
Polygon Simplification by Minimizing Convex Corners

Yeganeh Bahoo1, Stephane Durocher1?, J. Mark Keil2, Saeed Mehrabi3, Sahar
Mehrpour1, and Debajyoti Mondal1

1 Department of Computer Science, University of Manitoba, Winnipeg, Canada
2 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
3 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

{bahoo,durocher,mehrpour,jyoti}@cs.umanitoba.ca,
keil@cs.usask.ca, smehrabi@uwaterloo.ca

Abstract. Let P be a polygon with r > 0 reflex vertices and possibly with holes.
A subsuming polygon of P is a polygon P ′ such that P ⊆ P ′, each connected
component R′ of P ′ subsumes a distinct component R of P , i.e., R ⊆ R′, and
the reflex corners ofR coincide with the reflex corners ofR′. A subsuming chain
of P ′ is a minimal path on the boundary of P ′ whose two end edges coincide with
two edges of P . Aichholzer et al. proved that every polygon P has a subsuming
polygon with O(r) vertices. Let Ae(P) (resp., Av(P)) be the arrangement of
lines determined by the edges (resp., pairs of vertices) of P . Aichholzer et al.
observed that a challenge of computing an optimal subsuming polygon P ′

min,
i.e., a subsuming polygon with minimum number of convex vertices, is that it
may not always lie on Ae(P). We prove that in some settings, one can find an
optimal subsuming polygon for a given simple polygon in polynomial time, i.e.,
when Ae(P

′
min) = Ae(P) and the subsuming chains are of constant length. In

contrast, we prove the problem to be NP-hard for polygons with holes, even if
there exists some P ′

min with Ae(P
′
min) = Ae(P) and subsuming chains are of

length three. Both results extend to the scenario when Av(P
′
min) = Av(P).

1 Introduction

Polygon simplification is well studied in computational geometry, with numerous ap-
plications in cartographic visualization, computer graphics and data compression [8,
9]. Techniques for simplifying polygons and polylines have appeared in the literature
in various forms. Common goals of these simplification algorithms include to preserve
the shape of the polygon, to reduce the number of vertices, to reduce the space require-
ments, and to remove noise (extraneous bends) from the polygon boundary (e.g., [2, 4,
5]). In this paper we consider a specific version of polygon simplification introduced
by Aichholzer et al. [1], which keeps reflex corners intact, but minimizes the number
of convex corners. Aichholzer et al. showed that such a simplification can help achieve
faster solutions for many geometric problems such as answering shortest path queries,
computing Voronoi diagrams, and so on.

Let P be a polygon with r reflex vertices and possibly with holes. A reflex corner
of P consists of three consecutive vertices u, v, w on the boundary of P such that the
? Work of the author is supported in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

(a) (b) (c) (d)

Fig. 1. (a) A polygon P , where the polygon is filled and the holes are empty regions. (b) A
subsuming polygon P ′, where P ′ is the union of the filled regions. A subsuming chain is shown
in bold. (c) A min-convex subsuming polygon P ′

min, whereAe(P
′
min) = Ae(P). (d) A polygon

P such that for any min-convex subsuming polygon P ′
min, Ae(P) 6= Ae(P

′
min).

angle ∠uvw inside P is more than 180◦. We refer the vertex v as a reflex vertex of
P . The vertices of P that are not reflex are called convex vertices. By a component of
P , we refer to a connected region of P . A polygon P ′ subsumes P if P ⊆ P ′, each
componentR′ of P ′ subsumes a distinct componentR of P , i.e.,R ⊆ R′, and the reflex
corners of R coincide with the reflex corners of R′. A k-convex subsuming polygon P ′

contains at most k convex vertices. A min-convex subsuming polygon is a subsuming
polygon that minimizes the number of convex vertices. Figure 1(a) illustrates a polygon
P , and Figures 1(b) and (c) illustrate a subsuming polygon and a min-convex subsuming
polygon of P , respectively. A subsuming chain of P ′ is a minimal path on the boundary
of P ′ whose end edges coincide with a pair of edges of P , as shown in Figure 1(b).

