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Abstract. An acyclic coloring of a graph G is a coloring of the vertices
of G, where no two adjacent vertices of G receive the same color and
no cycle of G is bichromatic. An acyclic k-coloring of G is an acyclic
coloring of G using at most k colors. In this paper we prove that any
triangulated plane graph G with n vertices has a subdivision that is
acyclically 4-colorable, where the number of division vertices is at most
2n− 6. We show that it is NP-complete to decide whether a graph with
degree at most 7 is acyclically 4-colorable or not. Furthermore, we give
some sufficient conditions on the number of division vertices for acyclic
3-coloring of subdivisions of partial k-trees and cubic graphs.
Keywords. Acyclic coloring, Subdivision, Triangulated plane graph.

1 Introduction

A coloring of a graph G is an assignment of colors to the vertices of G such that
no two adjacent vertices receive the same color. A coloring of G is an acyclic

coloring if G has no bichromatic cycle in that coloring. The acyclic chromatic

number of G is the minimum number of colors required in any acyclic coloring
of G. See Figure 1 for an example.

The large number of applications of acyclic coloring has motivated much
research [4, 7]. For example, acyclic coloring of planar graphs has been used to
obtain upper bounds on the volume of 3-dimensional straight-line grid drawings
of planar graphs [6]. Consequently, acyclic coloring of planar graph subdivisions
can give upper bounds on the volume of 3-dimensional polyline grid drawings,
where the number of division vertices gives an upper bound on the number
of bends sufficient to achieve that volume. As another example, solving large
scale optimization problems often makes use of sparse forms of Hessian matrices;
acyclic coloring provides a technique to compute these sparse forms [7].

Acyclic coloring was first studied by Grünbaum in 1973 [8]. He proved an
upper bound of nine for the acyclic chromatic number of any planar graph G,
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with n ≥ 6 vertices. He also conjectured that five colors are sufficient for acyclic
coloring of any planar graph. His upper bound was improved many times [1, 9,
10] and at last Borodin [3] proved that five is both an upper bound and a lower
bound. Testing acyclic 3-colorability is NP-complete for planar bipartite graphs
with maximum degree 4, and testing acyclic 4-colorability is NP-complete for
planar bipartite graphs with the maximum degree 8 [13].

(a) (b)
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Fig. 1. (a) A graph G and (b) an acyclic coloring of G using five colors c1–c5.

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge
(u, v) and adding a path u(= w0), w1, w2, . . . , wk, v(= wk+1) through new ver-
tices w1, w2, . . . , wk, k ≥ 1, of degree two. A graph G′ is said to be a subdivision

of a graph G if G′ is obtained from G by subdividing some of the edges of G.
A vertex v of G′ is called an original vertex if v is a vertex of G; otherwise, v
is called a division vertex. Wood [15] observed that every graph has a subdivi-
sion with two division vertices per edge that is acyclically 3-colorable. Recently
Angelini and Frati [2] proved that every plane graph has a subdivision with one
division vertex per edge that is acyclically 3-colorable.

Main Results : We study acyclic colorings of subdivisions of graphs and prove
the following claims.

(1) Every cubic graph with n vertices has a subdivision that is acyclically 3-
colorable, where the number of division vertices is 3n/4. Every triconnected
plane cubic graph has a subdivision that is acyclically 3-colorable, where
the number of division vertices is at most n/2. Every Hamiltonian cubic
graph has a subdivision that is acyclically 3-colorable, where the number of
division vertices is at most n/2 + 1. See Section 2.

(2) Every partial k-tree, k ≤ 8, has a subdivision with at most one division
vertex per edge that is acyclically 3-colorable. See Section 2.

(3) Every triangulated plane graph G with n vertices has a subdivision with at
most one division vertex per edge that is acyclically 4-colorable, where the
total number of division vertices is at most 2n− 6. See Section 3.

(4) It is NP-complete to decide whether a graph with degree at most 7 is acycli-
cally 4-colorable or not. See Section 4.
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2 Preliminaries

In this section we present some definitions and preliminary results that are used
throughout the paper. See also [12] for graph theoretic terms.

Let G = (V,E) be a connected graph with vertex set V and edge set E. The
degree d(v) of a vertex v ∈ V is the number of neighbors of v in G. A subgraph

of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
If G′ contains exactly the edges of G that join vertices in V ′, then G′ is called
the subgraph induced by V ′. If V ′ = V then G′ is a spanning subgraph of G.
A spanning tree is a spanning subgraph of G that is a tree. The connectivity

κ(G) of a graph G is the minimum number of vertices whose removal results
in a disconnected graph or a single-vertex graph. G is said to be k-connected if
κ(G) ≥ k.

