
Indexed Geometric Jumbled Pattern Matching

Stephane Durocher1,?, Robert Fraser1, Travis Gagie2,??,
Debajyoti Mondal1, Matthew Skala1, and Sharma V. Thankachan3

1 Department of Computer Science, University of Manitoba, Canada
{durocher, fraser, jyoti, mskala}@cs.umanitoba.ca

2 Department of Computer Science, University of Helsinki, Finland
gagie@cs.helsinki.fi

3 Cheriton School of Computer Science, University of Waterloo, Canada
thanks@uwaterloo.ca

Abstract. We consider how to preprocess n colored points in the plane
such that later, given a multiset of colors, we can quickly find an axis-
aligned rectangle containing a subset of the points with exactly those
colors, if one exists. We first give an index that uses o(n4) space and
o(n) query time when there are O(1) distinct colors. We then restrict
our attention to the case in which there are only two distinct colors. We
give an index that uses O(n) bits and O(1) query time to detect whether
there exists a matching rectangle. Finally, we give a O(n)-space index
that returns a matching rectangle, if one exists, in O(lg2 n/ lg lgn) time.

1 Introduction

Over the past ten years, researchers have studied online jumbled pattern match-
ing for strings, graphs and, most recently, point sets. Butman et al. [6] showed
how, given a string and multiset of characters, in linear time we can find all
the substrings consisting of a permutation of those characters. The multiset is
usually represented as a Parikh vector of characters, i.e., a list of the distinct
characters’ frequencies. Lacroix et al. [16] showed how, given a node-colored tree
and a Parikh vector of colors with a constant number of non-zero entries, in
polynomial time we can find all the connected subgraphs whose nodes have ex-
actly the prescribed colors. Fellows et al. [11] extended this result to graphs with
bounded tree-width and, implicitly, to all graphs when the Parikh vector’s L1
norm (i.e., the multiset’s size) is at most logarithmic in the size of the graph [3].
Barba et al. [2] showed how, given a set of colored points in the plane and a
Parikh vector of colors, in cubic time we can find all the minimal axis-aligned
rectangles containing subsets of points with exactly the prescribed colors.

Over the past five years, researchers have also studied indexed jumbled pat-
tern matching for strings and graphs. Cicalese et al. [8] showed how, given a
binary string, in quadratic time we can build a linear-space index such that
later, given frequencies of 0s and 1s, we can detect in constant time whether

? Supported by the Natural Sciences and Engineering Research Council of Canada.
?? Supported by the Academy of Finland.

2 S. Durocher et al.

there exists a matching substring. Subsequent authors [1, 5, 9, 14, 17] have re-
duced the construction time slightly for the general case, to O(n2/ lg2 n), and
more significantly for special cases or relaxations. Gagie et al. [13] reduced the
space from a linear number of words to a linear number of bits and extended the
result to trees whose nodes each have one of two colors, still with O(n2/ lg2 n)
construction time.

In this paper we study indexed jumbled pattern matching in point sets. In
Section 2 we generalize Kociumaka et al.’s [15] recent proof that, given a string
of length n over a O(1)-size alphabet, we can build a o(n2)-space index such that
later, given a Parikh vector of characters, in o(n) time we can find a matching
substring if one exists. We show that, given a set of n points in the plane each of
which is one of O(1) distinct colors, we can build a o(n4)-space index such that
later, given a Parikh vector of colors, in o(n) time we can find one instance of
a matching axis-aligned rectangle if one exists. Since these indexes provide an
example match, we call them witnessing indexes. Notice that, when dealing with
trees, graphs or point sets, the total number of matches can be superlinear, so
returning only one instance seems reasonable. We will show in the full version
of this paper how to derandomize our Las Vegas construction.