Aichholzer et al. [1] showed that for every polygon P with n vertices, r > 0 of
which are reflex, one can compute in linear time a subsuming polygon P ′ with at most
O(r) vertices. Note that although a subsuming polygon with O(r) vertices always ex-
ists, no polynomial-time algorithm is known for computing a min-convex subsuming
polygon. Finding an optimal subsuming polygon seems challenging since it does not
always lie on the arrangement of lines Ae(P) (resp., Av(P)) determined by the edges
(resp., pairs of vertices) of the input polygon. Figure 1(c) illustrates an optimal polygon
P ′min for the polygon P of Figure 1(a), whereAe(P

′
min) = Ae(P). On the other hand,

Figure 1(d) shows that a min-convex subsuming polygon may not always lie on Ae(P)
or Av(P). Note that the input polygon of Figure 1(d) is a simple polygon, i.e., it does
not contain any hole. Hence determining min-convex subsuming polygons seems chal-
lenging even for simple polygons. In fact, Aichholzer et al. [1] posed an open question
that asks to determine the complexity of computing min-convex subsuming polygons,
where the input is restricted to simple polygons.

Let P be a simple polygon. In this paper we show that if there exists a min-convex
subsuming polygon P ′min such that Ae(P

′
min) = Ae(P) and the subsuming chains of

P ′min are of constant length, then one can compute such an optimal subsuming polygon
in polynomial time. In contrast, if P contains holes, then we prove the problem to
be NP-hard. The hardness result holds even when the min-convex subsuming polygon
P ′min lies on the arrangementAe(P), and the length of every subsuming chain of P ′min

is three. Both results extend to the scenario when Av(P
′
min) = Av(P).

2

The rest of the paper is organised as follows. In Section 2 we describe the techniques
for computing subsuming polygons. Section 3 includes the NP-hardness result. Finally,
Section 4 concludes the paper discussing directions to future research.

2 Computing Subsuming Polygons

In this section we show that for any simple polygon P , if there exists a min-convex
subsuming polygon Pmin such that Ae(P) = Ae(P

′
min) and the subsuming chains are

of length at most t, then one can compute an optimal polygon in O(tO(1)nf(t)) time.
Therefore, if t = O(1), then the time complexity of our algorithm is polynomial in n.
We first present definitions and preliminary results on outerstring graphs, which will be
an important tool for computing subsuming polygons.

2.1 Independent Set in Outerstring Graphs

A graph G is a string graph if it is an intersection graph of a set of simple curves in the
plane, i.e., each vertex ofG is a mapped to a curve (string), and two vertices are adjacent
in G if and only if the corresponding curves intersect. G is an outerstring graph if the
underlying curves lie interior to a simple cycle C, where each curve intersects C at
one of its endpoints. Figure 2(a) illustrates an outerstring graph and the corresponding
arrangement of curves. Later in our algorithm, the polygon will correspond to the cycle
of an outerstring graph, and some polygonal chains attached to the boundary of the
polygon will correspond to the strings of that outerstring graph.

A set of strings is called independent if no two strings in the set intersect, the cor-
responding vertices in G are called an independent set of vertices. Let G be a weighted
outerstring graph with a set T of weighted strings. A maximum weight independent set
MWIS(T) (resp., MWIS(G)) is a set of independent strings T ⊆ T (resp., vertices) that
maximizes the sum of the weights of the strings in T . Observe that MWIS(T) is also a
maximum weight independent set MWIS(G) of G. By |MWIS(G)| we denote the weight
of MWIS(G).

Let Γ (G) be the arrangement of curves that corresponds to G, e.g., see Figure 2(a).
Let R be a geometric representation of Γ (G), where C is represented as a simple poly-
gon P , and each curve is represented as a simple polygonal chain inside P such that one
of its endpoints coincides with a distinct vertex of P . Keil et al. [6] showed that given a
geometric representation R of G, one can compute a maximum weight independent set
of G in O(s3) time, where s is the number of line segments in R.

Theorem 1 (Keil et al. [6]). Given the geometric representation R of a weighted out-
erstring graph G, there exists a dynamic programming algorithm that computes a max-
imum weight independent set of G in O(s3) time, where s is the number of straight line
segments in R.

