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Abstract. We examine the problem of counting the number of Hamil-
tonian paths and Hamiltonian cycles in outerplanar graphs and planar
graphs, respectively. We give an O(nαn) upper bound and an Ω(αn)
lower bound on the maximum number of Hamiltonian paths in an outer-
planar graph with n vertices, where α ≈ 1.46557 is the unique real root
of α3 = α2 + 1. For any positive integer n ≥ 6, we define an outerpla-
nar graph G, called a ZigZag outerplanar graph, such that the number
of Hamiltonian paths starting at a single vertex in G is the maximum
over all possible outerplanar graphs with n vertices. Finally, we prove
a 2.2134n upper bound on the number of Hamiltonian cycles in planar
graphs, which improves the previously best known upper bound 2.3404n.

1 Introduction

Counting of combinatorial objects is a fundamental problem in combinatorics.
Given a graph G with n vertices, a straightforward approach to count the num-
ber of Hamiltonian paths in G is to use a naive backtracking algorithm that
enumerates all possible paths in G. Since the problem of determining whether
any Hamiltonian path exists in a given graph is NP-hard [7], determining their
exact number is also NP-hard.

Much research effort has been devoted to counting as well as bounding the
number of Hamiltonian paths and Hamiltonian cycles in graphs [1, 3, 4] and
various classes of graphs, such as cubic graphs [8, 6], grid graphs [3] and planar
graphs [2]. The currently best known upper and lower bounds on the number of
Hamiltonian cycles in planar graphs are established by Buchin et al. [2], which
are 2.3404n and 2.0845n, respectively. They also gave a 2.8927n upper bound
and a 2.4262n lower bound on the number of simple cycles in planar graphs.
Recently, de Mier and Noy [5] proved that the number of simple cycles in an
outerplanar graph is Θ(1.502837n).

Although there exists a polynomial-time algorithm to determine the number
of Hamiltonian paths in the graphs with bounded treewidth [9], finding a tight

1
Work of the author is supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC).



upper bound on that number is a non-trivial task (e.g., counting Hamiltonian
paths in a rectangular grid of small width [3]). On the other hand, we can find a
fairly tight upper bound on the number of Hamiltonian paths in an outerplanar
graph G with n vertices by simply solving a recurrence formula as follows. Let a
be a vertex of G (without loss of generality assume that G is maximal). We can
define the number of Hamiltonian paths of G starting at a recursively, as shown
in Figures 1(a)–(c). The numbers k1 and k2 represent the number of vertices
(that are not shown explicitly) in the corresponding shaded regions. A partial
Hamiltonian path starting at a can be extended along the path shown in bold,
where the vertices already visited are shown in gray, the current vertex is shown
in white. The vertices still to be visited either lie in the dark gray region or are
shown in black. Consequently, the number of Hamiltonian paths starting at a is

T (n) = max{T (n− k2 − 2) + T (n− k2 − 3) + T (n− k1 − 3) + T (n− k1 − 2),

T (n− 1) + T (n− 3), T (n− k1 − 2) + T (n− k2 − 2)},

which is dominated by T (n− 1)+T (n− 3) and hence bounded by O(1.46557n).
This also suggests that the number of Hamiltonian paths of an outerplanar graph
is maximized when the graph has low maximum degree.
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Fig. 1. Counting Hamiltonian Paths. Illustration for the cases when (a) degree(a)=2
and k1, k2 > 0, (b) degree(a)=2 and k2 = 0, and (c) degree(a)> 2 and k1, k2 ≥ 0.