In Section 3 we generalize Cicalese et al.’s detection index for binary strings.
We show how, given n points in the plane in general position (i.e., with each x-
and y-coordinate unique), each of which is one of two distinct colors, inO(n3 lg n)
time we can build an index that occupiesO(n) bits such that later, given a Parikh
vector of those two colors, in O(1) time we can detect whether there exists
a matching axis-aligned rectangle. As part of our construction, we use a new
dynamic detection index for jumbled pattern matching in binary strings, with
O(n lg n) update time and O(1) query time. Although O(n lg n)-time updates
may seem slow, we note that o(n/ lg2 n)-time updates would imply a faster way
to build static indexes for binary strings than that which is known. Due to space
constraints, we leave the description of this dynamic index to full version of this
paper, where we will also show that O(n)-bit, O(1)-time detection indexes exist
not only for rectangles but for any shape that contains a point from which the
entire interior is visible (i.e., star shapes).

In Section 4 we apply a recent technique by Cicalese et al. [10] to turn our
detection index for bichromatic point sets into a witnessing index. We show
how, given n points in the plane in general position, each of which is one of two
distinct colors, in O(n3 lg n) time we can build a O(n)-space index such that
later, given a Parikh vector of those two colors, in O(lg2 n/ lg lg n) time we can
return a matching axis-aligned rectangle, if one exists.

2 A Witnessing Index for O(1) Colors

It is possible to build a O(n2)-space index with O(1) query time for jumbled
pattern matching in a string over a O(1)-size alphabet, by building a perfect
hash table of all its substrings’ Parikh vectors; or to store nothing but the string
itself and search it in O(n) time with Butman et al.’s algorithm for each query.

Indexed Geometric Jumbled Pattern Matching 3

Nevertheless, Kociumaka et al.’s was the first (and, so far as we know, still
the only) index for jumbled pattern matching in strings over ternary or larger
alphabets, to use simultaneously o(n2) space and o(n) query time. Specifically,
for any alphabet size σ = O(1) and any positive ε < 1, we can set their index
to use O(n2−ε) space and O(m(2σ−1)ε) query time, where m ≤ n is the L1 norm
of the Parikh vector in the query. Thus, choosing ε < 1/(2σ − 1) means we use
o(n2) space and o(m) = o(n) query time.

Similarly, it is possible to build a O(n4)-space index with O(1) query time
for jumbled pattern matching in a point set, by building a perfect hash table of
all the Parikh vectors of subsets that can be enclosed in axis-aligned rectangles;
or to store nothing but the point set itself and search it in O(n3) time with
Barba et al.’s algorithm for each query. Therefore, an obvious starting point is
to describe a o(n4)-space index with o(n3) query time, analogous to Kociumaka
et al.’s. This makes sense only for σ ≥ 4 because, for σ = 3, we can store in
O(n3) space a perfect hash table of all Parikh vectors with L1 norm at most n.

In fact, for any positive ε < 1, we can use O(n4−ε) space and the same
query time as Kociumaka et al.’s, O(m(2σ−1)ε). Choosing again ε < 1/(2σ − 1),
therefore, means we use o(n4) space and o(n) query time.

Theorem 1. Given a set of n points in the plane each of which is one of a
constant number σ of distinct colors, we can store them in O(n4−ε) space for
any given positive ε < 1 such that later, given a vector C = (c1, . . . , cσ) with L1
norm m, in O(m(2σ−1)ε) time we can return an axis-aligned rectangle containing
exactly ci points of the ith color, for 1 ≤ i ≤ σ, if such a rectangle exists.

Proof. Without loss of generality, assume we are working in rank space (i.e., on
an n × n grid with one point in each row and each column). For the moment,
assume we know in advance values b and h such that b ≤ m ≤ b + h. For each
axis-aligned rectangle containing between b and b + h points, we call the set of
the lowest b points the rectangle’s body and we call the remaining points its head.

Consider all O(n3) axis-aligned (not necessarily minimal) rectangles whose
bottoms and tops hit points and that contain exactly b points each. There are
O(n3) such rectangles because, once we have chosen the bottom point and left
and right sides of such a rectangle, the fact it contains b points determines which
point its top must hit. We say a vector with L1 norm b is light if there are between
1 and t such rectangles that match that vector, where t is a threshold we specify
later; otherwise, we say the vector is heavy.

