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Abstract. We prove tight bounds (up to a small multiplicative or additive con-
stant) for the plane and the planar slope numbers of partial 2-trees of bounded
degree. As a byproduct of our techniques, we answer a long standing question by
Garg and Tamassia about the angular resolution of the planar straight-line draw-
ings of series-parallel graphs of bounded degree.

1 Introduction

A drawing of a graph G in R2 maps each vertex of G to a point and each edge of G to a
Jordan arc such that an edge does not contain a vertex other than its endpoints, no edge
crosses itself, edges do not meet tangentially, and edges sharing a common end-vertex
do not cross each other. A planar graph is a graph that admits a planar drawing, i.e. a
drawing such that no two edges intersect except at their common end-points. A plane
graph is a planar graph together with a combinatorial embedding, i.e. a prescribed set
of faces including a prescribed outer face. A plane drawing of a plane graph G is a
planar drawing that realizes the combinatorial embedding of G.

The slope number of a straight-line drawing Γ of a planar graph G is the number
of distinct slopes of the edges of Γ . Every plane (planar) graph admits a plane (planar)
straight-line drawing [1], i.e. a drawing where the edges are mapped to straight line
segments. The planar slope number of G is the smallest slope number over all planar
straight-line drawings of G. If G is a plane graph, the plane slope number of G is the
smallest slope number over all plane straight-line drawings of G.

The problem of computing drawings of planar graphs with maximum degree four,
using only horizontal and vertical slopes, has long been studied in graph drawing through
the research on orthogonal and rectilinear graph drawing (see, e.g., [1]). In a seminal
paper, Dujmović et al. [2] extend this study to non-orthogonal slopes, and give tight up-
per and lower bounds (expressed as functions of the number n of vertices) on the plane
slope numbers of several graph families including plane 3-trees and plane 3-connected
graphs. They also ask whether the plane slope number of a plane graph of maximum
degree ∆ can be bounded by a function f(∆). Keszegh et al. [7] answer the question
affirmatively proving that, for a suitable constant c, the plane slope number of a plane



graph of bounded degree ∆ is at most O(c∆). In the same paper, Keszegh et al. estab-
lish a 3∆− 6 lower bound for the plane slope number of the plane graphs of maximum
degree at most ∆, which motivates additional research on reducing the gap between
upper and lower bound. The question is studied by Jelı́nek et al. [5] who prove that the
plane slope number of plane partial 3-trees is O(∆5). Also Kant, Dujmović et al., Mon-
dal et al. independently show that the plane slope number of cubic 3-connected plane
graphs is six [2, 6, 9], whereas the slope number (i.e., when the drawings may contain
edge crossings) of cubic graphs is four [10].

In this paper we prove tight bounds (up to a small multiplicative or additive con-
stant) for the plane and the planar slope numbers of planar 2-trees of bounded degree.
Our results extend previous papers concerning the planar and plane slope numbers of
proper subfamilies of the partial 2-trees. Namely, Jelı́nek et al. [5] prove that the pla-
nar slope number of series-parallel graphs with maximum degree three is at most three.
Knauer et al. [8] show that the plane slope number of outerplane graphs with maximum
degree ∆ ≥ 4 is at most ∆ − 1 and that ∆ − 1 slopes are sometimes necessary. As
a byproduct of our techniques, we answer a long standing open problem by Garg and
Tamassia [3], who ask whether Ω( 1

∆2 ) is a tight lower bound on the angular resolution
of series-parallel graphs of degree ∆ (i.e. they ask whether these graphs admit planar
straight-line drawings where minimum angle between any two consecutive edges is
Ω( 1

∆2 )). More precisely, our results can be listed as follows.

– We prove that the planar slope number of a partial 2-tree of maximum degree ∆ is
at most 2∆ and there exist partial 2-trees whose planar slope number is at least ∆
if ∆ is odd and at least ∆+ 1 if ∆ is even (Section 3).