Figure 2(b) illustrates a geometric representation R of some G, where each string is
represented with at most 4 segments. Keil et al. [6] observed that any maximum weight
independent set of strings can be triangulated to create a triangulation Pt of P , as shown
in Figure 2(c). Let T be the strings in R. Then the problem of finding MWIS(T) can be

3

a

b
c

d d
e

a

b

c

d
e

a

b

c

wb = 3

wb = 7

we = 2
wd = 3

wc = 5

v1
v2

e

w

v2
v1

w

dd

(b)

(c) (d) (e)

(a)

a

b

c

de

Fig. 2. (a) Illustration forG and Γ (G). (b) A geometric representationR ofG. (c) A triangulated
polygon obtained from an independent set ofG. (d)–(e) Dynamic programming to find maximum
weight independent set.

solved by dividing the problem into subproblems, each described using only two points
of R. We illustrate how the subproblems are computed very briefly using Figure 2(d).
Let P (v1, v2) be the problem of finding MWIS(Tv1,v2), where Tv1,v2 consists of the
strings that lie to the left of v1v2. Let wv1v2 be a triangle in Pt, where w is a point on
some string d inside P (v1, v2); see Figure 2(d). Since Pt is a triangulation of the maxi-
mum weight string set, d must be a string in the optimal solution. Hence P (v1, v2) can
be computed from the solution to the subproblems P (v1, w) and P (w, v2), as shown in
Figure 2(e). Keil et al. [6] showed that there are only a few different cases depending
on whether the points describing the subproblems belong to the polygon or the strings.
We will use this idea of computing MWIS(T) to compute subsuming polygons.

2.2 Subsuming Polygons via Outerstring Graphs

Let P = (v0, v1, . . . , vn−1) be a simple polygon with n vertices, r > 0 of which are
reflex vertices. A convex chain of P is a path Cij = (vi, vi+1, . . . , vj−1, vj) of strictly
convex vertices, where the indices are considered modulo n.

Let P ′ = (w0, w1, . . . , wm−1) be a subsuming polygon of P , where Ae(P
′) =

Ae(P), and the subsuming chains are of length at most t. Let C ′qr = (wq, . . . , wr) be a
subsuming chain of P ′. Then by definition, there is a corresponding convex chainCij in
P such that the edges (vi, vi+1) and (vj−1, vj) coincide with the edges (wq, wq+1) and
(wr−1, wr). We call the vertex vi the left support of C ′qr. Since Ae(P

′) = Ae(P), the

4

vj

vj

(b)

(d)

a d

cb

vj

e′

vj

z1
z2
z3

z4

z5

z7

z9

z10

z11

z12
z13

z14

z15

z8

vj−2

z1
z2
z3

z4

z5

z7

z9

z10

z11

z12
z13

z14

z15

z8

vj

vj−3
vj+1

(a)

(c)

e′

Fig. 3. (a) Illustration for the polygon P (in bold), Ae(P) (in gray), and Q (in dashed lines). (b)
Chains of vj . (c) Attaching the strings to Q. (d) Dynamic programming inside the gray region.

chain C ′qr must lie onAe(P). Moreover, since P ′ is a min-convex subsuming polygon,
the number of vertices in C ′qr would be at most the number of vertices in Cij .

We claim that the number of paths in Ae(P) from vi to vj is O(nt). Since t is an
upper bound on the length of the subsuming chains, any subsuming chain can have at
most (t− 1) line segments. Since there are only O(n) straight lines in the arrangement
Ae(P), there can be at most nj paths of j edges, where 1 ≤ j ≤ t − 1. Consequently,
the number of candidate chains that can subsume Cij is O(nt).

Lemma 1. Given a simple polygon P with n vertices, every convex chain C of P has
at most O(nt) candidate subsuming chains in Ae(P), each of length at most t.

In the following we construct an outerstring graph using these candidate subsuming
chains. We first compute a simple polygon Q interior to P such that for each edge e in
P , there exists a corresponding edge e′ inQ which is parallel to e and the perpendicular
distance between e and e′ is ε, as shown in dashed line in Figure 3(a). We choose ε
sufficiently small4 such that for each component w of P , Q contains exactly one com-
ponent inside w. We now construct the strings. Let vj be a convex corner of P . Let Sj

4 Choose ε = δ/3, where δ is the distance between the closest visible pair of boundary points.

5

be the set of candidate subsuming chains such that for each chain in Sj , the left support
of the chain appears before vj while traversing the unbounded face of P in clockwise
order. For example, the subsuming chains that correspond to vj are (vj−2, z1, vj+1),
(vj−3, z13, z2, vj+1), (vj−3, z14, z3, vj+1), (vj−3, z11, z4, vj+1), (vj−3, z15, z5, vj+1),
(vj−3, z8, z5, vj+1), (vj−3, z7, vj+1), as shown in Figure 3(b). For each of these chains,
we create a unique endpoint on the edge e′ of Q, where e′ corresponds to the edge
vjvj+1 in P , as shown in Figure 3(c). We then attach these chains to Q by adding a
segment from vj to its unique endpoint on Q.