Let P = u0, u1, u2, . . . , ul+1, l ≥ 1, be a path of G such that d(u0) ≥ 3,
d(u1) = d(u2) = . . . = d(ul) = 2, and d(ul+1) ≥ 3. Then we call the subpath
P ′ = u1, u2, . . . , ul of P a chain of G. A subsequence is a sequence that can
be derived from another sequence by deleting some elements without changing
the order of the remaining elements. An ear of a graph G is a maximal path
whose internal vertices have degree two in G. An ear decomposition of G is a
decomposition P1, . . . , Pk such that P1 is a cycle and Pi, 2 ≤ i ≤ k, is an ear of
P1 ∪ . . . ∪ Pi.

Throughout the paper, division vertices are colored gray in all the figures.
We now have the following two facts.

Fact 1. Let G be a graph with two distinct vertices u and v and let G′ be a graph

obtained by adding a chain w1, . . . , wk between the vertices u and v of G. Let G
be acyclically 3-colorable such that the colors of u and v are different. Then G′

is acyclically 3-colorable.

Proof. In an acyclic coloring of G that colors vertices u and v differently, let the
colors of vertices u and v be c1 and c2, respectively. For each wi, i = 1, 2, . . . , k, we
assign color c3 when i is odd and color c1 when i is even as in Figure 2(a). Clearly,
no two adjacent vertices of G′ have the same color. Therefore, the coloring of
G′ is a valid 3-coloring. Suppose for a contradiction that the coloring of G′ is
not acyclic. Then G′ must contain a bichromatic cycle C. The cycle C either
contains the chain u,w1, w2, . . . , wk, v or is a cycle in G. C cannot contain the
chain since the three vertices u, v and w1 are assigned three different colors
c1, c2 and c3, respectively. Thus we can assume that C is a cycle in G. Since
G does not contain any bichromatic cycle, C cannot be a bichromatic cycle, a
contradiction. ⊓⊔

Fact 2. Let G be a biconnected graph with n vertices and let P1 ∪ . . . ∪ Pk be

an ear decomposition of G where each ear Pi, 2 ≤ i ≤ k, contains at least one

internal vertex. Then G has a subdivision G′, with at most k−1 division vertices,

that is acyclically 3-colorable.
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Proof. We prove the claim by induction on k. The case k = 1 is trivial since P1

is a cycle, which is acyclically 3-colorable. Therefore we assume that k > 1 and
that the claim is true for the graphs P1 ∪ . . . ∪ Pi, 1 ≤ i ≤ k − 1. By induction,
G−Pk has a subdivision G′′ that is acyclically 3-colorable and that has at most
k − 2 division vertices. Let the end vertices of Pk in G be u and v. If u and v
have different colors in G′′ then we can prove in a similar way as in the proof of
Fact 1 that G has a subdivision G′ that is acyclically 3-colorable and that has
the same number of division vertices as G′′, which is at most k−2. Otherwise, u
and v have the same color in G′′. Let the color of u and v be c1 and let the two
other colors in G′′ be c2 and c3. If Pk contains more than one internal vertex
then we assign the colors c2 and c3 to the vertices alternately. If Pk contains only
one internal vertex v then we subdivide an edge of Pk once. We color v with c2
and the division vertex with c3 as shown in Figure 2(b). In both cases we can
prove in a similar way as in the proof of Fact 1 that G′ has no bichromatic cycle.
Moreover, the number of division vertices in G′ is at most (k−2)+1 = k−1. ⊓⊔

v
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Fig. 2. Illustration for the proof of (a) Fact 1 and (b) Fact 2.

Let G = (V,E) be a 3-connected plane graph and let (v1, v2) be an edge on
the outer face of G. Let π = (V1, V2, ..., Vl) be an ordered partition of V . Then we
denote by Gk, 1 ≤ k ≤ l, the subgraph of G induced by V1∪V2∪...∪Vk and by Ck

the outer cycle of Gk. We call the vertices of the outer face the outer vertices. An
outer chain of Gk is a chain on Ck. We call π a canonical decomposition of G with
an edge (v1, v2) on the outer face if the following conditions are satisfied [12].