– We prove that the plane slope number of a plane partial 2-tree of maximum degree
∆ is at most 3∆ and there exist plane 2-trees whose plane slope number is at least
3∆− 3 if ∆ is even and at least 3∆− 4 if ∆ is odd (Section 4).

– We show that a partial 2-tree G of maximum degree ∆ admits a planar straight-line
drawing with angular resolution π

2∆ . If G is a plane graph, a plane straight-line
drawing of G exists whose angular resolution is π

3∆ (Section 5). The previously
best known bound was 1

48π∆2 , established by varying the input embedding [3].

2 Decomposition Trees and Universal slope sets

In this section we recall some known concepts. Throughout the paper “drawing” means
“planar straight-line drawing”; “plane drawing” means “plane straight-line drawing”.

SPQ trees and block-cut vertex trees. Let G be a 2-connected graph. A separation
pair is a pair of vertices whose removal disconnects G. A split pair of G is either a
separation pair or a pair of adjacent vertices. A split component of a split pair {u, v}
is either an edge (u, v) or a maximal subgraph Guv of G such that {u, v} is not a split
pair of Guv . We call vertices u and v the poles of Guv . Note that a split component of
G need no t be 2-connected.

A 2-connected series-parallel graph is recursively defined as follows. A simple
cycle with three edges is a 2-connected series-parallel graph. The graph obtained by



replacing an edge of a 2-connected series-parallel graph with a path is a 2-connected
series-parallel graph. The graph obtained by adding an edge between the vertices of
a non-adjacent separation pair {u, v} of a 2-connected series-parallel graph is a 2-
connected series-parallel graph. Let G be a 2-connected series-parallel graph. An SPQ-
tree T of G is a rooted tree describing a recursive decomposition of G into its split com-
ponents. The nodes of T are of three types: S, P , or Q. Each node µ has an associated
graph called the skeleton of µ and denoted by skeleton(µ). Starting from a split pair
{s, t} of G, T recursively describes the split components of G as follows. The root of T
is a P -node corresponding to G; its skeleton is defined as in the ”Parallel case” below.

- Base case: The split component H is an edge. Then H corresponds to a Q-node of T
whose skeleton is this edge. The Q-nodes are the leaves of T .

- Series case: The split component H is a 1-connected graph with split components
H1, . . . Hk (k ≥ 2) and cut vertices ci = Hi ∩ Hi+1. Then H corresponds to an
S-node µ of T . The graph skeleton(µ) is a chain e1, . . . , ek of edges such that
ei=(ci−1, ci), where c0 = s and ck = t. The children of µ are the roots of the
SPQ-trees of H1, . . . , Hk.

- Parallel case: Otherwise, the split component H is 2-connected and its split compo-
nents are H1, . . . ,Hk(k ≥ 2). Then H has skeleton(µ) consisting of a set of parallel
edges e1, . . . , ek between s and t, one for each Hi. The children of µ are the roots of
the SPQ-trees of H1, . . . ,Hk.

Figure 1(a) and (b) show a 2-connected series-parallel graph and its SPQ-tree, which is
uniquely determined by the choice of the initial split pair. Note that no P -node (S-node)
has a P -node (S-node) as a child. Let T be an SPQ-tree of a 2-connected series-parallel
graph G and let µ be a node of T . The pertinent graph of µ is the subgraph of G whose
SPQ-tree is the subtree of T rooted at µ, as shown in Figure 1(c). The virtual edge
of µ is an edge in the skeleton of the parent of µ that represents the pertinent graph of
µ. Hence for every internal (i.e., non-Q) node µ in T , each edge in skeleton(µ) is a
virtual edge of some child of µ.

If µ is P -node, then we associate with µ another graph frame(µ), called the frame
of µ, which is formed by replacing each edge e in skeleton(µ) with the skeleton of the
child node whose virtual edge is e, as shown in Figure 1(d). Every vertex in a frame
corresponds to a unique vertex of G. Given a vertex v of G, the first frame of v is
the frame that is closest to the root of T and contains v. For any split pair {u, v} in
a 2-connected series-parallel graph G with n vertices, an SPQ-tree having {u, v} as
reference pair can be computed in O(n) time [4].