We attach the chains for all the convex vertices of P to Q. Later we will use these
chains as the strings of an outerstring graph. We then assign each chain a weight, which
is the number of convex vertices of P it can reduce. For example in Figure 3(b), the
weight of the chain (vj−3, z8, z5, vj+1) is one.

Although the strings are outside of the simple cycle, it is straightforward to con-
struct a representation with all the strings inside a simple cycle Q: Consider placing a
dummy vertex at the intersection points of the arrangement, and then find a straight-line
embedding of the resulting planar graph such that the boundary ofQ corresponds to the
outerface of the embedding. Consequently, Q and its associated strings correspond to
an outerstring graph representation R. Let G be the underlying outerstring graph. We
now claim that any MWIS(G) corresponds to a min-convex subsuming polygon of P .

Lemma 2. Let P be a simple polygon, where there exists a min-convex subsuming
polygon that lies on Ae(P), and let G be the corresponding outerstring graph. Any
maximum weight independent set of G yields a min-convex subsuming polygon of P .

Proof. Let T be a set of strings that correspond to a maximum weight independent set
of G. Since T is an independent set, the corresponding subsuming chains do not create
edge crossings. Moreover, since each subsuming chain is weighted by the number of
convex corners it can remove, the subsuming chains corresponding to T can remove
|MWIS(G)| convex corners in total.

Assume now that there exists a min-convex subsuming polygon that can remove
at least k convex corners. The corresponding subsuming chains would correspond to
an independent set T ′ of strings in G. Since each string is weighted by the number of
convex corners the corresponding subsuming chain can remove, the weight of T ′ would
be at least k. ut

2.3 Time Complexity

To construct G, we first placed a dummy vertex at the intersection points of the chains,
and then computed a straight-line embedding of the resulting planar graph such that
all the vertices of Q are on the outerface. Therefore, the geometric representation used
at most nt edges to represent each string. Since each convex vertex of P is associated
with at most O(nt) strings, there are at most n×O(nt) strings in G. Consequently, the
total number of segments used in the geometric representation is O(tn2+t). A subtle
point here is that the strings in our representation may partially overlap, and more than
three strings may intersect at one point. Removing such degeneracy does not increase
the asymptotic size of the representation. Finally, by Theorem 1, one can compute the
optimal subsuming polygon in O(t3n6+3t) time.

6

The complexity can be improved further to as follows. Let abcd be a rectangle
that contains all the intersection points of Ae(P). Then every optimal solution can
be extended to a triangulation of the closed region between abcd and Q. Figure 3(d)
illustrates this region in gray. We now can apply a dynamic programming similar to
Section 2.1 to compute the maximum weight independent string set, where each sub-
problem finds a maximum weight set inside some subpolygon. Each such subpolygon
can be described using two points v1, v2, each lying either on Q or on some string, and
a subset of {a, b, c, d} that helps enclosing the subpolygon.

Since there are n × O(nt) strings, each containing at most t points, the number
of vertices in the geometric representation is O(tn1+t). Therefore, the size of the dy-
namic programming table is O(tn1+t)×O(tn1+t)×O(1). Since there can be at most
O(tn1+t) candidate triangles v1v2w, we takeO(tn1+t) time to fill an entry of the table.
Hence the dynamic program takes at most O(t3n3+3t) time in total.

Theorem 2. Given a simple polygon P with n vertices such that there exists a min-
convex subsuming polygon that lie onAe(P) and the subsuming chains are of length at
most t, one can compute such a min-convex subsuming polygon in O(t3n3+3t) time.

2.4 Generalizations

We can generalize the results for any given line arrangements. However, such a gener-
alization may increase the time complexity. For example, consider the case when the
given line arrangement is Av(P), which is determined by the pairs of vertices of P .
Since we now have O(n2) lines in the arrangement Av(P), the time complexity in-
creases to O(t3(n2)3+3t), i.e., O(t3n6+6t).