We give a combinatorial proof for an O(nαn) upper bound and an Ω(αn)
lower bound on the maximum number of Hamiltonian paths in an outerplanar
graph with n vertices, where α ≈ 1.46557 is the unique real root of α3 = α2 +1.
Our proof relies on graph transformation. We show that given a maximal out-
erplanar graph G with n vertices and a vertex x in G, one can insert/delete
constant number of vertices and edges to obtain another combinatorially dif-
ferent maximal outerplanar graph G′ with n vertices such that the maximum
number of Hamiltonian paths starting at some vertex y in G′ is at least as large
as the maximum number of Hamiltonian paths in G that start at x. If we apply
such a transformation repeatedly, then within 3n/2 steps we can find an outer-
planar graph G′′ such that the number of Hamiltonian paths starting at a vertex
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in G′′ is maximum over all the outerplanar graphs with n vertices. Contrary to
proofs using recurrence relations, this proof helps characterize some the struc-
tural properties of outerplanar graphs. Furthermore, we prove a 2.2134n upper
bound on the number of Hamiltonian cycles in planar graphs, which improves
the previously best known upper bound 2.3404n and reduces the previous gap
between the upper and lower bound for the exponential growth from 0.46 to
0.13.

2 Preliminaries

Let G be a graph with n vertices. By V (G) and E(G) we denote the set of
vertices and the set of edges in G, respectively. By |V (G)| we denote the number
of vertices of G, i.e., |V (G)| = n. By (u, v) we denote an edge between the
vertices u and v. Let G be a graph and let G′ be a subgraph of G. By G−G′ we
denote the graph obtained by deleting all the vertices of G′ from G. A separating
pair of G is a pair of vertices {x, y} whose deletion disconnects G. If x and y are
neighbors, then the pair is called a separating edge.

A graph is outerplanar if it has a planar embedding with all its vertices on the
outer face. An outerplanar graph is maximal if the addition of any edge violates
outerplanarity. Let G be a maximal outerplanar graph with n > 3 vertices and
let {x, y} be a separating edge of G. Then deletion of the vertices x and y from
G will give two connected components G′ and G′′. We call the subgraphs G−G′

and G−G′′ the split graphs with respect to {x, y}. By 〈u1, u2, . . . , uk〉 we denote
a simple path of k vertices. We now have the following fact.

Fact 1. Let G be a maximal outerplanar graph with n vertices. For any Hamil-
tonian path 〈v1, v2, . . . , vn〉 in G, the edge (v1, v2) must be an outer edge of G.
Let (u, v) be an outer edge of G. Then the Hamiltonian path that starts at u and
ends at v is unique and lies along the outer face of G.

It is straightforward to design a backtracking algorithm based on Fact 1 that
takes a maximal outerplanar graph G (a fixed combinatorial plane embedding
of G) and a vertex x of G as input and then enumerates all the Hamiltonian
paths of G that start at vertex x. Starting at x such an algorithm constructs
a Hamiltonian path incrementally by visiting the unvisited vertices one after
another. At each vertex the algorithm can have at most two choices to move
forward to the next vertex and at each forward phase the algorithm is guaranteed
to produce a new Hamiltonian path. Once a Hamiltonian path is produced, the
algorithm backtracks to find a vertex that can initiate a forward move that has
not been taken yet. If there is no such vertex, then the algorithm terminates. We
will use this idea of enumerating Hamiltonian paths in our counting technique.

3 Hamiltonian Paths in Outerplanar Graphs

In this section we give an O(n1.47n) upper bound on the number of Hamiltonian
paths in an outerplanar graph with n vertices. Since the addition of an edge in a
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graph does not decrease the number of Hamiltonian paths, it suffices to consider
only maximal outerplanar graphs.

LetG be a maximal outerplanar graph and let v be a vertex ofG. By h(G)v we
denote the number of Hamiltonian paths in G starting at vertex v. If the number
of Hamiltonian paths starting from v in G is the maximum over all vertices of
G, then we say v is an ace vertex of G. By N (G) we denote the number of
Hamiltonian paths in G starting at an ace vertex of G. In the following we give
an outline of our proof technique.

Step 1: Let Sn be the set of all maximal outerplanar graphs of n vertices,
where n ≥ 6, whose weak dual is a path. We prove that there exists a graph
G ∈ Sn, such that N (G) is the maximum over all possible maximal outerplanar
graphs of n vertices. See Theorem 1.
Step 2: We then identify such a graph G and refer to that graph as a ZigZag
graph. See Theorem 2.
Step 3: Finally, we identify an ace vertex v in G. We give an O(1.47n) up-
per bound on h(G)v. Consequently, we obtain an O(n1.47n) upper bound on
the number of Hamiltonian paths in any outerplanar graph of n vertices. See
Theorem 3.

