
Orthogonal Layout with Optimal Face ComplexityI

Md. Jawaherul Alam

Department of Computer Science, University of California, Irvine, USA

Stephen G. Kobourov

Department of Computer Science, University of Arizona, USA

Debajyoti Mondal∗

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Abstract

We study a problem motivated by rectilinear schematization of geographic maps.
Given a biconnected plane graph G and an integer k ≥ 0, does G have a strict-
orthogonal drawing (i.e., an orthogonal drawing without edge bends) with at
most k reflex angles per face? For k = 0, the problem is equivalent to realiz-
ing each face as a rectangle. We prove that the strict-orthogonal drawability
problem for arbitrary reflex complexity k can be reduced to a graph matching
or a network flow problem. Consequently, we obtain an Õ(n10/7k1/7)-time al-

gorithm to decide strict-orthogonal drawability, where Õ(r) denotes O(r logcr),
for some constant c. In contrast, if the embedding is not fixed, we prove that
it is NP-complete to decide whether a planar graph admits a strict-orthogonal
drawing with reflex face complexity 4.

Keywords: Graph Drawing, Orthogonal Drawing, Face Complexity.

1. Introduction

Map schematization is a problem of interest in geography, cartography, infor-
mation visualization and computational geometry. Rectangular and rectilinear
schematizations have been studied for over 80 years; see the comprehensive sur-
vey of Tobler [24]. While rectangular schematizations sometimes must distort
the topology of the map (e.g., no four mutually neighboring countries can be
represented by contact of rectangles), rectilinear schematizations can preserve

IA preliminary version of the paper appeared in the Forty-First International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM 2016) [1].
∗Corresponding author
Email addresses: alamm1@uci.edu (Md. Jawaherul Alam), kobourov@cs.arizona.edu

(Stephen G. Kobourov), dmondal@uwatreloo.ca (Debajyoti Mondal)

Preprint submitted to Computational Geometry January 29, 2017

the topology, at the expense of more complicated country shapes. We consider
the problem of rectangular schematization where the “complexity” of each coun-
try (as defined by the number of reflex corners) is minimized. We also consider
the case where different countries are allowed to have different complexities. We
describe efficient algorithms for both of these scenarios.

An orthogonal drawing of a planar graph G = (V,E) in R2 is a planar
drawing of G such that each vertex v ∈ V is drawn as a point and each edge
(u, v) ∈ E is drawn as a rectilinear (axis-aligned) path between the points that
correspond to u and v. A t-bend orthogonal drawing of G is an orthogonal
drawing of G, where each edge is drawn as an orthogonal polyline with at most
t bends. An orthogonal drawing is strict if it does not contain any bends, i.e., it
is a 0-bend orthogonal drawing. In the literature such a drawing is also referred
to as bendless or no-bend orthogonal drawing [22]. If G is a plane graph (i.e., a
planar graph with a fixed planar embedding), then an orthogonal drawing of G
is additionally constrained to respect the given planar embedding. The reflex
face complexity of an orthogonal drawing Γ is the smallest integer k such that
each inner face of Γ contains at most k reflex angles, and the outer face of Γ
contains at most k + 4 reflex angles. Thus in an orthogonal drawing of G with
reflex face complexity k, each face of G is drawn as an orthogonal polygon with
at most 2k + 4 sides. Figs. 1(a)-(c) show a graph G and two strict-orthogonal
drawings of G.

From technical drawings and wiring schematics to transportation network
layouts, orthogonal drawing (or layout) is one of the standard types of visualiza-
tion for planar graphs [8, 15, 21] and is also supported by most network layout
systems (e.g., yEd [26], graphviz [9], and OGDF [5]). Early work on orthogo-
nal layouts was done by Valiant [25] and Leiserson [18] in the context of VLSI
design. The input graphs are assumed to be planar and with maximum-degree
four, although models incorporating higher degree graphs were introduced later
by Tamassia [23] and Fößmeier and Kaufmann [11].

1.1. Optimization Goals and Challenges

The number of reflex corners per face and the number of bends per edge
are two important parameters in an orthogonal drawing, and a good drawing
usually minimizes these parameters. Note that these two parameters are im-
portant not only from the point of view of the complexity of a VLSI layout or a
floor-plan, but also because they influence the readability and aesthetics of the
drawing. Recently, Keiffer et al. [16] proposed several design principles based on
human subject studies with orthogonal drawings, and developed an algorithm
that incorporates these principles while computing the drawing. Specifically,
the results showed that edge bends are often correlated with preferences and
ranking. Minimizing the total number of bends over all possible embeddings of
the input planar graph is NP-hard [12], however, for maximum-degree-4 plane
graphs, Tamassia [23] proposed a maximum-flow approach to solve the prob-
lem in O(n7/4

√
log n)-time. Later, Cornelsen and Karrenbauer [6] improved the

maximum-flow approach to O(n3/2). Although these algorithms can be adapted
to bound the number of bends per edge, there exist more specialized algorithms

2

a

b

c
e

f

g

h
i

j

k l

m

n o

(a) (b)

(c) (d)

ab

c e

f

g

hi

j

k
l

m

n
o

a

b
c e

f

g

hi

j

k l

m

n

o

(e)

Figure 1: (a) A plane graph G. (b) A strict-orthogonal drawing of G with reflex face com-
plexity 1. (c) A rectangular drawing of G. (d)–(e) Two strict-orthogonal drawings (0-bend
drawings) of the same graph with different reflex face complexities.

for such optimizations. For example, Bläsius et al. [3, 4] gave efficient algo-
rithms to bound the number of bends per edge, which can also optimize any
convex cost associated with the edges of the input graph, even in the variable
embedding setting for some specific cost functions.