A graph G is a partial 2-tree (or, has tree-width at most 2) if and only if each 2-
connected component of G is either series-parallel or consists of a single edge. Let G
be a 1-connected graph. The block-cut vertex tree of G, denoted by BC-tree, is a graph
with vertex set B ∪ C such that B consists of one vertex for each block (maximal 2-
connected subgraph) of G and C consists of one vertex for each cut vertex of G. There
is an edge from b ∈ B to c ∈ C in the BC-tree if and only if the vertex of G represented
by c belongs to the block represented by b.

Universal slope sets and free wedges. Let G be a graph with vertex set V . For a
vertex v ∈ V , we denote the degree of v by δ(v). Hence the maximum degree of G is
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Fig. 1. (a) A 2-connected series-parallel graph G. (b) A SPQ-tree of G, where the internal nodes
are labeled with µ1, . . . , µ10. The skeleton of µi, 1 ≤ i ≤ 10, is drawn in the box associated
with µi. (c) The pertinent graph of µ7. (d) The frame graph of µ1.

∆ = maxv∈V δ(v). The excess of v is ε(v) = ∆−δ(v). If H is a subgraph of G, δH(v)
and εH(v) are the restrictions of δ(v) and ε(v) to H .

A set S of slopes is universal for a family of planar graphs G if every graph G ∈ G
admits a planar straight-line drawing such that the slope of every edge in the drawing
belongs to S. We consider universal slope sets defined as follows.

Definition 1. Given a positive integer k ≥ 2, let α = π
2k . Define Sk to be the set of

slopes i · α, for 0 ≤ i ≤ 2k − 1.

We prove the upper bounds on plane and planar slope numbers showing that there
is a value of k depending on ∆ such that Sk is universal for the partial 2-trees. In our
constructions, we guarantee that some wedge shaped regions of the plane can be used
for recursive drawing. In particular, for any r > 0, point p ∈ R2, and angle φ, a φ-
wedge at p of radius r is a sector of angular measure φ in the disk of radius r centered
at p. For convenience, we will often omit reference to r, since any suitably small value
of r suffices for our purposes. Let v be a vertex in some planar straight-line drawing Γ .
A wedge with its apex at v in Γ is a free wedge at v if the wedge intersects the drawing
Γ only at v. The angular measure of our free wedges will depend on the degree and
excess of the corresponding vertices.

3 Slope Number of Partial 2-trees

In this section we present upper and lower bounds on the planar slope number of partial
2-trees of maximum degree ∆. We start by studying 2-connected series-parallel graphs
(Section 3.1) and then we extend the study to all partial 2-trees (Section 3.2).

3.1 2-connected Series-parallel Graphs

In this section we show that S∆ is a universal slope set for the family of 2-connected
series-parallel graphs with maximum degree ∆.



Lemma 1. Let G be the family of 2-connected series-parallel graphs having maximum
degree at most ∆. Then S∆ is universal for G.

Proof. The argument is based on a construction that recursively computes a drawing of
G; the proof is by induction on the number of P -nodes in an SPQ-tree of G. Let T be
an SPQ-tree of G having split pair {s, t} associated with its root and let m ∈ S∆. Since
G is 2-connected, T must have at least one P -node, e.g., the root of T . We show that G
admits a drawing Γ using only slopes from S∆ that satisfies the following properties.

(1) Graph G is drawn within a triangle 4abc having ∠bac = (δ(s)−0.5)α and ∠abc =
(δ(t)− 0.5)α (i.e. every edge is either in the interior or on the boundary of 4abc).

(2) Vertices s and t are located at a and b, respectively.
(3) Segment ab has slope m.
(4) The edges incident to s are drawn using consecutive slopes of S∆, as are the edges

incident to t.
(5) At each vertex v 6∈ {s, t} in the drawing of G, there is a free ε(v)α-wedge at v

contained in 4abc.