Let G be a maximal outerplanar graph with n vertices. Then the weak dual
T of G is a binary tree which has a vertex for each bounded face of G, and two
vertices in T are adjacent if the corresponding faces in G share an edge. Let f
be a face in G. Then the node in T that corresponds to the face f is the dual
node of f . We can define the weak dual T as a rooted ordered binary tree as
follows. If n = 3, then T contains a single node which is the root r. Otherwise,
n > 3 and we take any vertex of degree one as the root r of T . Observe that r
has only one child v. By convention, we set v to be the left child of r. For any
node u 6= r in T , let the parent of u be w and let (a, b) be the common edge
of the two faces of G that correspond to the vertices u and w. Let the vertices
on the triangular face corresponding to u be a, b, c in clockwise order. Let f and
f ′ be the triangular faces (if any) other than abc that contain the edges (a, c)
and (b, c), respectively. Then the dual nodes of f and f ′ are the left and right
children of u, respectively.

We now prove the correctness of Step 1. For any maximal outerplanar graph
G with n ≥ 6 vertices we construct another maximal outerplanar graph G′ with
n vertices such that N (G′) ≥ N (G) and the number of vertices of degree three
in the weak dual of G′ is less than the number of vertices of degree three in the
weak dual of G.

We first examine the properties of Hamiltonian paths in G. Let the number
of vertices of degree three in T be x, where x ≥ 1. Let abc be a face of G such
that no edge of abc is an outer edge. Then the dual node v of abc must be a
vertex of degree three in T . See Figure 2. Let G1 and G2 be the two split graphs
of G with respect to the separating edge {a, b}, where G1 contains the vertex
c. Let p be any vertex in G2 other than a, b. Since {a, b} is a separating edge
in G, any Hamiltonian path starting at p must contain a subpath, which is a
Hamiltonian path of G1, G1 − {a} or G1 − {b}.
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For convenience, we redefine T as an ordered rooted tree, where the root
corresponds to some face in G2. We now compute h(G1)a, h(G1)b, and then
h(G1−{b})a, h(G1−{a})b. We need the following lemma, whose proof is omitted
due to space constraints.

Lemma 1. Let G be a maximal outerplanar graph and let (a, b) be an outer edge
of G. Then there exists a Hamiltonian path in G−{a} starting from b that ends
at a vertex of degree two in G.

Let GL (resp., GR) be the subgraph of G that contains the left (resp., right)
subtree of v as its weak dual. We now compute h(G1)a and h(G1)b considering
the following cases.

(a) The Hamiltonian paths that start at a, visit the vertices in GL along the
outer face ending at c, and then visit GR starting at c.

(b) The Hamiltonian paths that start at a, visit the vertices in GR along the
outer face starting at b and ending at c, and then visit the vertices in
GL−{a, c}.

(c) The Hamiltonian paths that start at b, visit the vertices in GR along the
outer face ending at c, and then visit the vertices in GL starting at c.

(d) The Hamiltonian paths that start at b, visit the vertices inGL along the outer
face starting at a and ending at c, and then visit the vertices in GR−{b, c}.
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Fig. 2. Illustration for (a) G, and (b) G′.

Therefore, h(G1)a = h(GR)c+h(GL−{a})c and h(G1)b = h(GL)c+h(GR−{b})c.
In the following we construct the graph G′. By Lemma 1, at least one Hamil-

tonian path in GR − {b} starts from c and ends at a vertex of degree two in
GR −{b}. Let that vertex be c′ and let the vertex just before c′ on that path be
a′. Let u be the dual node of the face a′b′c′ of G. See Figure 2(a). Take a copy
of G, remove all the vertices of GL other than a and c from that copy. Let the
resulting graph be X. Now take a copy of GL and merge the vertices a and c of
GL with the vertices a′ and c′ of X, respectively, and then remove any resulting
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multi-edges. We denote the resulting graph by G′. See Figure 2(b). Let the weak
dual of G′ be T ′. Observe that the construction of G′ can be described by an
operation on T as follows: remove the left subtree of v and add that subtree as
a subtree of u. We call this operation child swap. Since u and v are vertices of
degree two in T ′, the number of vertices of degree three in T ′ is x− 1.