Note that minimization of the number of total bends, or the number of
bends per edge cannot bound the reflex face complexity, see Figs. 1(d)–(e), but
a drawing with reflex face complexity k ensures that the number of bends per
edge is at most 2k + 4. Given a plane graph G with four prescribed corner
vertices, Miura et al. [20] showed how to decide whether G admits a strict-
orthogonal drawing with reflex face complexity 0 (also known as rectangular
drawings, as shown in Fig. 1(c)), that respects the given corners. They reduced
the problem of rectangular drawing to the problem of finding a perfect matching
in some graph, which leads to an O(n1.5/ log n)-time algorithm. If the four
corner vertices are not given, then a trivial solution is to try all possible options
for the corner vertices. A variant of Tamassia’s [23] flow-based approach can
solve this problem in O(n log2 n) time, even when the corners are not given in
the input (we refer the reader to Section 3 for the details).

The flow-based approach of Tamassia [23] can be modified to decide strict-
orthogonal drawability for arbitrary reflex complexity k by solving a maximum-
flow problem in Õ(n10/7k1/7) time, as described in Section 3. Other variations of
Tamassia’s formulation [3, 4, 6] can also be adapted to decide strict-orthogonal
drawability with a given reflex face complexity. Thus an interesting question is

3

whether the matching-based approach of Miura et al.’s [20] can also be gener-
alized to decide orthogonal drawability with reflex face complexity k.

1.2. Our Contributions

We study the problem of orthogonal drawing of a planar graph with a given
reflex face complexity k. Note that since every vertex in an orthogonal drawing
has degree at most 4, we consider only max-degree-4 graphs in this paper. In the
fixed embedding setting, we reduce the problem of computing strict-orthogonal
drawing with any given reflex face complexity k (if such a drawing exists) to a
graph matching or a network flow problem. Furthermore, given the nonnegative
integers k0, k1, . . . , kr for the faces f0, f1, . . . , fr of G, our algorithm can compute
a strict-orthogonal drawing of G, with at most ki reflex corners in each face fi,
i ∈ {0, 1, . . . , r}. For example, one can specify ki = k for each inner face fi,
and k0 = 4 for the outer face f0 to compute a complexity-k tessellation of a
rectangle.

For biconnected graphs, our matching-based algorithm runs in Õ((nk)10/7)

time (see Section 2), which is slower than the Õ(n10/7k1/7)-time flow-based
algorithm (see Section 3). Hence the matching-based approach is mostly of
theoretical interest. Our algorithm generalizes to simply connected graphs, and
furthermore, it can be extended to compute (non-strict) orthogonal drawings
with at most ti bends on each edge ei, for some nonnegative integer ti. However,
these generalizations lead to a slower running time.

Finally, we show that if the embedding of the planar graph G is not given,
then deciding whether G has a strict-orthogonal drawing with a given reflex face
complexity k is NP-complete, even when k = 4.

2. Strict-Orthogonal Drawing Algorithms for Plane Graphs

In this section we describe our algorithm for deciding strict-orthogonal drawa-
bility of planar graphs with a given reflex face complexity, and discuss some
generalizations. We begin with a preliminary result showing that to compute a
strict-orthogonal drawing it suffices to specify the angles between pairs of con-
secutive edges around each vertex (Section 2.1). We then describe our matching-
based algorithm (Section 2.2), where we restrict the input to be a biconnected
planar graph. Finally, we relax the connectivity constraint and discuss further
generalizations of our algorithm (Section 2.3).

2.1. Orthogonal Drawing using Angle Assignment

Tamassia [23] showed that an orthogonal drawing Γ of a biconnected plane
graph G can be described by augmenting the embedding of G with the angles
at the bends (bend angles) and the angles between pairs of consecutive edges
around the vertices of G (vertex angles). For strict-orthogonal drawings (no
bends), we only consider vertex angles. Consider an angle assignment of G,
where each vertex angle is assigned an element from {π/2, π, 3π/2}. Although
an angle assignment of G does not specify edge lengths, it can precisely describe

4

the shape of Γ. Given an angle assignment Φ, one can test if Φ corresponds to
a strict-orthogonal drawing by Lemma 1, which is implied from [23]:

Lemma 1. An angle assignment Φ for a plane graph G corresponds to a strict-
orthogonal drawing of G if and only if Φ satisfies the following conditions (P1–
P2):

(P1) The sum of the assigned angles around each vertex v in G is 2π.

(P2) the total assigned angle of every inner (respectively, outer) face f is (γ−2)π
(respectively, (γ+ 2)π), where γ is the number of vertices on the boundary
of f .

Given an angle assignment Φ satisfying (P1–P2), a strict-orthogonal drawing of
G (i.e., the exact coordinates for the vertices) can be computed in linear time.

2.2. Bipartite Graph Matching Formulation

In this section we assume that G is biconnected, and reduce the orthogonal
drawability problem to the problem of finding a perfect matching in a bipartite
graph. We construct a bipartite graph B(G) so that one can compute a strict-
orthogonal drawing of G with reflex face complexity k from a perfect matching of
B(G), and vice versa. Although our result generalizes the rectangular drawing
algorithm by Miura et al. [20], the bipartite graph we construct is quite different
from the one in [20] and it gives the option of having reflex corners in a face.

2.2.1. Construction of B(G):

Let f0 be the outer face and f1, . . . , fr be the inner faces of G; see Fig. 2(a).
Let k0(≥ 4), k1, . . . , kr be a set of nonnegative integers, where the face fj , 0 ≤
j ≤ r, is allowed to have at most kj reflex corners.