We store a perfect hash table of the light vectors and with each of those
vectors, we store a list of the locations of the O(t) rectangles matching that
vector. This takes a total of O(n3) space regardless of t. We also store a O(n2)-
space data structure that, given a 4-sided range, in O(1) time tells us how many
points of each color lie in that range. We store another perfect hash table of all
the distinct vectors for rectangles containing between b and b+ h points whose
bodies have heavy vectors; with each one, we store the location of one rectangle
matching that distinct vector. Since there are O(n3/t) heavy vectors and there
are O(hσ) possible distinct vectors for heads, this takes a total of O(n3hσ/t)
space.

4 S. Durocher et al.

Given C, we consider all O(hσ−1) ways to choose two vectors B and H with
non-negative entries such that C = B + H, B has L1 norm b and H has L1
norm at most h. For each choice of B and H, we check whether B is light and,
if so, we run through the list of the locations of the O(t) rectangles matching
B. For each such rectangle, we check whether the |H| points immediately above
the rectangle match H; if so, we return the location of the rectangle extended
to include those H points, then stop. This takes O(t) time for each choice of B
and H. If B is not light then we search for C in our second perfect hash table,
which takes O(1) time.

Overall, we use O(n3 + n3hσ/t) space and O(hσ−1t) query time. Setting
t = hσ, our space becomes O(n3) and our query time becomes O(h2σ−1). For any
upper bound M on m, if we repeat this construction for b = 0,M ε, 2M ε, . . . ,M
and h = M ε, then we use O(n3M1−ε) space and we can answer any query with
m ≤M in O(M (2σ−1)ε) time. Storing data structures for M = 1, 2, 4, . . . , n takes
a total of O(n4−ε) space and lets us answer any query in O(m(2σ−1)ε) time. ut

3 A Detection Index for Two Colors

Suppose a binary string contains one substring of length m including a copies of
1, and another of length m including c copies of 1. Then by sliding a window of
length m between those two positions, we can always find a substring of length
m including b copies of 1 for any b between a and c. Cicalese et al.’s [8] index for
jumbled pattern matching in binary strings makes use of that fact. It stores, for
each substring length m, the minimum and maximum numbers of 1s to occur in
length-m substrings. This O(n)-space data structure answers detection queries
in O(1) time by checking whether the desired number of 1s is between the stored
bounds. If it also records where the minimum and maximum counts occur, then
it can do a binary search to answer witnessing queries in O(lg n) time.

Fici and Lipták [12] observed that the minimum or maximum number of 1s
can only stay the same or increment when we increment m. Gagie et al. [13]
pointed out that this means we can store the lists of minima and maxima as
bitvectors, with 1s indicating increments, and use rank queries to support O(1)
time access, shrinking the detection index to O(n) bits (rather than words) of
space while retaining O(1) query time.

Gagie et al. also noted that this idea can be generalized to connected graphs,
by generalizing the discrete continuity argument used for strings. If in a con-
nected graph with nodes colored black and white there exists a connected sub-
graph with m nodes of which a are white, and another connected subgraph
with m nodes of which c are white, then there must be a connected subgraph
with m nodes of which b are white for each b between a and c. A sequence of
connected subgraphs each with m nodes serves the same purpose as the sliding
window in the string case. Therefore, there exist O(n)-bit, O(1)-query-time de-
tection indexes also for jumbled pattern matching in connected graphs with two
colors. Building such indexes is NP-hard in general, because it is NP-complete
to determine whether there is a connected subgraph with m nodes of which a

Indexed Geometric Jumbled Pattern Matching 5

given number are white, but it takes polynomial time for graphs with bounded
tree-width.

Even more generally, suppose we have a hypergraph on n nodes in which each
node is black or white and, for each pair of hyperedges e and e′ with m nodes
each, there is a sequence of hyperedges with m nodes each that starts with e
and ends with e′ and in which each consecutive pair differs on two nodes. Then
there exists a O(n)-bit, O(1)-time detection index for jumbled pattern matching
in this hypergraph, although it may not be feasible to build it. The construction
time depends on how quickly we can determine the minimum and maximum
numbers of white nodes in hyperedges of each size.