3 NP-hardness of Min-Convex Subsuming Polygon

In this section we prove that it is NP-hard to find a subsuming polygon with minimum
number of convex vertices. We denote the problem by MIN-CONVEX-SUBSUMING-
POLYGON. We reduce the NP-complete problem monotone planar 3-SAT [3], which is
a variation of the 3-SAT problem as follows: Every clause in a monotone planar 3-SAT
consists of either three negated variables (negative clause) or three non-negated vari-
ables (positive clause). Furthermore, the bipartite graph constructed from the variable-
clause incidences, admits a planar drawing such that all the vertices corresponding to
the variables lie along a horizontal straight line l, and all the vertices corresponding to
the positive (respectively, negative) clauses lie above (respectively, below) l. The prob-
lem remains NP-hard even when each variable appears in at most four clauses [7].

The idea of the reduction is as follows. Given an instance of a monotone planar
3-SAT I with variable set X and clause set C, we create a corresponding instance PI

of MIN-CONVEX-SUBSUMING-POLYGON. Let λ be the number of convex vertices in
PI . The reduction ensures that if there exists a satisfying truth assignment of I , then
PI can be subsumed by a polygon with at most λ−|X||C|2−3|C| convex vertices, and
vice versa.

Given an instance I of monotone planar 3-SAT, we first construct an orthogonal
polygon Po with holes. We denote each clause and variable using a distinct axis-aligned

7

c2=(x1∨x2∨x3)
c1 = (x1 ∨ x3 ∨ x4)

c4 = (x̄1 ∨ x̄4)

x1 x2 x3 x4

(a) (b)

c1 = (x1 ∨ x3 ∨ x4)

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c4 = (x̄1 ∨ x̄4)

a
b

c
d

a
b

c
d

e

(e)

(f)

(c)

(d)

lab

lab 3 3

c3=(x̄2∨x̄3∨x̄4)

Fig. 4. (a) An instance I of monotone planar 3-SAT. (b) The orthogonal polygon Po correspond-
ing to I . (c)–(f) Illustration for the variable gadget.

rectangle, which we refer to as the c-rectangle and v-rectangle, respectively. Each edge
connecting a clause and a variable is represented as a thin vertical strip, which we
call an edge tunnel. Figures 4(a) and (b) illustrate an instance of monotone planar 3-
SAT and the corresponding orthogonal polygon, respectively. While adding the edge
tunnels, we ensure for each v-rectangle that the tunnels coming from top lie to the left
of all the tunnels coming from the bottom. Figure 4 (b) marks the top and bottom edge
tunnels by upward and downward rays, respectively. The v-rectangles, c-rectangles and
the edge tunnels may form one or more holes, whereas the polygon is shown in diagonal
line pattern. We now transform Po to an instance PI of MIN-CONVEX-SUBSUMING-
POLYGON.

We first introduce a few notations. Let abcd be a convex quadrangle and let lab be
an infinite line that passes through a and b. Assume also that lbc and lad intersect at
some point e, and c, d, e all lie on the same side of lab, as shown in Figures 4(c)–(d).
Then we call the quadrangle abcd a tip on l, and the triangle cde a cap of abcd.

3.1 Variable Gadget

We construct variable gadgets from the v-rectangles. We add some top-right (and the
same number of top-left) tips at the bottom side of the v-rectangle, as show in Fig-
ure 4(e). There are three top-right and top-left tips in the figure. For convenience we
show only one top-left and one top-right tip in the schematic representation, as shown

8

in Figure 4(f). However, we assign weight to these tips to denote how many tips there
should be in the exact construction. We will ensure a few more properties: (I) The caps
do not intersect the boundary of the v-rectangle, (II) no two top-left caps (or, top-right
caps) intersect, and (III) every top-left (resp., top-right) cap intersects all the top-right
(resp., top-left) caps.

Observe that each top-left tip contributes to two convex vertices such that covering
them with a cap reduces the number of convex vertices by 1. The peak of the cap reaches
very close to the top-left corner of the v-rectangle, which will later interfere with the
clause gadget. Specifically, this cap will intersect any downward cap of the clause gad-
get coming through the top edge tunnels. Similarly, each top-right tip contributes to two
convex vertices, and the corresponding cap intersects any upward cap coming through
the bottom edge tunnels.

Note that the optimal subsuming polygon P cannot contain the caps from both the
top-left and top-right tips. We assign the tips with a weight of |C|2. In the hardness proof
this will ensure that either the caps of top-right tips or the caps of top-left tips must exist
in P , which will correspond to the true and false configurations, respectively.