For each inner face fi, i ∈ {1, . . . , r} of G we have four x-vertices x1i , x
2
i , x

3
i ,

x4i in B(G), as shown with white squares with thin boundaries. These vertices
will correspond to four π/2 angles in fi. We also have ki pairs of a and b-vertices
a1i , b

1
i , . . . , a

ki
i , bkii associated with fi, as shown with white and gray squares with

bold boundaries. For each j ∈ {1, . . . , ki}, there is an edge (aji , b
j
i). Later, every

a-vertex will correspond to a π/2 angle, and every b-vertex will correspond to
a 3π/2 angle in fi. In each internal face fi, there are only ki pairs of a and b-
vertices, which will bound the number of reflex corners of fi in the final drawing.
Observe that by Condition (P2) of Lemma 1, each internal face of G has exactly
four π/2 angles more than its 3π/2 angles, and hence we have four more white
squares (i.e., x and b-vertices) than gray squares (i.e., b-vertices). Similarly, the
outer face f0 must contain four 3π/2 angles more than its π/2 angles. Thus for
the face f0, we have four vertices y10 , y20 , y30 and y40 representing 3π/2 angles,
and p = k0 − 4 pairs of vertices a10, b10, . . . , a

p
0, bp0. Call the x- and a-vertices the

convex face-vertices and the y- and b-vertices the reflex face-vertices.
In addition to the face-vertices above, B(G) also has boundary-vertices that

correspond to the vertices of G. For each degree-4 vertex v in G, let fi, fj , fk,

5

3

4

0

4

3

2

0

1

0

2

3

 1

 0

 2

 0

 3

 0

 0

 4

 4

 1

 1

 1

 2

1

1
 3

 1
 1

 1

 1

1

1

0

44

3
1

1

2
2

h

h

h

d

n

n

l

l

f

f

f

y

y

y

y

x

a

x

x

x

b

f

d

d

fp

p
p

n

l h

a

g

i
j

k

h

sc

o

q

m

b

n*

p*

r
c’

b’’

k’

i’
i’’

j’

o’ o’’

m’

r’

s’

g’’

g’

q’

q’’

b’

k’’

m’’

s’’

r’’

a’

a’’

c’’

j’’

(a)

d*

l*

(b)

a

r

g

i
j

k

h

sc

o

q

m

n*

p*

b
d*

l*

Figure 2: (a) A plane graph G (induced by the bold edges), and the construction of B(G) with
k0 = 4, k1 = k2 = k3 = k4 = 1, where only a few edges of B(G) are shown. Note that the bold
edges (i.e., the edges of G) and the dashed vertices do not belong to B(G). (b) The remaining
edges in B(G): the edges shown are the ones incident to the convex boundary vertices for a
degree-4 (red), a degree-3 (green), a degree-2 (blue) vertices and the ones incident to reflex
boundary vertices for two degree-2 vertices (black).

6

fl be the four faces incident to v. For each λ ∈ {i, j, k, l}, B(G) has a vertex vλ,
which is adjacent to all the convex face-vertices associated with fλ; see vertex
h in Fig. 2(b). We refer to these vertices as convex boundary-vertices. Each of
these convex boundary-vertices will choose a convex face-vertex ensuring four
π/2 angles around v. For each degree-3 vertex v incident to the faces fi, fj ,
fk, B(G) has three vertices vi, vj , vk, which are adjacent to all the convex
face-vertices of their corresponding faces. We also have an additional vertex v∗

in B(G), which is a common neighbor for vi, vj , vk; see vertex n∗ in Fig. 2(b).
Again we refer to these vertices vi, vj , vk as convex boundary-vertices, and the
vertex v∗ as the central-vertex. Intuitively, v∗ will match with one of its incident
vertices leaving two vertices among {vi, vj , vk}, which will choose two π/2 angles
around v. Finally, if v is a degree-2 vertex incident to the faces fi and fj , then
we have two vertices v′ and v′′ in B(G) that are adjacent to each other. We call
v′ a convex boundary-vertex (shown as gray circle), and v′′ a reflex boundary-
vertex (shown as white circle). The vertex v′ is adjacent to all the convex face-
vertices associated with fi and fj , and the vertex v′′ is adjacent to all the reflex
vertices associated with fi and fj ; see vertex m in Fig. 2(b). Note that degree-3
and degree-4 vertices of G do not have any associated reflex boundary-vertices
in B(G), since they cannot induce 3π/2 angles in an orthogonal drawing; see
Lemma 1, Condition (P1).

This completes the construction of B(G), which is indeed a bipartite graph,
as shown by coloring the vertices gray and white in Fig. 2(b).

2.2.2. Reduction:

The following lemma reduces our problem to the problem of finding a perfect
matching in some corresponding graph.

Lemma 2. There is a perfect matching in B(G) if and only if G has a strict-
orthogonal drawing, where each face fi contains at most ki reflex corners.

Proof: Assume that B(G) has a perfect matching M ; see Figs. 3(a)–(b). From
this matching, we compute an angle assignment Φ for G from the set {π/2, π,
3π/2} so that Φ satisfies Conditions (P1–P2) of Lemma 1.

Consider an arbitrary face fi of G. We assign an angle inside fi (at some
vertex v) the value π/2 if the corresponding boundary-vertex in B(G) is matched
to some convex face-vertex of fi. For example, the convex boundary-vertices
associated with the vertices b and h in Fig. 3(b) are determining π/2 angles
around b and h in Fig. 3(c). Similarly, a 3π/2 angle is assigned to v when its
corresponding boundary-vertex in B(G) is matched with a reflex face-vertex for
fi, e.g., see vertex m in Fig. 3(b). Otherwise, the boundary-vertex is either
matched with some central-vertex, or another boundary vertex (e.g., see vertex
c). In both cases we assign the corresponding angle the value π.

Note that the above rules may lead to a conflict at some degree-2 vertex,
when it has both convex and reflex boundary-vertices matched to the convex
and reflex face-vertices of the same face. For example, the vertex q in Fig. 3(b)
has its boundary vertices matched with the face-vertices in the same face f3.