In the following lemmas we apply that argument to rectangles on the plane.
Given a set of n black and white points in general position on the plane, let
them be the nodes of a hypergraph whose hyperedges are the subsets of points
that can be contained by axis-aligned rectangles. We first show the existence
of a sequence of hyperedges with the necessary continuity property from the
minimum to maximum number of white points for each size m; that implies
the existence of a detection index. We then show how to construct the index
efficiently.

Lemma 1. Given a set of n black and white points in general position in the
plane and a pair of axis-aligned rectangles R and R′ each containing m points,
there exists a sequence of axis-aligned rectangles containing m points each that
starts with R and ends with R′ and in which each consecutive pair differs on two
points.

Proof. We denote an axis-aligned rectangle by an ordered quadruple (a, b, c, d)
where (a, b) are the coordinates of the lower left corner and (c, d) are the coordi-
nates of the upper right corner. Consider a set of n black and white points in gen-
eral position in the plane and a pair of axis-aligned rectangles R = (x1, y1, x2, y2)
and R′ = (x′1, y

′
1, x
′
2, y
′
2) each containing m points. Unless R and R′ contain

exactly the same subset of points (in which case the lemma holds trivially), nei-
ther R nor R′ can completely contain the other. Therefore, each rectangle has
at least one edge completely outside the other. Up to symmetry, this leaves two
cases for us to consider: x1 ≤ x′1 and y′1 ≤ y1; or x1 ≤ x′1 and x2 ≤ x′2 and
y1 ≤ y′1 ≤ y′2 ≤ y2.

x1 ≤ x′
1 and y′

1 ≤ y1: Since R ⊆ (x1, y
′
1, x2, y2), there exists a rectangle

(x1, y
′
1, x2, y

′′
2) with y′′2 ≤ y2 that contains exactly m points. Similarly, since

R′ ⊆ (x1, y
′
1, x
′
2, y
′
2), there exists a rectangle (x1, y

′
1, x
′′
2 , y
′
2) with x′′2 ≤ x′2 that

contains exactly m points. Figure 1a shows an example.
If we can construct three sequences of axis-aligned rectangles containing m

points each such that each consecutive pair of rectangles differs on two points
and

– one sequence S1 starts with R = (x1, y1, x2, y2) and ends with (x1, y
′
1, x2, y

′′
2),

– one sequence S2 starts with (x1, y
′
1, x2, y

′′
2) and ends with (x1, y

′
1, x
′′
2 , y
′
2),

6 S. Durocher et al.

y′′2
x′′2

(x1, y
′
1, x2, y

′′
2) and (x1, y

′
1, x

′′
2, y

′
2)

a rectangle between

(x1, y1, x2, y2) and (x1, y
′
1, x2, y

′′
2)

a rectangle between

a rectangle between

y1

x1 x2
y2

R

x′1 x′2
y′2

y′1

R′

(x1, y
′
1, x

′′
2, y

′
2) and (x′1, y

′
1, x

′
2, y

′
2)

(a) x1 ≤ x′
1 and y′

1 ≤ y1

x1 x2
y2

y1

R′

x′1 x′2
y′2

y′1

(x1, y1, x2, y2) and (x1, y1, x
′′
2, y

′
2)

a rectangle between

a rectangle between

(x1, y1, x
′′
2, y

′
2) and (x1, y

′
1, x

′′′
2 , y

′
2)

R

x′′′2x′′2

(b) x1 ≤ x′
1; x2 ≤ x′

2; y1 ≤ y′
1 ≤ y′

2 ≤
y2

Fig. 1: Suppose there is a pair of axis-aligned rectangles R = (x1, y1, x2, y2) and
R′ = (x′1, y

′
1, x
′
2, y
′
2) each containing m points. We claim there is a sequence of

axis-aligned rectangles containing m points each that starts with R and ends
with R′ and in which each consecutive pair differs on two points.

– one sequence S3 starts with (x1, y
′
1, x
′′
2 , y
′
2) and ends withR′ = (x′1, y

′
1, x
′
2, y
′
2),

then by concatenation we can construct another such sequence that starts with
R and ends with R′.