Let a and b be two distinct points on a line of slope m ∈ S∆, and let c be the
point of intersection of the lines through a and b having slopes m+ (δ(s)− 0.5)α and
m− (δ(t)− 0.5)α, respectively.

Base Case: Assume that T has a single P -node, which must be the root of T since
G is 2-connected. The frame of the P -node consists of a set of paths of length at least 1
(and at most one path of length 1). We draw s and t on a and b, respectively. We draw
one of these paths between s and t along the segment ab with slope m (if there is a path
of length one, then we draw that path along ab; otherwise, any of the paths can be used).
The remaining paths are drawn inside 4abc using slopes m + iα, i = 1, . . . , δ(s) − 1
at a and slopes m − iα, i = 1, . . . , δ(t) − 1 at b for the edges incident to s and t,
respectively; we use slope m for all other edges. See Figure 2 (a) for an example.

Let Γ be the computed drawing; by construction, Γ is crossing-free and it only
uses slopes from S∆. Also, the paths from s to t lie within 4abc and for each vertex
v 6∈ {s, t} there is an empty wedge of angle at least ε(v)α with its apex at v that is
completely contained within 4abc; this wedge is in the “c side” of the path containing
v, i.e., in the half-plane defined by the line through a, b and containing c. Hence, Γ
satisfies all invariant Properties (1)-(5).

Induction Step: Suppose now that any 2-connected series-parallel graph having at
most j P -nodes in some SPQ-tree admits a drawing that only uses slopes from S∆

and that satisfies Properties (1)-(5). Let G be a 2-connected series-parallel graph having
j + 1 P -nodes in some SPQ-tree T . As above, the root of T is a P -node and its frame
consists of a set of paths Π1, . . . , Πk of length at least 1. We will draw them in a fashion
similar to the base case but with one important difference: we do not use consecutive
slopes for the edges of the paths incident to s and t, but we leave room for the (recursive)
drawings of the pertinent graphs associated with each virtual edge incident to s or t.

To do this, for each i = 1, . . . , k, let ei be the virtual edge incident to s in Πi

and let µei be the node of T corresponding to the virtual edge ei (note that µei is
either a P - or Q-node of T ). Further, let δei(s) be the degree of s in the pertinent
graph of µei . Then e1 is drawn using slope m, and for each i > 1, ei is drawn using



(a)

S∆

(b) (d)

s = a

t = b

s = a

t = b

Π1

Π2

Π3

s = a

t = b

c

(c)

w1 w2
cw3

w

s = a

t = b
v

u

Fig. 2. (a) An example drawing for Base case, where δ(s) = δ(t) = 3 and ∆ = 4. (b) Illustration
for Inductive step, where δe1(s) = 3, δe2(s) = 1, δe1(t) = 2, and δe2(t) = 3. (c) Illustration
for uiviwi in dashed line, and (d) recursive construction.

slope slope(ei−1) + δei−1(s)α. The edges of Πi incident to t are positioned similarly,
beginning with slope m but decreasing the slopes as we move from one path to the next.
See Figure 2 (b) for an example.

For every subpath Πi \ {s, t} with at least two vertices (1 ≤ i ≤ k), we draw the
subpath using a sufficiently small line segment as follows. Let ui, vi be the endvertices
of that subpath Πi \ {s, t}. Let wi be the point of intersection of the half-lines from
ui and vi having slopes slope(uivi) + (∆ − 0.5)α and slope(uivi) − (∆ − 0.5)α,
respectively. We draw the paths such that 4uiviwi lies in the region bounded by Πi

and Πi+1. If i + 1 < k, then uiviwi lies within 4abc. An example is illustrated in
Figure 2(c) in dashed line.