7

(b)

(c)

(a)

f
1

f
3

f
2

f
4

f
0

a

j
k

b

c

m

r

g

i

h

s

o

q

f
0

f
1

f
2

f
4

f
3

a

b c

r s

gh

ijk

m

o

q

a

r

g

i
j

l

k

h

p

s

b

c

n

o

q

m

d
d*

n*

l*

p*

d

l

n p

Figure 3: (a) A biconnected plane graph G with maximum degree four, (b) a perfect matching
in B(G), and (c) a strict-orthogonal drawing of G with k0 = 4 and k1 = k2 = k3 = k4 = 1.

In such a case we assign the angle at v a value of π (inside the corresponding
face). Since M is a perfect matching, the construction of B(G) implies that
each inner face has exactly four more π/2 angles than 3π/2 angles. Similarly,
the outer face f0 contains exactly four more 3π/2 angles than π/2 angles. Thus
Condition (P2) of Lemma 1 is satisfied for each face of G.

Consider now the assignment of angles around each vertex v ofG. If deg(v) =
4, then all its four convex boundary-vertices are matched to some convex face-
vertices, and hence it has exactly four π/2 angles. If deg(v) = 3, then exactly
one of its three convex boundary-vertices is matched with v∗, and hence it has
two π/2 angles and one π angle. Finally, if deg(v) = 2, then it either has two π
angles (because v′ and v′′ are either matched to each other or to the face-vertices
in the same face), or it receives exactly one π/2 angle and exactly one 3π/2 angle.
Thus the sum of angles around each vertex is 2π, satisfying Condition (P1) of
Lemma 1. By Lemma 1, this angle assignment gives an orthogonal drawing of

8

G. Since each face fi can have at most ki reflex boundary-vertices matched to
its ki reflex face-vertices, the number of reflex corners in the drawing of fi is at
most ki; see Fig. 3(c).

Conversely, if G has a strict-orthogonal drawing Γ, where each face fi of
G has at most ki reflex corners, then Γ gives a perfect matching M in G, as
follows. For each face fi of G, traverse around its drawing in Γ, and for each
π/2 (respectively, 3π/2) angle, match the corresponding boundary-vertex to a
convex (respectively, reflex) face-vertex of fi. There are always sufficiently many
face-vertices, since each inner face fi is associated with ki pairs of convex and
reflex face-vertices, and the outer face f0 has exactly p = k0 − 4 such pairs. It
is straightforward to match face-vertices with boundary vertices such that the
unmatched face-vertices remain in pairs. Hence we can afterwards choose the
edges between the unmatched pairs of face-vertices in M . For each degree-2
vertex with two π angles, we take the edge between its boundary-vertices in M .
Finally, for each degree-3 vertex v, we match the boundary vertex corresponding
to the π angle of v with v∗. �

2.2.3. Time Complexity:

The number of vertices |V | in B(G) is O(nk), where k = maxi{ki}. Since
there are O(n) boundary-vertices, and for each of the O(n) faces there are O(k)
face-vertices, the number of edges |E| in B(G) is againO(nk). In the preliminary
version of this paper [1], we used the Hopcroft-Karp algorithm [14] to test
for the existence of a perfect matching in B(G) in O(

√
|V ||E|) = O(

√
nk ×

nk) = O((nk)1.5) time. However, based on the best known time-complexity for
computing a maximum bipartite matching [19], a perfect matching in B(G) can
be computed in O(|E|10/7) = O((nk)10/7) time, which dominates the running
time of our algorithm. Note that this matching-based algorithm is slower than
the Õ(n10/7k1/7)-time flow-based algorithm described in Section 3, and hence
our matching-based approach is mostly of theoretical interest.

2.3. Generalizations

In this section we show how we can relax the biconnectivity constraint and
allow the edges to have bends while drawing strict-orthogonal drawings.

2.3.1. Drawings for Simply Connected Graphs

The algorithm in Section 2.2 works when the input graph is biconnected. If
the input graph G is not biconnected, then we can transform the graph in linear
time to a biconnected graph G′ such that G admits a strict-orthogonal drawing
with reflex face complexity k if and only if G′ admits a strict-orthogonal drawing
with some prescribed bound on the face complexities. We compute G′ following
Steps 1–3.

Step 1 (Process degree-one vertices): For each degree-one vertex v, we
construct a cycle C = (v, v1, v2, v3), assign a reflex face complexity 0 inside and
add 3 to the complexity outside of C. The resulting graph now does not contain
any degree-one vertex, and such graphs are processed in Step 2.

9

cu v w

cu

w

v

cu v w

cu v

w

+1

+1

+1 +1

+1

+1

+1

+1

+1

+1

+1

+1

(d)

(b)

c vu

+1 +1

+1

+1 +1

+1

cu v

(a)

G

H

(c)

cu

w

vcu v

w
+1

+1

+1+1

+1

+1

r

a

b

c

d

+1

+1 +1

+1

r

a

b

c

d

Figure 4: Generalization for simply connected graphs.

Step 2 (Process cut edges): G now does not contain any degree-one
vertex. We first replace every sequence of cut edges by a single edge, as shown
in Fig. 4(a). Let the resulting drawing be H. It is straightforward to verify that
such a modification does not destroy the equivalence of G and H, i.e., any strict
orthogonal drawing of H respecting the prescribed bound on face complexity
can be modified to have a valid drawing for G, and vice versa.

Assume now that we have a cut edge c = (u, v) in H. Since we replaced
every sequence of cut edges in G by a single edge, we have deg(u),deg(v) > 2
in H. Let the components attached to u and v be Cu and Cv, respectively. We
now transform H to a graph H ′ such that the corresponding components in H ′

can no longer be disconnected by deleting a single edge, and the transformation
preserves the equivalence between H and H ′. We describe the transformation
corresponding to v distinguishing the following two cases. The modification
around u can be carried out in a similar way.