To construct S1, we start with R = (x1, y1, x2, y2) and alternately decrease
the first y-coordinate until it equals y′1 or a point enters the rectangle, then
decrease the second y-coordinate until it equals y′′2 or a point leaves the rectangle,
and repeat. This way, we keep the number of points within the rectangle the
same; since the points are in general position, they enter and leave the rectangle
one by one. We construct S3 similarly.

To construct S2, we start with (x1, y
′
1, x2, y

′′
2). Assume x2 ≤ x′′2 and y′2 ≤ y′′2 ;

the other cases are symmetric. We alternately increase the second x-coordinate
until it equals x′′2 or a point enters the rectangle, then decrease the second y-
coordinate until it equals y′2 or a point leaves the rectangle, and repeat.

x1 ≤ x′
1; x2 ≤ x′

2; y1 ≤ y′
1 ≤ y′

2 ≤ y2: For the sake of brevity, we leave
some of the details of this case to the full version of this paper, but Fig-
ure 1b shows an illustration. There exist axis-aligned rectangles (x1, y1, x

′′
2 , y
′
2)

and (x1, y
′
1, x
′′′
2 , y

′
2) with x2 ≤ x′′2 ≤ x′′′2 ≤ x′2 that each contain exactly m points.

If we can construct three sequences of axis-aligned rectangles containing m
points each such that each consecutive pair of rectangles differ on two points
and

– one sequence S4 starts with R = (x1, y1, x2, y2) and ends with (x1, y1, x
′′
2 , y
′
2),

– one sequence S5 starts with (x1, y1, x
′′
2 , y
′
2) and ends with (x1, y

′
1, x
′′′
2 , y

′
2),

– one sequence S6 starts with (x1, y
′
1, x
′′′
2 , y

′
2) and ends withR′ = (x′1, y

′
1, x
′
2, y
′
2),

Indexed Geometric Jumbled Pattern Matching 7

grid

slab

Fig. 2: Sliding a slab of height 9 up a 40 × 40 grid. In the previous step, the
contents of the slab corresponded to the binary string 110011010. One black
point left the slab and another entered it, and the contents of the slab currently
correspond to 101011010. In the next step, a white point will leave the slab
and a black point will enter it, and the contents of the slab will correspond to
101001010.

then by concatenation we can construct another such sequence that starts with
R and ends with R′.

We construct S4 and S5 similarly to how we construct sequence S2 as de-
scribed above. We construct S6 similarly to how we construct S1 and S3. Con-
catenating all these sequences, the lemma follows. ut

Lemma 1 implies the existence of a O(n)-bit space, O(1)-time, detection in-
dex for jumbled pattern matching on axis-aligned rectangles with bichromatic
points. The index stores the minimum and maximum number of white points
using succinct bitvectors, much as in the substring problem. It remains to actu-
ally construct that index as quickly as possible. Construction time of O(n4) is
sufficient by reducing the point set to rank space, building one data structure
for O(1)-time range counting for the black points and another for the white
points (using O(n2) time and space), and checking the number of white and
black points in each of the O(n4) possible rectangles. We show a tighter bound.

Barba et al. [2] enumerate all possible rectangles by considering slabs of rows
in the grid of each height from 1 to n, sweeping each of them up from the bottom
to the top of the grid. We avoid the need to consider all rectangles individually
by maintaining a dynamic list of the points in the current slab and solving a one-
dimensional version of the problem within the slab. Figure 2 shows an example.

Dynamically maintaining the point set in the current slab such that we can
find the minimum and maximum numbers of white points in rectangles that
cover the vertical extent of the slab, is equivalent to maintaining lists of the
minimum and maximum numbers of 1s in substrings of each size in a dynamic
binary string subject to insertions and deletions. We use the following lemma,
whose proof we defer to the full version.

Lemma 2. We can maintain a dynamic binary string of up to n bits in O(n)
space such that inserting or deleting a bit takes O(n lg n) time and, given m,

8 S. Durocher et al.

determining the minimum and maximum numbers of 1s in a substring of length
m takes O(1) time.

Combining Lemmas 1 and 2 gives the construction time of the detection data
structure.