Now that the frame of the root of T has been drawn, let e = uv be a (drawn) virtual
edge of a path Πi of the frame and let µe be its corresponding P - or Q-node in T .
Let w be the point of intersection of the lines from u and v having slopes slope(e) +
(δe(u) − 0.5)α and slope(e) − (δe(v) − 0.5)α, respectively. We recursively draw the
pertinent graph of µe within 4uvw. If {u, v} ∩ {s, t} = φ, then 4uvw is contained
in 4uiviwi, which by construction does not intersect any part of the already drawn
edges. If e is incident to s or t (i.e. either u = s or v = t), then 4uvw does not
intersect the edge e′ of Πi+1 incident to s or t, because by construction, the slope of e′

is slope(e) + δe(s)α. Finally, observe that 4uvw does not intersect any other triangle
that contains the drawing of a pertinent graph associated with a node of T which is not
in the subtree rooted at µe. See Figure 2(d) for an illustration.

The observations above, together with the fact that the drawing of the frame graph
of the root is crossing-free and that it satisfies Properties (1)-(4), imply that G admits a
drawing that only uses slopes from S∆ satisfying Properties (1)-(4). To see that Prop-
erty (5) is also satisfied, note that each path Πi is drawn as a convex (or linear, for
i = 1) chain. Thus at each vertex v 6∈ {s, t} has an angle of at least π between its two
consecutive (virtual) edges in its first frame. The drawing of G uses two consecutive
sets of slopes at v, since the pertinent graph for the two nodes corresponding to each of
those two virtual edges is drawn using consecutive slopes. This leaves a free wedge of
angular measure π− δ(v)α = 2∆α− δ(v)α = ∆α+ ε(v)α > ε(v)α at v, establishing
Property (5). ut



3.2 Partial 2-trees

In this section we extend the result of Lemma 1 to partial 2-trees of maximum degree
∆ by proving that S∆ is universal for these graphs. We shall focus on connected partial
2-trees, since every connected components can be drawn independently of the others.

Lemma 2. Let G be the family of partial 2-trees having maximum degree at most ∆.
Then S∆ is universal for G.

Proof. We assume that G is connected and has at least one edge. Let T be the block-
cutvertex tree of G (see Figures 3(a)–(b)). We build the desired drawing of G by draw-
ing subgraphs of G corresponding to subtrees of T , starting with the leaves of T . The
drawing of G produced will have the following properties:

(a) For some split pair {s, t} of G, G is drawn inside a δ(s)α-wedge with apex s.
(b) s and t are located on a line of slope m ∈ S∆.
(c) The edges incident to s are drawn using consecutive slopes of S∆, as are the edges

incident to t.
(d) The wedge of Property (a) is bounded by rays from s in directions m − 0.5α and

m+ (δ(s)− 0.5)α.

If G is 2-connected, then Lemma 1 establishes the existence of a drawing with
the desired properties: Property (b) follows obviously from Property (1) of Lemma 1,
Property (c) from Property (3) of Lemma 1, and properties (a) and (d) from properties
(1), (2) and (4) of Lemma 1.

Otherwise, let s be a cut vertex of G and choose s as the root of T . The parent of
each block vertex B of T is a cut vertex sB of G. For each such block B, choose a
vertex tB in B such that {sB , tB} is a split pair for B. Each leaf of T is a block vertex
B and by Lemma 1, it can be drawn with split pair {sB , tB} inside a wedge with apex
sB and angular measure δB(sB)α so that properties (a)–(d) hold.

Assume now that x is a vertex of T for which all subgraphs of T have been drawn
respecting properties (a)–(d). Then x represents either a block of G or a cut vertex of
G. If x represents a cut vertex v of G, then let T1, . . . , Tk represent the subtrees of
x. Let Gv be the subgraph of G corresponding to the subtree of T with root v. For
each of the trees Ti, v is at the apex of the δTi(v)α-wedge in which the subgraph Gi

of G corresponding to Ti has been drawn. These wedges can all be rotated about v so
that they use consecutive slopes in S∆, as shown in Figure 3(c). Thus the subgraph
of G corresponding to the union of T1, . . . , Tk has been drawn in a wedge of angle
δG1

(v)α + . . . + δGk
(v)α = δGv

(v)α with apex v such that properties (a)–(d) are
satisfied. Note that by Property (a), the drawing of Gv can be made small enough to
lie completely inside the free wedge and so does not intersect any other portion of the
drawing.