Let G′
1 be the subgraph of G′, where the weak dual of G′

1 is the subtree of
T ′ rooted at v. Observe that the two split graphs of G′

1 − {a} with respect to
{a′, c′} consist of a copy of GL and a copy of GR. For simplicity, we use the
same notation, i.e., GL and GR, to denote those split graphs. We now compute
h(G′

1)a and h(G′
1)b considering the following cases.

(a) The paths that start at a and then visit the vertices in GR starting at c.
For every such path that does not end at c′, we replace the subpath 〈a′, c′〉
(resp., 〈c′, a′〉) with the outer face of GL starting at a′ and ending at c′

(resp., starting at c′ and ending at a′). For every path that ends at c′, we
extend that path along the outer face of GL − {a′}. Therefore, the number
of such Hamiltonian paths is at least h(GR)c.

(b) The paths that start at a and then visit the vertices in GR starting at b. For
every such path we replace the subpath 〈a′, c′〉 (resp., 〈c′, a′〉) with the outer
face of GL starting at a′ and ending at c′ (resp., starting at c′ and ending at
a′). If we visit c after b, then by construction of G′, at least one Hamiltonian
path in GR − {b} that starts from c must end at c′. Recall that the path
visits a′ just before c′. Therefore, we can take the sequence a to a′ of that
path and extend it in h(GL)a′ ways. Otherwise, we start from b and visit the
outer face of G′

1 − {a} ending at c. Therefore, the number of Hamiltonian
paths is at least h(GR −{b})c − 1+ h(GL)a′ +1 = h(GR −{b})c + h(GL)a′ .

(c) The paths that start at b, visit a, then visit the vertices in GR−{b} starting
at c. As in Case 2, i.e., (b), these paths can be extended to at least h(GR −
{b})c − 1 + h(GL)a′ Hamiltonian paths in G′

1.
(d) The Hamiltonian path that starts at b and then visits the outer face of G′

1

ending at a. This Hamiltonian path is unique by Fact 1.

Before the child swap operation we relabel the vertices a, c of G in the following
way so that after child swap h(GL)a′ ≥ h(GL)c′ holds. If h(GL)a < h(GL)c, we
swap the labels of the vertices a and c. In the case when we do not change labels,
h(GL)a′ = h(GL)a > h(GL − {a})c. Otherwise, h(GL)a′ = h(GL)c > h(GL)a >
h(GL−{a})c. Therefore, h(G

′
1)a ≥ h(GR)c+h(GR−{b})c+h(GL)a′ ≥ h(G1)a,

and h(G′
1)b ≥ h(GR − {b})c + h(GL)a′ ≥ h(G1)b.

Similarly, we can compute that h(G1−{a})b = h(GL−{a})c, h(G1−{b})a =
h(GR−{b})c, h(G

′
1−{a})b ≥ h(GR−{b})c+h(GL)a′ , and h(G′

1−{b})a ≥ h(GR−
{b})c. Therefore, h(G

′
1−{b})a ≥ h(G1−{b})a and h(G′

1−{a})b ≥ h(G1−{a})b.
Recall that for any vertex p ∈ V (G2−{a, b}), any Hamiltonian path starting

at p must contain a subpath, which is a Hamiltonian path of G1, G1 − {a} or
G1−{b}. We have proved that in each of these cases, the number of such subpaths
in G′ is greater than or equal to the number of such subpaths in G. Therefore,
for any vertex p ∈ V (G2 − {a, b}), h(G′)p ≥ h(G)p. We use the above technique
to prove the following theorem.
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Theorem 1. For any positive integer n ≥ 6, there exists an outerplanar graph
G such that the weak dual of G is a path and N (G) is the maximum over all
possible outerplanar graphs of n vertices.