Case A (deg(v) = 4): This transformation is illustrated in Fig. 4(b). Observe
that v is enclosed by a cycle of eight vertices, which increases the face
complexity of the resulting graph outside the cycle. We can verify from

10

the construction that any strict-orthogonal drawing of H ′ can be modified
to obtain a valid strict-orthogonal drawing of H. All gray shaded faces
are assigned reflex face complexity 0, and the reflex face complexities of
the adjacent exterior faces have been increased accordingly.

Case B (deg(v) = 3): This transformation is illustrated in Fig. 4(c), which
is slightly different than Case A. Observe that this construction allows
enough flexibility to freely choose the orientations of the three neighbors
around v (preserving the input embedding). For any choice of orientations,
the increase in face complexities is consistent, as shown in Fig. 4(c).

Step 3 (Process cut vertices): At this stage H ′ is 2-edge connected,
but it may contain cut vertices. Let r be a cut vertex in H ′. If the deg(r) ≤ 3,
then r must be adjacent to some cut edge, which contradicts that H ′ is 2-edge
connected. We may thus assume that deg(r) = 4. Let a, b, c, d be the neighbors
of r in clockwise order. We enclose r by a cycle of eight vertices, as illustrated
in Fig. 4(d). All gray shaded faces are assigned reflex face complexity 0, and the
reflex face complexities of the adjacent exterior faces have been increased accord-
ingly. We now claim that this transformation does not introduce new cut edges.
Let va, vb, vc, vd be the division vertices on the edges (a, r), (b, r), (c, r), (d, r),
respectively. If (vq, q), where q ∈ {a, b, c, d} is a cut edge in the resulting graph,
then (q, r) must be a cut edge in H ′, which contradicts that H ′ is 2-edge con-
nected.

Consequently, after we process all cut vertices, we obtain the required bi-
connected graph G′.

2.3.2. General Orthogonal Drawing with a Given Face-Complexity

Here we extend our algorithm to general (non-strict) orthogonal drawings.
Note that each bend in an orthogonal drawing can be thought of as a degree-2
vertex on some edge in the graph (e.g., a subdivision of an edge). The following
lemma is a straightforward consequence of this observation.

Lemma 3. Let G be a biconnected plane graph with edges e1, . . . , em and faces
f0, f1, . . . , fr. Consider the sets of non-negative integers t1, . . . , tm and k0(≥ 4),
k1, . . . , kr. Let Gt be a graph obtained from G by subdividing each edge ei exactly
ti times. Then G has an orthogonal drawing, where each edge ei has at most
ti bends and each face fi has at most ki reflex corners if and only if Gt has a
strict-orthogonal drawing where each face fi has at most ki reflex corners.

We may now use Lemma 3 to find a polynomial-time algorithm for orthog-
onal drawings that simultaneously bounds the reflex face complexity and the
number of bends per edge. Our goal in this paper is to bound the reflex face
complexity and we leave the task of designing fast algorithms optimizing multi-
ple objectives as a future work. There exists specialized algorithms for bounding
the number of bends per edge or for optimizing any convex cost associated with
the edges of the input graph, even in the variable embedding setting for some
specific cost functions [4, 3].

11

The following theorem summarizes the main result of this section.

Theorem 1. Let G be an n-vertex plane graph with edges e1, . . . , em and faces
f0, f1, . . . , fr. Given the sets of non-negative integers t1, . . . , tm and k0(≥ 4),
k1, . . . , kr, one can decide in polynomial time whether G has a strict-orthogonal
drawing, where each edge ei has at most ti bends and each face fi has at most
ki reflex corners. Furthermore, such a drawing (if exists) can be computed in
polynomial time.

3. Strict-Orthogonal Drawings via Network Flow

Here we briefly review the network-flow formulations by Tamassia [23] for
computing minimum-bend orthogonal drawings of plane graphs. We then de-
scribe how this algorithm can be modified to compute drawings with bounded
reflex face complexities.

Given a biconnected plane graph G, the corresponding Tamassia’s network
H contains a set of boundary-vertices, VR, and a set of face-vertices, VF ; see
Figs. 5(a)–(b). The set VR of boundary vertices corresponds to the original
vertices of H, and the set VF of face vertices corresponds to the faces of H.
The edges of H are the bidirectional edges of the dual graph of G (dashed edges
in Fig. 5(b), called dual edges) and the edges from each boundary-vertex to
its incident face-vertices (solid edges). Each vertex v ∈ VR is a source with a
production of 4− deg(v) units, where deg(v) is the degree of the corresponding
vertex in G. The production or consumption of each face-vertex f ∈ VF is
either 4 − deg(f) units (for inner faces) or −4 − deg(f) (for the outer face),
where deg(f) is the length of the corresponding face in G. The cost of an
edge is 1 unit if it connects two face-vertices, and 0 otherwise. A min-cost
flow in this network corresponds to an orthogonal drawing of G, as follows. A
flow of t ∈ {0, 1, 2, 3} units from a boundary-vertex to a face-vertex determines a
(t+1)π/2 assignment to the corresponding angle in G. A flow of t units through
some dual edge (dashed edge) corresponds to t bends in the corresponding edge
of G; see Fig. 5(c). Using this network, Tamassia [23] gave an O(n2 log n)-time
algorithm for orthogonal drawing with minimum number of bends. Cornelsen
and Karrenbauer [6] used the same network but improved the running time to
O(n1.5) with a faster min-cost flow algorithm for this planar network.