Theorem 2. Given a set of n points in the plane colored black and white, in
O(n3 lg n) time we can build a O(n)-bit index such that later, given a vector
C = (c1, c2), in O(1) time we can determine whether there exists an axis-aligned
rectangle containing exactly c1 white points and c2 black points.

Proof. By Lemma 1, there exists an axis-aligned rectangle containing exactly c1
points of the first color and exactly c2 points of the second color if and only if c1 is
between the minimum and maximum number of white points in all axis-aligned
rectangles containing m = c1 + c2 points. As in the substring data structure, we
need only store the minimum and maximum values of c1 for each value of m,
and we can do that in the stated space and time bounds.

To construct the data structure, we consider for each possible coordinate for
the bottom of a rectangle, every possible coordinate for the top of the rectangle.
That gives us a sequence of O(n2) slabs, each differing from the previous one
by insertion or deletion of one point. Maintaining the data structure of 2 on
the string of bits indicating the colors of points in the current slab, we can find
the global minimum and maximum numbers of white points for all rectangles in
O(n3 lg n) time, and the result follows. ut

4 A Witnessing Index for Two Colors

The witnessing index of Cicalese et al. [10] for jumbled pattern matching in
a binary string is similar to their detection index, but also stores, for every
substring length m, the positions of two substrings that witness the minimum
and maximum number of 1s, as well as storing the string itself as a bitvector.
Then a binary search between the stored extrema gives O(lg n) query time on
the O(n)-space data structure. At each step of the search they perform O(1)
rank queries on the bit vector to determine the number of 1s in the length-m
substring at the current position.

The sequence of rectangles described in Lemma 1 makes possible the same
kind of binary search on axis-aligned rectangles in bichromatic point sets. In-
stead of using a bitvector, however, we use a O(n)-space data structure by Bro-
dal et al. [4] that supports two-dimensional three-sided range-selection queries
in O(lg n/ lg lg n) time. Given a three-sided range and an integer k, this data
structure returns the kth point in that range, counting away from the middle
side. We can use instances of the same data structure to support range counting
of the black and white points, with the same query time (although there are
faster alternatives [7]).

Theorem 3. Given a set of n black and white points in the plane, in O(n3 lg n)
time we can build in O(n3 lg n) time a O(n)-space index such that later, given

Indexed Geometric Jumbled Pattern Matching 9

a vector C = (c1, c2), in O(lg2 n/ lg lg n) time we can return an axis-aligned
rectangle containing exactly c1 white points and exactly c2 black points, if one
exists.

Proof. We use the same quadruple notation for rectangles as in the proof of
Lemma 1, and as in Theorem 2, we build the data structure in O(n3 lg n) time by
examining horizontal slabs to find the global maximum and minimum number
of white points for rectangles with each value of m = c1 + c2. We record the
coordinates of the extremal rectangles as well as their white point counts.

We do not include a figure specifically for this proof; instead, we refer the
reader back to Figure 1a.

For each m, we record whether R = (x1, y1, x2, y2) and R′ = (x′1, y
′
1, x
′
2, y
′
2)

are symmetric to the first case we considered in Lemma 1 (i.e., x1 ≤ x′1 and
y′1 ≤ y1) or symmetric to the second case (i.e., x1 ≤ x′1 and x2 ≤ x′2 and
y1 ≤ y′1 ≤ y′2 ≤ y2). In this version of this paper, we describe how to deal only
with the first case; the second is similar.

Suppose x1 ≤ x′1 and y′1 ≤ y1. Then we also record the positions of the
intermediate rectangles (x1, y

′
1, x2, y

′′
2) and (x1, y

′
1, x
′′
2 , y
′
2) described for the this

case in Lemma 1. Finally, we record the number of white points in each of R,
(x1, y

′
1, x2, y

′′
2), (x1, y

′
1, x
′′
2 , y
′
2) and R′.