3.2 Clause Gadget

Without loss of generality assume that each clause is incident to three edge tunnels,
otherwise, we can create necessary multi-edges to satisfy this constraint. Figure 5(a)
illustrates the transformation for a c-rectangle. Here we describe the gadget for the
positive clauses, and the construction for negative clauses is symmetric. We add three
downward tips incident to the top side of the c-rectangle, along its three edge tunnels.
Each of these downward tip contributes to two convex vertices such that covering the
tip with a cap reduces the number of convex vertices by 1. Besides, the corresponding
caps reach almost to the bottom side of the v-rectangles, i.e., they would intersect the
top-left caps of the v-rectangles. Let these tips be t1, t2, t3 from left to right, and let
γ1, γ2, γ3 be the corresponding caps.

We then add a down-left and a down-right tip at the top side of the c-rectangle be-
tween ti and ti+1, where 1 ≤ i ≤ 2, as shown in Figure 5(a). Let the tips be t′1, . . . , t

′
4

from left to right, and let the corresponding caps be γ′1, . . . , γ
′
4. Note that the caps

corresponding to t′j and t′j+1, where 1 ≤ j ≤ 4, intersect each other. Therefore, at
most two of these four caps can exist at the same time in the solution polygon. Ob-
serve also that the caps corresponding to t1, t2, t3 intersect the caps corresponding to
{t′2}, {t′1, t′4}, {t′3}, respectively. Consequently, any optimal solution polygon contain-
ing none of {γ1, γ2, γ3} have at least 12 convex vertices along the top boundary of the
c-rectangle, as shown in Figure 5(b).

We now show that any optimal solution polygon P containing at least α > 0 caps
from Γ = {γ1, γ2, γ3} have exactly 11 convex vertices along the top boundary of the
c-rectangle. We consider the following three cases:

Case 1 (α = 1): If γ1 (resp., γ3) is in P , then P must contain {γ′1, γ′3} (resp.,
{γ′2, γ′4}). Figure 5(c) illustrates the case when P contains γ1. If γ2 is in P , then P
must contain {γ′2, γ′3}. In all the above scenario the number of convex vertices along
the top boundary of the c-rectangle is 11.

9

t1 t′1 t′2 t2 t′3 t′4 t3

(c)

(d) (e) (f)

(a) (b)

Fig. 5. Illustration for the clause gadget.

Case 2 (α = 2): If P contains {γ1, γ3}, then either γ′1 or γ′4 must be in P . Oth-
erwise, P contains either {γ1, γ2} or {γ2, γ3}. If that P contains {γ1, γ2}, as in Fig-
ure 5(d), then γ′3 must lie in P . In the remaining case, γ′2 must lie in P . Therefore, also
in this case the number of convex vertices along the top boundary of the c-rectangle is
11.

Case 3 (α = 3): In this scenario P cannot contain any of γ′1, . . . , γ
′
4. Therefore,

as shown in Figure 5(e), the number of convex vertices along the top boundary of the
c-rectangle is 11.

As a consequence we obtain the following lemma.

Lemma 3. If a clause is satisfied, then any optimal subsuming polygon reduces exactly
three convex vertex from the corresponding c-rectangle.

3.3 Reduction

Although we have already described the variable and clause gadgets, the optimal sub-
suming polygon still may come up with some unexpected optimization that interferes
with the convex corner count in our hardness proof. Figure 6(left) illustrates one such
example. Therefore, we replace each convex corner that does not correspond to the tips
by a small polyline with alternating convex and reflex corners, as shown Figure 6(right).

We now prove the NP-hardness of computing optimal subsuming polygon.

Theorem 3. Finding an optimal subsuming polygon is NP-hard.

Proof. Let I = (X,C) be an instance of the monotone planar 3-SAT and let PI be the
corresponding instance of MIN-CONVEX-SUBSUMING-POLYGON. Let λ be the num-
ber of convex vertices in PI . We now show that I admits a satisfying truth assignment
if and only if PI can be subsumed using a polygon having at most λ− |X||C|2 − 3|C|
convex vertices.

10

Fig. 6. Refinement of PI .