(a) V1 is the set of all vertices on the inner face that contains the edge (v1, v2).
Vl is a singleton set containing an outer vertex v, v 6∈ {v1, v2}.

(b) For each index k, 2 ≤ k ≤ l − 1, all vertices in Vk are outer vertices of Gk

and the following conditions hold:
(1) if |Vk| = 1, then the vertex in Vk has two or more neighbors in Gk−1

and has at least one neighbor in G−Gk; and
(2) If |Vk| > 1, then Vk is an outer chain of Gk.

Figure 3 illustrates a canonical decomposition of a 3-connected plane graph.
A cubic graph G is a graph such that every vertex of G has degree exactly

three. Every cubic graph has an acyclic 4-coloring [14]. We can get an acyclic
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Fig. 3. (a) A 3-connected plane graph G and (b) a canonical decomposition of G.

3-coloring of a subdivision G′ of G with 3n/4 division vertices from an acyclic
4-coloring of G as follows. Let c4 be the color of the vertices that belong to the
smallest color class and let the other colors be c1, c2 and c3. We first assign to
each vertex v with color c4 a different color c ∈ {c1, c2, c3}. If all three neighbors
of v have different colors, we assign any one of the three colors c1, c2, c3 to v.
Otherwise, we assign v the color that is not assigned to any of its neighbors. We
then subdivide each of the three edges incident to v with a vertex u such that
u is assigned a color c1, c2 or c3, which is not assigned to the end vertices of the
edge. It is now straightforward to observe that the resulting subdivision G′ of G
is acyclically colored with 3 colors. Since the number of vertices with color c4 is
at most n/4, the number of division vertices in G′ is at most 3n/4.

In the following two lemmas we show two subclasses of cubic graphs for which
we can obtain acyclic 3-colorings using smaller number of division vertices.

Lemma 1. Let G be a triconnected plane cubic graph with n vertices. Then G
has a subdivision G′ with at most one division vertex per edge that is acyclically

3-colorable and has at most n/2 division vertices.

Proof. Let π = {V1, V2, . . . , Vk} be a canonical decomposition of G. G1 is a cycle,
which can be colored acyclically with three colors c1, c2 and c3. Since every vertex
of G has degree three, each Vi, 1 < i < k, has exactly two neighbors in Gi−1.
Therefore, Vi corresponds to an ear of Gi and V1 ∪ . . . ∪ Vk−1 corresponds to
an ear decomposition of Gk−1. By Fact 2, Gk−1 has a subdivision G′

k−1
that

is acyclically 3-colorable with at most k − 2 division vertices. We now add the
singleton set Vk to G′

k−1
. First, suppose that all the three neighbors of Vk have

the same color c1. Then Vk is assigned color c2 and any two edges incident to
Vk are subdivided with division vertices of color c3 as in Figure 4(a). In all
other cases, at most one edge incident to Vk is subdivided. Thus any cycle that
passes through the vertex Vk uses three different colors. Since G′

k−1
has at most

k− 2 division vertices and the last partition needs at most two division vertices,
the total number of division vertices in the subdivision G′ of G is equal to the
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number of partitions in π. Note that the addition of Vk creates two inner faces
and the addition of each Vi, 1 < i < k, creates one inner face. Let the number of
inner faces of G be F . Then the number of partitions is F − 1 = n/2 by Euler’s
formula. Therefore, G′ has at most n/2 division vertices. ⊓⊔

Lemma 2. Any Hamiltonian cubic graph G, not necessarily planar, with n ver-

tices has a subdivision G′ that is acyclically 3-colorable and has n/2+1 division

vertices.

Proof. Let C be a Hamiltonian cycle in G. Since the number of vertices in G is
even by the degree-sum formula, we can color the vertices on C with colors c1
and c2. We next subdivide an edge on C and each of the other edges in G that are
not on C to get G′. We assign color c3 to all the division vertices. See Figure 4(b).
Each cycle C ′ in G′ corresponds to a unique cycle C ′′ in G that contains only

kV
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Fig. 4. Illustration for the proof of (a) Lemma 1 and (b) Lemma 2.

the original vertices of C ′. If C ′ in G′ corresponds to the Hamiltonian cycle C
in G, then C ′ is not bichromatic. Since every vertex in G′ has degree at most
3, no cycle can be formed with only edges that are not on C in G. Let C ′ be a
cycle in G′ that corresponds to a cycle C ′′ in G where C ′′ 6= C. Then C ′′ must
contain at least one edge e on C and one edge e′ not on C. According to the
coloring of G′, the end vertices of e in G must have different colors c1, c2 and
the division vertex on the edge e′ has the remaining color c3. Therefore G′ does
not contain any bichromatic cycle. The total number of edges in G is 3n/2. We
have subdivided all the edges of G other than (n − 1) edges on C. As a result,
the total number of division vertices in G′ is 3n/2− (n− 1) = n/2 + 1. ⊓⊔

A graph G with n vertices is a k-tree if G satisfies the following (a)-(b).