Let S1, S2 and S3 again be the sequences of axis-aligned rectangles containing
m points each that we described for this case. We can determine from the number
of white points in R, (x1, y

′
1, x2, y

′′
2), (x1, y

′
1, x
′′
2 , y
′
2) and R′ whether we should

binary search in S1, S2 or S3. Searching in S3 is analogous to searching in S1.
To perform binary search in S1—i.e., in the sequence of axis-aligned rectan-

gles between R = (x1, y1, x2, y2) and (x1, y
′
1, x2, y

′′
2) each containing m points,

with y′1 ≤ y1—we perform a binary search in the range [y′1, y1]. For the sake of
simplicity, we assume we reduce all coordinates to rank space when we build the
index, so y′1 and y1 are integers that differ by at most n.

At each step of the binary search, we choose some integer y′′′1 between the
endpoints of our current range of integers, as the first y-coordinate of the rect-
angle we will test. We use a range-selection query to find the mth point from the
bottom of the range (x1, y

′′′
1 , x2,∞), which tells us the second y-coordinate y′′′2 of

that test rectangle. We then count the number of white points in (x1, y
′′′
1 , x2, y

′′′
2),

which tells us on which half of the current range we should recurse. We use
O(lg n/ lg lg n) time for each step of the binary search, so O(lg2 n/ lg lg n) time
overall.

To perform binary search in S2—i.e., in the sequence of axis-aligned rect-
angles between (x1, y

′
1, x2, y

′′
2) and (x1, y

′
1, x
′′
2 , y
′
2) each containing m points—we

perform binary search in the range [x2, x
′′
2]. Again, we assume x2 ≤ x′′2 and

y′2 ≤ y′′2 , because the other cases are symmetric.
At each step of the binary search, we choose some integer x′′′2 between the end-

points of our current range of integers, as the second x-coordinate of the rectangle
we will test. We use a range-selection query on to find the mth point from the
bottom of the range (x1, y

′
1, x
′′′
2 ,∞), which tells us the second y-coordinate y′′′2 of

that test rectangle. We then count the number of white points in (x1, y
′
1, x
′′′
2 , y

′′′
2),

10 S. Durocher et al.

which tells us on which half of the current range we should recurse. Again, we
use O(lg n/ lg lg n) time for each step of the binary search, so O(lg2 n/ lg lg n)
time overall. ut

Acknowledgments

Many thanks to the organizers and participants of CCCG 2013 and Stringmas-
ters 2013, especially L. Barba, F. Cicalese, S. Denzumi, M. He, J. Holub, J.
Kärkkäinen, A. Kawamura, D. Kempa, T. Kociumaka, Z. Lipták, J. Tarhio and
G. Zhou; and to E. Giaquinta, M. Lewenstein, R. Rizzi and A. I. Tomescu.

References

1. Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for
highly run-length compressible texts. IPL 113 (2013) 604–608

2. Barba et al., L.: On k-enclosing objects in a coloured point set. In: Proc. CCCG.
(2013) 229–234

3. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Proc.
STACS. (2013) 20–31

4. Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range
medians. TCS 412 (2011) 2588–2601

5. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. IJFCS 23 (2012) 357–374

6. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. IPL
92 (2004) 293–297

7. Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range count-
ing. In: Proc. SODA. (2013) 241–251

8. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Proc. PSC. (2009) 105–117

9. Cicalese, F., Laber, E.S., Weimann, O., Yuster, R.: Near linear time construction
of an approximate index for all maximum consecutive sub-sums of a sequence. In:
Proc. CPM. (2012) 149–158

10. Cicalese et al., F.: Indexes for jumbled pattern matching in strings, trees and
graphs. In: Proc. SPIRE. (2013) 56–63

11. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. JCSS 77 (2011) 799–811

12. Fici, G., Lipták, Z.: On prefix normal words. In: Proc. DLT. (2011) 228–238
13. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern

matching on trees and tree-like structures. In: Proc. ESA. (2013) 517–528
14. Giaquinta, E., Grabowski, S.: New algorithms for binary jumbled pattern match-

ing. IPL 113 (2013) 538–542
15. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern

matching with constant-sized alphabet. In: Proc. ESA. (2013) 625–636
16. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: Application to

metabolic networks. TCBB 3 (2006) 360–368
17. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures

for permutation matching in binary strings. JDA 10 (2012) 5–9