One can modify the above network to solve the problem of orthogonal draw-
ings with bounded reflex face complexities as follows; see Fig. 5(d). Delete the
dual edges, i.e., dashed edges of H. For each face-vertex vf in H, add a new ver-
tex v′f (unfilled red vertices) in H. For each edge (vb, vf) in H, with a degree-2
boundary vertex vb, add the edge (vb, v

′
f). Add the edges (v′f , vf) and call the

resulting network H ′; see Fig. 5(d). Note that this network does not have costs
on the edges. Also note that only degree-two vertices can contribute to 3π/2
angles in the drawing. Place a capacity upper bound of 1 unit on each edge
that is incident to some degree-two boundary-vertex vb. Consequently, a 3π/2
angle at vb inside some face f corresponds to one unit of flow from vb to vf and

12

(a)

a

b

c

d

e

g

h

j

i

f

(c)

1

2

2

1

2

2

1

1

2 1

2

b

d

e

g

hi

a

c

f

j

(b)

2

2

1

2

−13 2

2

−3

2

1

−1
2

1

0

(d)

Figure 5: (a) A plane graph G, (b) construction of the flow-network H from G by Tamassia,
where VR corresponds to the vertices of G, and VF corresponds of the faces of G. (c) An
orthogonal drawing of G and the corresponding flow, (d) modification of the network by
Tamassia to solve the problem of orthogonal drawing with bounded reflex complexity for the
faces.

one unit of flow through vb, v
′
f , vf . Finally, add a capacity upper bound of kf

on (v′f , vf), where kf is the given reflex face complexity for f .
Although the modified network H described above is nonplanar for k ≥ 1, it

has linear size in the number of vertices n in G, and has no cost associated with
the edges. In the preliminary version of this paper [1], we used the algorithm of
Goldberg and Rao [13] to compute a maximum flow for H in O(n1.5 log n log k)
time. An anonymous reviewer pointed out that one can replace each edge (u, v)
of H with capacity c > 1 by c paths of length two and unit capacity edges, which
yields a unit-capacity network with O(nk) vertices and edges, and one can find
a maximum flow in such a network in O(|V |1/2|E|) = O((nk)1.5) time [10].
Recently, Madry [19] showed that a maximum flow in a network with largest

integer capacity U can be computed in Õ(|E|10/7U1/7) time. Since H has O(n)
vertices and edges, and each edge has O(k) capacity upper bound, the running

time can be expressed as Õ(n10/7k1/7).
For the case when k = 0, we can find a planar network by deleting the

13

unfilled red vertices, i.e., v′f , along with the incident edges. Thus the problem
reduces to finding a maximum flow in a planar network with multiple sources
and sinks, which can be computed in O(n log2 n) time [17] since the productions
and demands of all the vertices of the network are known.

The following theorem summarizes the main result of this section.

Theorem 2. Let G be an n-vertex biconnected plane graph with the outer face
f0 and inner faces f1, . . . , fr. Given the nonnegative integers k0(≥ 4), . . . , kr
with k = maxi{ki}, one can decide in Õ(n10/7k1/7) time whether G has a
strict-orthogonal drawing, where each face fi has at most ki reflex corners, and
construct such a drawing if it exists.

4. NP-Hardness for Planar Graphs

In this section we prove that it is NP-complete to decide whether a planar
biconnected graph admits a strict-orthogonal drawing with a given reflex face
complexity k, even when k = 4. Throughout this section we denote this problem
by Min-Reflex-Draw.

Garg and Tamassia [12] proved that it is NP-hard to decide whether a
maximum-degree-4 planar graph admits a strict-orthogonal drawing. This NP-
hardness proof readily implies the NP-hardness of the problem of computing
a strict-orthogonal drawing with reflex face complexity k, but this proof does
not hold if we restrict k to be a constant. On the other hand, our NP-hardness
proof holds when k = 4, even when it is known that the input graph has a
strict-orthogonal drawing.

We prove the NP-completeness with a reduction from a variation of planar
3-SAT problem (MP3SAT4), which is NP-hard [7]. The input of an MP3SAT4
instance I is a collection C of clauses over a set U of variables such that:

- Each clause contains either two or three variables;

- Each variable appears in at most four clauses, and is negated exactly once;

- Each clause is either positive or negative (i.e., all its variables are either
positive or negative);

- The corresponding SAT-graph GI (i.e., the bipartite graph with vertex set
C ∪U and edge set {(x, y)|x ∈ C, y ∈ U, y ∈ x}) admits a planar drawing.

The MP3SAT4 problem asks to decide whether there is a satisfying truth as-
signment for U satisfying all clauses in C.

Given an instance I = (U,C) of MP3SAT4, where each variable appears in
at most four clauses and negated exactly once, we construct a planar graph H
so that H has a strict-orthogonal drawing with face complexity 4, if and only if
the MP3SAT4 instance is satisfiable.

Every planar graph with n vertices and with maximum degree four admits
a planar orthogonal drawing on a grid of size n× n, and such a drawing can be

14

x1

x2

x3

x4

c1 = (x1 ∨ x3 ∨ x4)

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3)

c4 = (x̄1 ∨ x̄4)

GI

(b)

(a)

(c)

c4

x1 x2 c3

x3 x4

c1
c2

c4

x1 x2

c3

x3 x4

c1

c2

Figure 6: Illustration for (a) GI , (b) Γ, and (c) Γ′.

computed in linear time [2]. Since GI is a graph of maximum degree four, we
can compute a planar orthogonal drawing Γ of GI on a polynomial-size grid.
We construct H from the drawing Γ. Fig. 6(a) illustrates a SAT-graph GI and
Fig. 6(b) depicts an orthogonal drawing Γ of GI .