Proof (Outline). Let Y be a graph whose weak dual is not a path and N (Y ) is
the maximum over all possible outerplanar graphs of n vertices. Suppose for a
contradiction that there is no graph G whose weak dual is a path and h(G)x ≥
N (Y ), for some vertex x in G.

Let T be the weak dual of Y . Since T is not a path, there is at least one node
v of degree three in T . Let abc be the face of Y that corresponds to v, where the
vertices a, b, c appear on the face abc in clockwise order. Let Sab be the set of
outer vertices between a and b in clockwise order on the outer face of Y . Define
sets Sbc and Sca in a similar way. Let w be an ace vertex of Y .

If w belongs to Sab, Sbc or Sca, then by the child swap operation we can
construct a graph Y ′ from Y such that h(Y ′)w ≥ N (Y ) and the number of
vertices of degree three in the weak dual of Y ′ is one less than that of T . Oth-
erwise, w ∈ {a, b, c}. Also in this case, we can prove that h(Y ′)w ≥ N (Y ); a
detailed proof is omitted due to space constraints. We apply the process repeat-
edly on the resulting graph to construct a graph G whose weak dual is a path
and h(G)x ≥ N (Y ), for some vertex x in G, a contradiction. ⊓⊔

We now prove the correctness of Step 2. Let G be a maximal outerpla-
nar graph with n ≥ 3 vertices and let T be its weak dual. Let T be a path
〈r, u1, u2, . . . , un−3〉 rooted at r. By definition, u1 is the left child of r. For each
i, 1 ≤ i ≤ n−4, assume that ui+1 is the left child of ui if i is even, and right child
of ui otherwise. We then call G a ZigZag outerplanar graph. See Figure 3(d). Let
G′ be another outerplanar graph of n vertices such that the weak dual T ′ of G′

is a path v1, v2, . . . , vn−2 rooted at v1. If G
′ is not a ZigZag outerplanar graph,

then there is a subpath 〈vi−1, vi, vi+1〉, 1 < i < n− 2, such that either each of vi
and vi+1 is the left child of their parents, or both of them are the respective right
children of their parents. We call such a subpath a repeated ancestry. Without
loss of generality, suppose that both of vi and vi+1 are the respective left chil-
dren of their parents and the child of vi+1 is a right child, if any. We construct
a graph G′′ from G′, by applying one of the following flip operations such that
the number of repeated ancestries in the weak dual T ′′ of G′′ is at least one less
than the number of repeated ancestries in T ′. See Figures 3(a)–(c).

Child flip: Let Y be the subgraph of G′ that contains the subtree rooted at
vi as its weak dual. This operation takes a copy of G′ and replaces the subgraph
Y with a mirror copy of Y . This construction can be described by T ′ as follows:
for each node y in the subtree rooted at vi, this operation flips the left-right
order of the child of y. See Figure 3(b), where v = vi and w = vi+1.

Parent flip: Let (a, e) be the common edge of the faces that correspond to
the vertices vi−1 and vi of T

′. Let the two split graphs with respect to {a, e} be
Y and Z, where the weak dual T1 of Y is rooted at vi. Let z be the leaf of T1

and let the vertices of Y on the face corresponding to z be a′, b′, c′ in clockwise
order such that c′ is a vertex of degree two. If z is the left child of its parent
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then we connect the weak dual of Z rooted at vi−1 as a right subtree of z, by
merging vertices e, a to the vertices b′, c′, respectively. Otherwise, we merge the
vertices e, a to the vertices a′, c′, respectively. See Figure 3(c), where u = vi−1,
v = vi and z is the right child of its parent.

Lemma 2. Let G be an outerplanar graph, where the weak dual of G is a path
with at least one repeated ancestry. Then there exists an outerplanar graph G′

that can be obtained from G by a single flip operation such that N (G′) ≥ N (G).