Suppose now that x represents a block B of G. The children of B in T represent
the cut vertices of G that belong to B; let v be one of the child cut vertices of B. Draw
B in the manner described by Lemma 1. We consider two cases: v 6= tB and v = tB
(note that sB is the parent cut vertex of B, which is handled by the previous case).
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Fig. 3. (a) A 1-connected graph, and (b) corresponding block-cut vertex tree. (c)–(d) Illustration
for the proof of Lemma 2.

Assume first that v 6= tB . Then by Lemma 1, there is a free εB(v)α-wedge with
apex v. Now εB(v)α = (∆− δB(v))α > (δG(v)− δB(v))α = δGv (v)α and so Gv can
be drawn completely inside the free εB(v)α-wedge with apex v as shown in Figure 3(d).

If v = tB , then the drawing of Gv already produced can be rotated so that all of the
edges in B and of Gv adjacent to tB use consecutive (clockwise from the line containing
sB and tB) directions in S∆ as shown in Figure 3(d). It is an easy observation that the
addition of the subgraphs Gv for each cut vertex of B into the free wedge preserves
properties (a)–(d) of the drawing of B (and of the drawing of G). ut

Lemma 3. For any ∆ > 3, there exists a 2-connected series-parallel graph G of max-
imum degree ∆ whose planar slope number is at least ∆ + 1 if ∆ is even and at least
∆ if ∆ is odd.

Proof. Consider the graph G obtained from K2,∆−1 by adding the edge (u, v) connect-
ing the two vertices u and v of degree ∆ − 1. Thus G has maximum degree ∆. Now
consider any drawing of G. At least half of the remaining ∆−1 vertices are on one side
of the line determined by the segment representing uv in the drawing. Each of these
b∆/2c vertices forms a triangle with uv and these triangles are nested. Thus no two of
the 2b∆/2c+ 1 edges in this portion of the drawing of G have the same slope. ut

The following theorem is an immediate consequence of Lemmas 2, and 3.

Theorem 1. Let G be a partial 2-tree having maximum degree ∆ and let psl(G) denote
the planar slope number of G. Then psl(G) ≤ 2∆. Also, for every even ∆ > 3 there
exists a partial 2-tree G such that psl(G) ≥ ∆+1 and for every odd ∆ ≥ 3 there exists
a partial 2-tree G such that psl(G) ≥ ∆.

4 Plane Slope Number of Partial 2-trees

In this section we show that the plane slope number of 2-connected series-parallel
graphs, i.e., when the output drawings respect the input embeddings, is at least 3∆− 4
and at most 3∆. In fact, we show that S1.5∆ is universal for the family of 2-connected
series-parallel graphs with fixed embeddings.



We introduce some additional notation. For an embedded planar 2-connected series-
parallel graph G with poles s and t, we call the edge (s, t) (if exists) the central edge
of G. Since G is 2-connected, the root of its SPQ-tree is a P -node µ. Observe that
each of the edges in skeleton(µ) corresponds to either the edge (s, t) or a 2-connected
series-parallel subgraph of G. If the edge (s, t) exists, then we categorize each of those
subgraphs as a left or right series-parallel subgraph of G depending on whether it lies to
the left or right of the edge (s, t), while walking from s to t. By G−

1 , . . . , G
−
l , (respec-

tively, G+
1 , . . . , G

+
r ) we denote the left (respectively, right) series-parallel subgraphs

of G. If (s, t) does not exist, then we assume that all the series-parallel subgraphs are
right series-parallel, i.e., G+

1 , . . . , G
+
r . Furthermore, we assume that the subgraphs are

ordered as follows: G−
l , . . . , G

−
1 , (s, t), G

+
1 , . . . , G

+
r , reflecting their left to right order-

ing in the embedding.

Lemma 4. Let G be the family of plane 2-connected series-parallel graphs of maximum
degree at most ∆. Then S1.5∆ is universal for G.