We first scale the drawing Γ by a factor of 4 both horizontally and vertically.
Let Γ′ be the resulting drawing. Fig. 6(c) depicts a schematic representation of
Γ′. Initially, we define H to be the grid graph underlying Γ′, where we delete
the rows and columns that originally belong to Γ. We now add more vertices
and edges to H. For each variable and each clause, we assign a correspond-
ing variable cell and a corresponding clause cell in H. For example, the cells
corresponding to the variable x1 and clauses c1, c2, c4 are shown in gray. Since
each variable x appears negated exactly once, one side of the variable cell is
intersected by an edge that connects x to a negative clause. We refer to this
side as the heavy side of the variable cell. For example, in Fig. 7(a), the bottom
side of the variable cell for x1 is a heavy side. In each variable cell, we create a
variable-staircase structure of length three, (see Fig. 7(b)), such that the base
of the staircase is adjacent to the heavy side of the cell. Note that this staircase
contributes to four reflex corners in the variable cell, which can be transferred to
the other cell adjacent to the heavy side by flipping the staircase. For each edge
e connecting a variable to a clause, we first find the sequence of cells intersected
by the drawing of e, and then add a staircase of length two and a 5 × 5 grid

15

c1

x1

c2

c4

c1 = (x1 ∨ x3 ∨ x4)

c2=(x1 ∨ x2 ∨ x3)

c4 = (x̄1 ∨ x̄4)

(b) (c)

c1

x1

c2

c4

(a)

Figure 7: (a) Illustration of the reduction, where the variable and clause cells are shaded.
(b) A staircase of length three. (c) A cell with a staircase of length two and a grid structure.

structure (see Fig. 7(c)) to each of these cells, as described below.
The staircase is added at a corner of the cell that cannot be flipped and

contributes to two reflex corners of the cell (these staircases are not shown in
the schematic representations of Figs. 7–8 in order to preserve the clarity of the
drawing). The grid structure is added to those sides that are intersected by the
drawing of e, but not a heavy side. Consequently, if a grid structure belong
to some cell w and attached to some side s of w, then it contributes to two
reflex corners of w, which can be transferred to the other cell adjacent to s by
flipping. Since k = 4, none of the cells on the path from the variable to the
clause cell can contain more than one grid structure. The grid structures are
added exploiting this constraint along the variable to clause path, so that if the
clause is positive (resp. negative), then the placement of the variable-staircase
inside (resp., outside) the variable cell eventually forces a grid structure to fall
into the corresponding clause cell, e.g., see Fig. 7(a).

Finally, for each clause c, we add a staircase of length (6−2|c|) at the corner
of its clause cell, where |c| is the number of variables in c. Such a clause-staircase
ensures that at least one of the grid structures incident to the clause cell must
lie outside of the clause cell (these staircases are not shown in the schematic
representations of Figs. 7–8).

16

Let the resulting drawing be Γ′, as illustrated in Fig. 8(a). It is straight-
forward to carry out the above construction in polynomial time, and one can
observe that any strict-orthogonal drawing must respect the axis-alignments of
the edges of the underlying graph (up to rotation or reflection).

Theorem 3. It is NP-complete to decide if a planar graph admits a strict-
orthogonal drawing with reflex face complexity 4.

Proof: By [23], for any orthogonal drawing of H, one can compute a topologi-
cally equivalent drawing where the vertices and bends are on integer coordinates.
Therefore given a drawing ΓH of H (on integer coordinates), it is straightfor-
ward to decide in polynomial time if Γ is a strict-orthogonal drawing with reflex
face complexity 4. Thus Min-Reflex-Draw is in NP. We now reduce the
MP3SAT4 problem to Min-Reflex-Draw.

Let I = (U,C) be an instance of MP3SAT4, and let H be the corresponding
planar graph. We now prove that H admits a strict-orthogonal drawing with
face complexity 4, if and only if the MP3SAT4 instance is satisfiable.

Given a drawing of H with reflex face complexity 4, we assign the truth value
of a variable depending on whether the corresponding variable staircase is inside
or outside of the variable cell; see Fig. 8(b). By construction, no clause cell can
have all its adjacent grid structures inside it, otherwise it would have at least
(6 − 2|c|) + 2|c| > 4 reflex corners. Consequently, every clause cell must have
one of its grid-structures M outside of the clause cell. Recall that any variable
cell that receives a variable staircase obtains at least 4 reflex corners, and hence
cannot have any grid structure inside it. Therefore, the grid structure M will
force the corresponding variable staircase to lie outside or inside of its variable-
cell depending on whether the clause is positive or negative. We assign the
outside and inside configurations the values true and false, respectively, which
implies that each clause must be satisfied.

On the other hand, given a satisfying truth assignment for I, we orient the
variable-staircases inside or outside depending on whether it is false or true.
The placement for the grid structures is then straightforward, which is guided
by the restrictions on the variable to clause paths. Therefore, to verify that
the reflex face complexity is bounded by 4, we only need to examine the clause
cells. In the following we show that each clause cell with more than 4 reflex
corners can be locally modified so that the modified cell contains at most 4
reflex corners, without inducing more than 4 reflex corners in any other cell.
Let c be a clause that contains all its incident grid-structures inside the cell
yielding (6− 2|c|) + 2|c| > 4 reflex face complexity. Without loss of generality,
assume that the clause is positive. Since c is satisfied, at least one of its variable-
staircase must lie outside of its variable cell. We now can choose this variable-
to-clause path to flip a grid structure out of the clause cell of c.
�

17

(b)

c2

c1

c4

c3

F F T

(a)

c2

c1

c4

c3

F

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3)

c4 = (x̄1 ∨ x̄4)

c1 = (x1 ∨ x3 ∨ x4)

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3)

c4 = (x̄1 ∨ x̄4)

c1 = (x1 ∨ x3 ∨ x4)

x1 x2

x3

x4

x1 x2

x3

x4

Figure 8: (a) Illustration of the reduction, where the variable and clause cells are shaded. (b)
computing truth assignment: x1 = x2 = x4 =false, x3=true.