We apply flip operations on G repeatedly using Lemma 2. Since at each
step the number of repeated ancestries decreases, we finally obtain a ZigZag
outerplanar graph. Consequently, we have the following theorem.

Theorem 2. Let G be a ZigZag outerplanar graph with n ≥ 6 vertices. Then
N (G) is the maximum among all possible outerplanar graphs with n ≥ 6 vertices.

We now prove the correctness of Step 3. Let G be a ZigZag graph with n
vertices. See Figure 3(d). We now give a bound on N (G). For any n ≥ 6, a
ZigZag graph of n vertices has exactly two vertices of degree two and exactly
two vertices of degree three; all the other vertices are of degree four. Let a, y and
b, x be the vertices of degree two and degree three in G, respectively. Using the
zigzag structure of G, it is straightforward to observe that h(G)a = h(G)y and
h(G)b = h(G)x, independent of the parity of n. Let {hn}i, i ∈ {2, 3, 4}, be the
maximum number of Hamiltonian paths in a ZigZag graph of n vertices starting
from any vertex of degree i.
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Fig. 3. (a) G′. (b) G′′, which is obtained by a child flip on G′. (c) G′′, which is obtained
by a parent flip on G′. (d) A ZigZag graph.

We first compute {hn}2. Without loss of generality we compute the number
of Hamiltonian paths starting at a in G. Any Hamiltonian path that starts
from a, chooses either b or c as the next vertex to visit. If the next vertex is
b, then the number of such Hamiltonian paths will be equal to the number of
Hamiltonian paths in the ZigZag graph G − {a} starting at a vertex of degree
two, which is {hn−1}2. If the next vertex is c, then there are two ways to choose
the next vertex. If we visit vertex b and then vertex d, then the number of
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Hamiltonian paths will be equal to the number of Hamiltonian paths in the
ZigZag graph G− {a, b, c} starting at a vertex of degree two, which is {hn−3}2.
Otherwise, we have to visit e after c and then we can complete a Hamiltonian
path in only one way, i.e., by visiting the vertices along the outer face. Therefore,
{hn}2 = {hn−1}2 + {hn−3}2 + 1. The solution to this recurrence is bounded by
O(αn), where α ≈ 1.46557 is the unique real root of α3 = α2+1. This recurrence
establishes a lower bound of Ω(αn) on the maximum number of Hamiltonian
paths in an outerplanar graph of n vertices, as follows.

Observe that {hn}2 > {hn−1}2+{hn−3}2. We claim that {hn}2 > αn−1. The
case when n ∈ {6, 7, 8} is straightforward since {h6}2 = 9 > α5, {h7}2 = 14 > α6

and {h8}2 = 21 > α7. Assume that for all k, where 8 < k < n, {hk}2 > αk−1.
Now {hn}2 > {hn−1}2 + {hn−3}2 > αn−2 + αn−4 = αn−4(α2 + 1) = αn−1.
Consequently, {hn}2 ∈ Ω(αn).

We compute {hn}3 and {hn}4, and prove that {hn}2 > {hn}3 and {hn}2 >
{hn}4. We thus have the following theorem.

Theorem 3. The number of Hamiltonian paths in any outerplanar graph with
n vertices is O(nαn). Furthermore, there exists a maximal outerplanar graph
with n vertices that contains Ω(αn) Hamiltonian paths.

4 Hamiltonian Cycles in Planar Graphs

In this section we modify the idea of the proof of Buchin et al. [2] to obtain an
improved upper bound on the number of Hamiltonian cycles in planar graphs.

Since the number of simple cycles in a planar graph G is an upper bound
on the number of Hamiltonian cycles in G, we first find a recurrence relation
for the number of simple cycles in G using a similar argument as in [2, Lemma
1]. We then simplify that recurrence relation to obtain an upper bound on the
number of Hamiltonian cycles. Unlike Buchin et al., we impose some restrictions
on the cycles that we count, as shown in the following lemma. We will need the
concept of cycle-path, which is a simple path in G that can be completed to a
simple cycle in G.