First assume that I admits a satisfying truth assignment. For each variable x, we
choose either the top-right caps or the top-left caps depending on whether x is as-
signed true or false. Consequently, we save at least |X||C|2 convex vertices. Consider
any clause c ∈ C. Since c is satisfied, one or more of its variables are assigned true.
Therefore, for each positive (resp., negative) clause, we can have one or more down-
ward (resp., upward) caps that enter into the v-rectangles. By Lemma 3, we can save at
least three convex vertices from each c-rectangle. Therefore, we can find a subsuming
polygon with at most λ− |X||C|2 − 3|C| convex vertices.

Assume now that some polygon P with at most λ−|X||C|2−3|C| convex vertices
can subsume PI . We now find a satisfying truth assignment for I . Note that the max-
imum number of convex vertices that can be reduced from the c-rectangles is at most
3|C|. Therefore, P must reduce at least |C|2 convex vertices from each v-rectangle.
Recall that in each v-rectangle, either the top-right or the top-left caps can be chosen
in the solution, but not both. Therefore, the v-rectangles cannot help reducing more
than |X||C|2 convex vertices. If P contains the top-right caps of the v-rectangle, then
we set the corresponding variable to true, otherwise, we set it to false. Since P has at
most λ − |X||C|2 − 3|C| convex vertices, and each c-rectangle can help to reduce at
most 3 convex vertices (Lemma 3), P must have at least one cap from γ1, γ2, γ3 at each
c-rectangle. Therefore, each clause must be satisfied. Recall that the downward (resp.,
upward) caps coming from edge tunnels are designed carefully to have conflict with
the top-left (resp., top-right) caps of v-variables. Since top-left and top-right caps of
v-variables are conflicting, the truth assignment of each variable is consistent in all the
clauses that contains it. ut

4 Conclusion

In this paper we have developed a polynomial-time algorithm that can compute opti-
mal subsuming polygons for a given simple polygon in restricted settings. On the other
hand, if the polygon contains holes, then we show the problem of computing an opti-
mal subsuming polygon is NP-hard. Therefore, the question of whether the problem is
polynomial-time solvable for simple polygons, remains open.

Our algorithm can find an optimal solution if the optimal subsuming polygon lies on
some prescribed arrangement of lines, e.g., Ae(P) or Av(P). The running time of our
algorithm depends on the length of the subsuming chains, i.e., the running time is poly-
nomial if the subsuming chains are of constant length. However, there exist polygons

11

Fig. 7. Illustration for the case when the optimal subsuming polygon contains a subsuming chain
of length Ω(n). The subsuming chain is shown in bold.

whose optimal subsuming polygons contain subsuming chains of lengthΩ(n). Figure 7
illustrates such an example optimal solution that is lying onAe(P). Therefore, it would
be interesting to find algorithms whose running time is polynomial in the size ofAe(P)
or Av(P).

Another interesting research direction would be to examine whether there exists a
good approximation algorithm for the problem.

References

1. O. Aichholzer, T. Hackl, M. Korman, A. Pilz, and B. Vogtenhuber. Geodesic-preserving poly-
gon simplification. Int. J. Comp. Geom. & Appl., 24(4):307–324, 2014.

2. L. Arge, L. Deleuran, T. Mølhave, M. Revsbæk, and J. Truelsen. Simplifying massive contour
maps. In Proc. ESA, volume 7501 of LNCS, pages 96–107. Springer, 2012.

3. M. de Berg and A. Khosravi. Optimal binary space partitions for segments in the plane. Int.
J. Comp. Geom. & Appl., 22(3):187–206, 2012.

4. D. H. Douglas and T. K. Peucker. Algorithm for the reduction of the number of points required
to represent a line or its caricature. The Canadian Cartographer, 10(2):112–122, 1973.

5. L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink. Approximating polygons and
subdivisions with minimum link paths. Int. J. Comp. Geom. & Appl., 3(4):383–415, 1993.

6. J. M. Keil, J. S. B. Mitchell, D. Pradhan, and M. Vatshelle. An algorithm for the maximum
weight independent set problem on outerstring graphs. In Proc. CCCG, pages 2–7, 2015.

7. D. Kempe. On the complexity of the “reflections” game, 2003. http://www-
bcf.usc.edu/ dkempe/publications/reflections.pdf.

8. W. A. Mackaness, A. Ruas, and L. T. Sarjakoski. Generalisation of Geographic Information:
Cartographic Modelling and Applications. Elsevier, 2011.

9. H. Ratschek and J. Rokne. Geometric Computations with Interval and New Robust Methods:
Applications in Computer Graphics, GIS and Computational Geometry. Horwood Publishing,
2003.

12