18

5. Conclusion

Motivated by the problem of rectilinear schematization of maps, we consider
two natural variants: one when we are given the same “allowance” of corners for
each region, and the another, when each region has its own number of corners.
We described two polynomial-time algorithms to compute a solution (or report
that one does not exist). If the largest number of allowed corners over all the

regions is k, then our matching-based algorithm takes Õ((nk)10/7)-time, and

the flow-based algorithm takes Õ(n10/7k1/7)-time.
One potential direction for speeding up our matching-based approach could

be based on the concept of a b-matching. Given a graph G in which each vertex
v has a degree bound b(v), the b-matching problem asks to to find a maximum
cardinality set of edges M ⊆ E, such that v is incident to at most b(v) edges
of M . Madry [19] proved that a maximum bipartite b-matching with maximum

degree bound β can be computed in Õ(|E|10/7β1/7) time. Therefore, a promising
strategy would be to reduce the problem of computing a perfect matching in
B(G) (see Section 2.2) to the problem of computing a maximum bipartite b-
matching in some linear size graph, where the maximum degree bound for each
vertex is k.

We also showed that in the variable-embedding setting the problem of de-
ciding whether a biconnected planar graph admits a strict-orthogonal drawing
with a given reflex face complexity 4 is NP-complete. Therefore, it would be
worthwhile to consider the complexity of the problem for specific values of k,
where k < 4.

Acknowledgments

We thank the anonymous reviewers for pointing out how network-flow for-
mulations from earlier work can be modified to compute orthogonal drawings
with bounded reflex face complexities, and for the suggestions on improving the
NP-hardness result.

References

[1] M. J. Alam, S. G. Kobourov, and D. Mondal. Orthogonal layout with
optimal face complexity. In Proceedings of the Forty-First International
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), LNCS, pages 121–133. Springer, 2016.

[2] T. C. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
Computational Geometry, 9(3):159–180, 1998.

[3] T. Bläsius, M. Krug, I. Rutter, and D. Wagner. Orthogonal graph drawing
with flexibility constraints. Algorithmica, 68(4):859–885, 2014.

[4] T. Bläsius, I. Rutter, and D. Wagner. Optimal orthogonal graph drawing
with convex bend costs. ACM Trans. Algorithms, 12(3):33:1–33:32, 2016.

19

[5] M. Chimani, C. Gutwenger, M. Jünger, G. Klau, K. Klein, and P. Mutzel.
The open graph drawing framework. In Handbook of Graph Drawing and
Visualization, pages 543–571. 2013.

[6] S. Cornelsen and A. Karrenbauer. Acclerated bend minimization. Journal
of Graph Algorithms and Applications, 16(3):635–650, 2012.

[7] A. Darmann, J. Döcker, and B. Dorn. On planar variants of the mono-
tone satisfiability problem with bounded variable appearances. CoRR,
abs/1604.05588, 2016. http://arxiv.org/abs/1604.05588.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. The MIT Press, 3rd edition,
2009.

[9] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz - open source graph drawing tools. In Proceedings of the 9th
International Symposium on Graph Drawing (GD), volume 2265 of LNCS,
pages 483–484. Springer, 2001.

[10] S. Even and R. E. Tarjan. Network flow and testing graph connectivity.
SIAM Journal on Computing, 4(4):507–518, 1975.

[11] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend
numbers. In Symposium on Graph Drawing (GD), volume 1027 of LNCS,
pages 254–266. Springer, 1995.

[12] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625,
2001.

[13] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal
of the ACM, 45(5):783–797, 1998.

[14] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[15] M. Kaufmann and D. Wagner. Drawing Graphs: Methods and Models,
volume 2025 of LNCS. Springer-Verlag, London, UK, 2001.

[16] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: human-like
orthogonal network layout. IEEE Transactions on Visualization and Com-
puter Graphics, 22(1):349–358, 2016.

[17] P. N. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar
graphs with negative lengths: A linear-space O(n log2 n)-time algorithm.
ACM Transactions on Algorithms, 6(2):236–245, 2010.

[18] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Symposium on
Foundations of Computer Science (FOCS), pages 270–281, 1980.

20

[19] A. Madry. Computing maximum flow with augmenting electrical flows.
In Proceedings of the IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 593–602. IEEE Computer Society, 2016.

[20] K. Miura, H. Haga, and T. Nishizeki. Inner rectangular drawings of plane
graphs. International Journal of Computational Geometry and Applica-
tions, 16(2–3):249–270, 2006.

[21] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific,
Singapore, 2004.

[22] M. S. Rahman, N. Egi, and T. Nishizeki. No-bend orthogonal drawings
of subdivisions of planar triconnected cubic graphs. IEICE Transactions,
88-D(1):23–30, 2005.

[23] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

[24] W. Tobler. Thirty five years of computer cartograms. Annals of Association
of American Geographers, 94:58–73, 2004.

[25] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans-
action on Computers, 30(2):135–140, 1981.

[26] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and
automatic layout of graphs. In Proceedings of the 9th International Sympo-
sium on Graph Drawing, volume 2265 of LNCS, pages 453–454. Springer,
2001.

21

	Introduction
	Optimization Goals and Challenges
	Our Contributions

	Strict-Orthogonal Drawing Algorithms for Plane Graphs
	Orthogonal Drawing using Angle Assignment
	Bipartite Graph Matching Formulation
	Construction of B(G):
	Reduction:
	Time Complexity:

	Generalizations
	Drawings for Simply Connected Graphs
	General Orthogonal Drawing with a Given Face-Complexity

	Strict-Orthogonal Drawings via Network Flow
	NP-Hardness for Planar Graphs
	Conclusion