Lemma 3. Let G = (V,E) be a maximal plane graph with n ≥ 3 vertices. For
each vertex v ∈ V , partition the edges incident to v into two non-empty sets sv
and s′v, which are local to v, such that the edges in each set appear consecutively
around v in clockwise order. Let H(G) be the number of restricted Hamiltonian
cycles in G, where a Hamiltonian cycle h is called restricted if for every vertex
v, the two edges that are incident to v in h do not belong to the same set sv or
s′v. Then H(G) = O(n2n).

Proof. A cycle-path P of G is called restricted if for every internal vertex v of
P , the two edges that are incident to v in P do not belong to the same set sv or
s′v. Figure 4(a) illustrates a restricted cycle-path.

Every edge e ∈ E can have two orientations, which we denote by e′ and
e′′. We first count the number of cycle-paths starting at a fixed edge e ∈ E.
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Let P ′ and P ′′ be the upper bounds on the total number of restricted cycle-
paths starting from e with orientation e′ and e′′, respectively. Then P ′ and P ′′

must be the same by the symmetry of the edge orientations. To simplify the
explanation, assume that the total number P of restricted Hamiltonian cycles
starting from e is min{P ′, P ′′}. Without loss of generality we give the starting
edge the orientation e′.

We associate restricted cycle-paths with the nodes of a tree. The root of
the tree contains the path of length one corresponding to the starting edge.
The children of a tree node contain paths starting with the path stored in the
predecessor plus an additional edge. Every restricted cycle-path is stored in only
one tree node. The children of a tree node φ are defined as follows: If the oriented
path arrives to a vertex v, and the last edge of the oriented path belongs to sv
(respectively, s′v), then the children of that tree node consist of the edges in s′v
(respectively, sv).

No matter which child we choose to continue the path, we will mark all the
faces incident to v so that we can avoid reconsidering these faces while continuing
the path. Let kv be the number of unmarked faces that lie among the edges
corresponding to the children of φ. Then the number of children of φ is kv + 1.
Figure 4(b) gives an example of φ and its children. It is now straightforward to
verify that P ′ can be expressed by the following recurrence:

P ′(n, f) ≤ (kv + 1) · P ′(n− 1, f − kv) + 1, (1)

where f is the number of faces in G and P ′(i, j) is the number of cycle-paths in
G with i unvisited nodes and j unmarked faces.

Since we want to maximize the number of nodes in the recursion tree, we can
assume that the kvs for all v within a level l of the tree are equal [2, Lemma 1].
Let kl be the number kv for the vertices v on level l.

P ′ = P ′(n − 2, 2n − 6) will give us the number of nodes in the tree, where
P ′(0, ·) = P ′(·, 0) = 1. Observe that for each oriented cycle, we can define
another cycle with the opposite orientation. Define a term k′l analogous to the
term kl for the cycle with opposite direction. Then all kls and k′ls have to be non-
negative numbers. Now the kls and k′ls along a cycle have to fulfill the condition
∑

l≤L(kl+k′l) ≤ 2n−6, where L ≤ n−1. We now bound the number of restricted
Hamiltonian cycles P as follows:

P ≤ min{P ′, P ′′} ≤ min







n−1
∑

L=1

∏

l≤L

(kl + 1),

n−1
∑

L=1

∏

l≤L

(k′l + 1)







. (2)

We are interested in a set kl which maximizes (1). Due to the convexity of
∏

1≤l≤n−1(kl+1) (respectively,
∏

1≤l≤n−1(k
′
l+1)), the maximum will be attained

when all kl (respectively, all k
′
l) are equal. To maximize Equation (2), we now

need to maximize kl or k′l. Since
∑

1≤l≤n−1(kl + k′l) ≤ 2n − 6 holds and we

are taking min{P ′, P ′′}, Equation (2) is maximized when kl and k′l are equal1.