Sketch of Proof: Similar to Lemma 1 we employ an induction on the number of P -
nodes in an SPQ-tree T of G. Since the proof follows a similar argument, for reasons
of space we sketch here the main idea of the proof. Let {s, t} be the split pair associated
with the root of T , and let ab be a straight line segment with slope m, where m ∈
S1.5∆. We show that G admits a drawing Γ using only slopes from S1.5∆ such that the
following properties hold.

(1) Graph G is drawn within a convex quadrilateral �adbc having ∠dac = δ(s)α and
∠dbc = δ(t)α (i.e. every edge is in the interior of �adbc).

(2) Vertices s and t are located at a and b, respectively.
(3) Segment ab has slope m.
(4) The edges incident to s are drawn using consecutive slopes of S1.5∆, as are the

edges incident to t.
(5) At each vertex v 6∈ {s, t} in the drawing of G, there are two free ε(v)α-wedges

at v contained in �adbc, one in the region between the subgraph G+
i (or G−

i )
containing v and the previous series-parallel subgraph of G in the ordering, and
one in the region between G+

i (or G−
i ) and the next series-parallel subgraph of G

in the ordering.

Base Case: Assume that T has a single P -node, which must be the root of T since
G is 2-connected. We draw s and t on a and b, respectively. The frame of the P -node
consists of a set of paths of length at least one (and at most one path of length one). If the
central edge exists, then we draw that edge along ab (otherwise, we draw the leftmost
path along ab ). We then draw the paths Π+

i , i = 1, . . . , r corresponding to each G+
i

between a and b using consecutive slopes at s and t, as in the proof of Lemma 1. All the
remaining paths Π−

i , i = 1, . . . , l corresponding to G−
i are drawn symmetrically to the

left of segment ab , as shown in Figure 4(a). While drawing the paths, we maintain the
input embedding. To construct the quadrilateral �adbc, let d be the intersection of the
line through a having slope 0.5α plus the slope of the edge of Π+

r incident to s with
the line through b having slope −0.5α plus the slope of the edge of Π+

r incident to t.
Similarly, let c be the intersection of the line through a having slope −0.5α plus the



(a) (b)

s = a

t = b

c

s = a

t = b

c

(c)

s = a

d

Fig. 4. (a) Base case. (b) Drawing frame, where the light-gray (respectively, dark-gray) regions
correspond to the right (respectively, left) series-parallel subgraphs of the corresponding pertinent
graph. (c) Recursive construction.

slope of the edge of Π−
l incident to s with the line through b having slope 0.5α plus

the slope of the edge of Π−
l incident to t. This convex quadrilateral has angle δ(s)α at

a and δ(t)α at b. See Figure 4 (a) for an example.
It is now straightforward to observe that the resulting drawing is planar and satisfies

properties (1)-(4). As for Property (5), consider v 6∈ {s, t} in one of the frame paths and
its neighbors u and w on that path. Each of the two angles ∠uvw is either non-acute or
at least π − (δ(u) − 1)α − (δ(w) − 1)α ≥ (∆ + 2)α ≥ ε(v)α, and so the required
empty wedges exist at v.

Induction Step: In a way similar to the proof of Lemma 1, we first draw the frame
of the root of the SPQ-tree and then define disjoint convex quadrilaterals for each of
the virtual edges. Finally, we recursively compute the drawings of the pertinent graphs
inside the corresponding quadrilaterals. The idea is illustrated in Figures 4(b)-(c). ut

By Property (5) of Lemma 4, for every vertex v 6∈ {s, t} in G, there is a free wedge
on each side of the drawing of the pertinent subgraph G+

i (G−
i ) of G containing v.

Thus the arguments used in the proof of Lemma 2 can be directly applied in the fixed
embedding case to establish the following lemma.

Lemma 5. Let G be the family of plane partial 2-trees of maximum degree at most ∆.
Then S1.5∆ is universal for G.

