework uses artificial clones. However,
these clones are generated using mutation analysis, which is
a well established technique in other fields including software
testing. The clones are generated using a comprehensive clone
taxonomy empirically validated against real clones [3], so the
generated clones should be realistic.

IX. CONCLUSION AND FUTURE WORK

In this paper, we compared the recall performance of
eleven modern clone detection tools. We began by researching
our expectations for these tools. We then evaluated the tools
using different variants of Bellon’s Framework, as well as the
Mutation and Injection Framework. We found inconsistencies
between our expectations and the results of Bellon’s Frame-
work. Bellon built his corpus by mining the output of tools
contemporary to 2002. These clones and Bellon’s procedures
may not reflect the clone detection and reporting preferences of
modern tools. Our findings suggest that Bellon’s Framework
may not be accurate for modern tools, and that an updated
corpus may be warranted. We found agreement between our
expectations and the results of the Mutation Framework. The
Mutation Framework indicates that ConQat, iClones, NiCad
and SimCad are very good options for detecting all three
clone types. We believe the Mutation Framework could be a
good solution for benchmarking modern clone detection tools.
However, benchmarking with real data is also important. A
priority of our future work is to update Bellon’s Framework
with clones detected by these tools.
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