1
Since we are bounding only the number of restricted Hamiltonian cycles, we can safely ignore the
effect of restricted cycle-paths that are not Hamiltonian.
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Consequently, kl = k′l =
2n−6
2(n−1) and

P ≤
n−1
∏

l=1

(kl + 1) =

n−1
∏

l=1

(
2n− 6

2(n− 1)
+ 1). (3)

We ignore the summation since P is an upper bound only on the number of re-
stricted Hamiltonian cycles. Therefore, the exponential growth of the maximum
number of restricted Hamiltonian cycles that contains the edge e is 2n. ⊓⊔

a

b

c

e
f

g

d

b

c

e

g

(a) (b) (c)

h fa

d

a

b

cd

e
f

g

Fig. 4. (a) A restricted cycle-path in G, which is shown in dashed line. For each vertex
v, the sets sv and s′

v
are shown in dark-gray and light-gray, respectively. Assume that

φ = (a, b, c, d). Then (d, b), (d, a) and (d, g) are the candidates for the children of φ. (b)
The faces that are marked are shown in light-gray. Since the faces incident to (d, b)
are already marked, we only consider (a, b, c, d, a) and (a, b, c, d, g) as the children of φ.
Therefore, kv + 1 = 2. (c) Illustration for the proof of Theorem 4, where the edges in
M are shown with dashed lines.

Theorem 4. The exponential growth of the maximum number of Hamiltonian
cycles in a planar graph with n vertices is 2.2134n.

Proof. First consider the case when n is even. Any Hamiltonian cycle in a
maximal planar graph G with an even number of vertices splits into two non-
intersecting perfect matchings. We now count the number of ways that a perfect
matching M in G can be extended to a Hamiltonian cycle. Let e be an edge of
M , where x and y are the end vertices of e. We define two sets se and s′e, which
are local to e, such that se and s′e consists of the edges incident to x and y,
respectively. We define such pair of sets for every edge in M , as shown in Fig-
ure 4(c). Observe that each edge in M plays the role of a single vertex and hence
the number of ways that M can be extended to a Hamiltonian cycle is equal
to the number of restricted Hamiltonian cycles in G. We count these restricted
Hamiltonian cycles in a way similar to Lemma 3 by modifying the parameters
n, f, kl, k

′
l as follows.

For each edge e in M we mark the faces adjacent to e. Since for any two edges
{e1, e2} ⊆ M , the pair of faces incident to e1 and the pair of faces incident to e2
are different, the number of unmarked faces in G is (2n− 4)− n = n− 4. Since
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each edge in M play the role of a single vertex, kl = k′l =
n−4

2.(n/2) . Therefore, the

the number of ways that M can be extended to a Hamiltonian cycle is

O(n) ·

n/2−1
∏

l=1

(kl + 1) = O(n) ·

n/2−1
∏

l=1

(
n− 4

n
+ 1) = O(n2n/2). (4)

Observe that the upper bound on the number of Hamiltonian cycles in G is the
number of perfect matchings M in G times O(n2n/2). Since M ≤ 6n/4 [2], the
exponential growth of the maximum number of Hamiltonian cycles in a planar
graph with n vertices is 6n/4 · 2n/2 < 2.2134n. The case when n is odd can be
dealt in a similar way as in [2, Theorem 4]. ⊓⊔

5 Conclusion

In this paper we have given an 2.2134n upper bound on the number of Hamil-
tonian cycles in planar graphs. We have also proved an O(nαn) upper bound
and an Ω(αn) lower bound on the number of Hamiltonian paths in outerpla-
nar graphs, where α ≈ 1.46557. It would be interesting to examine whether the
techniques of this paper can be extended to establish similar results for planar
graphs with bounded treewidth.

We have proved the 2.2134n upper bound on the number of Hamiltonian
cycles in a planar graph under certain assumptions on the recursion tree de-
termined by Equation (1). It would be nice to have an alternative proof that
achieves the same upper bound, but does not use any such assumptions.
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9. R. Pichler, S. Rümmele, and S. Woltran. Counting and enumeration problems with

bounded treewidth. In Proceedings of LPAR, volume 6355 of LNCS, pages 387–404.
Springer, 2010.

12