We observe that the ∆−1 lower bound proved by Knauer et al. [8] for the outerplane
slope number implies a lower bound for plane slope number of plane partial 2-trees,
because outerplane graphs are plane partial 2-trees. The next lemma shows a better
lower bound for partial 2-trees.

Lemma 6. For every ∆ ≥ 2, there exists a plane 2-connected series-parallel graph G
of maximum degree ∆ whose plane slope number is at least 3∆− 3 if ∆ is even and at
least 3∆− 4 if ∆ is odd.

Proof. Suppose first that ∆ ≥ 2 is an even number and consider a plane partial 2-tree
G defined as follows. The external face of G is a 3-cycle with vertices a, b, c. In its
interior there are ∆/2− 1 paths of length two connecting each pair from {a, b, c}. The



external face of every plane drawing Γ of G is a triangle 4abc that contains the paths
of length two in its interior. From elementary geometry, no two edges of Γ can have
common slope, and hence the graph, which has 3∆− 3 edges, has plane slope number
at least 3∆− 3. Suppose now that ∆ is odd and let ∆′ = ∆+ 1. Construct a graph G′

of maximum degree ∆′ as described above. Now remove one of those paths of length
2 connecting a and b and one connecting c and b from G′. This new graph, G, has
maximum degree ∆ = ∆′ − 1 and it requires a different slope for each edge. Since we
deleted four edges from G′, G has (3∆′ − 3)− 4 = 3∆− 4 edges. Thus 3∆− 4 slopes
are required, and the result is established. ut

Lemmas 4 and 6 imply the following.

Theorem 2. Let G be a plane partial 2-tree having maximum degree ∆ and let epsl(G)
denote the plane slope number of G. Then epsl(G) ≤ 3∆. Also, for every even ∆ > 3
there exists a plane partial 2-tree G such that epsl(G) ≥ 3∆ − 3 and for every odd
∆ ≥ 3 there exists a plane partial 2-trees G such that epsl(G) ≥ 3∆− 4.

5 Angular Resolution

The angular resolution of a planar straight-line drawing is the minimum angle between
any two edges incident to a common vertex. The angular resolution of a planar graph G
is the maximum angular resolution over all possible drawings of G.

Malitz and Papakostas [11] show that the angular resolution of a planar graph of
maximum degree ∆ is Ω( 1

7∆
). Garg and Tamassia [3] show that there exist planar 3-

trees of maximum degree ∆ that require angular resolution O(
√

log∆
∆3 ). They also show

that for a subfamily of the partial 2-trees of bounded degree, namely the series-parallel
graphs of maximum degree at most ∆, the angular resolution is at least 1

48π∆2 . Their
drawing technique does not apply to plane graphs since it may vary a given combinato-
rial embedding. Garg and Tamassia leave as open the problem about whether Ω( 1

∆2 ) is
a tight lower bound for the angular resolution of the series-parallel graphs.

An implication of the drawing techniques of the previous sections of this paper is
that the angular resolution of partial 2-trees (and thus also of series-parallel graphs) is
in fact Ω( 1

∆ ). Namely, the constructions of Lemmas 2 and 4 either use the universal
set S∆ or the universal set S1.5∆ which consist of equally spaced slopes; therefore, the
minimum angle between any two edges sharing a common end-vertex is either π

2∆ in
the variable embedding setting or it is π

3∆ in the fixed embedding setting. Therefore:

Theorem 3. A partial 2-tree of maximum degree ∆ admits a planar straight-line draw-
ing with angular resolution π

2∆ . A plane partial 2-tree of maximum degree ∆ admits a
planar straight-line drawing with angular resolution π

2∆ .

6 Open Problems

An interesting research direction is to study the trade-off between the slope number
and the area requirement of planar graphs. Similar studies have been carried out for the



angular resolution and the area requirements of planar graphs having maximum degree
at most ∆ (see, e.g., [3]).

Another fascinating open problem is to close the gap between upper and lower
bounds on the planar/plane slope number of planar/plane graphs of bounded degree
(see [7]). This would be interesting even restricted to partial 3-trees (see [5]).
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