(a) If n = k, then G is the complete graph with k vertices.
(b) If n > k, then G can be constructed from a k-tree G′ with n− 1 vertices by

adding a new vertex to exactly k vertices of G′, where the induced graph of
these k-vertices is a complete graph.
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Let G be a k-tree with vertex set V . Then by definition, there is an ordered
partition π = (V1, V2, ..., Vm) of V that satisfies the following:

(a) V1 contains k vertices inducing a complete graph.
(b) Let Gk, 1 ≤ k ≤ m, be the subgraph of G induced by V1 ∪ V2 ∪ ... ∪ Vk.

Then Gk, k > 1, is a k-tree obtained by adding Vk to Gk−1, where Vk is a
singleton set and its neighbors in Gk−1 form a k-clique.

A partial k-tree is a subgraph of a k-tree. It is straightforward to observe that
k-trees are acyclically (k + 1)-colorable.

Lemma 3. For k ≤ 8, every partial k-tree G with n vertices has a subdivision

G′ with at most one division vertex per edge that is acyclically 3-colorable.

Proof. For n ≤ 3, G is itself acyclically 3-colorable. We thus assume that n > 3
and that all partial k-trees with less than n vertices have a subdivision with
at most one division vertex per edge that is acyclically 3-colorable. Let G be a
partial k-tree obtained from a k-tree K. Let π = (V1, V2, ..., Vm) be an ordered
partition of the vertex set of K and let π′ = (V ′

1 , V
′

2 , ..., V
′

m′) be an ordered
partition of the vertex set of G, where V ′

1 ⊆ V1 and V ′

2 , ..., V
′

m′ is a subsequence
of V2, ..., Vm. Now we add V ′

m′ to Gm′
−1 to obtain G. By induction Gm′

−1 has a
subdivision G′

m′
−1 that is acyclically 3-colorable, where the number of division

vertices per edge of Gm′
−1 is at most one. Let V ′

m′ = v. By definition of k-tree,
v is connected to at most k original vertices of G′

m′
−1. However, the neighbors

of v may not induce a complete graph since G is a partial k-tree. Let G′′ be the
graph obtained by adding v to G′

m′
−1. Then G′′ is a subdivision of G. To get G′

from G′′, we consider the following three cases.
Case 1 : The neighbors of v in G′′ have the same color c1. Assign color c2

to v and subdivide each edge (v, u), where u is a neighbor of v. Finally, assign
color c3 to all these new division vertices. See Figure 5(a). Thus any cycle that
passes through v uses three different colors.

Case 2 : The neighbors of v in G′′ have color c1 and c2. Then assign color
c3 to v. For each neighbor u of v, if u has color c1, subdivide the edge (v, u) and
assign color c2 to the division vertex. Similarly, for each neighbor u of v, if u has
color c2, subdivide the edge (v, u) and assign color c1 to the division vertex as
in Figure 5(b). So any cycle that passes through v, uses three different colors.

Case 3 : The neighbors of v have all three colors c1, c2 and c3. Since k ≤ 8
there is at least one color assigned to less than or equal to two neighbors of
v. Let the color be c3. Assign color c3 to v. If only one neighbor u1 of v has
color c3, subdivide edge (v, u1) and assign color c1 to the division vertex. If two
neighbors u1, u2 of v have color c3, subdivide each of the edges (v, u1) and (v, u2)
once. Then assign color c1 to the division vertex of edge (u, v1) and color c2 to
the division vertex of edge (u, v2). For each neighbor u 6∈ {u1, u2} of v, if u has
color c1, then subdivide the edge (v, u) and assign color c2 to the division vertex.
Similarly, for each neighbor u of v, if u has color c2, then subdivide the edge
(v, u) and assign color c1 to the division vertex. See Figure 5(c). Note that any
cycle that passes through v but does not contain both u1 or u2, must have three
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different colors. Any cycle that passes through v, u1 and u2 has color c3 on v
and colors c1, c2 on the two division vertices on the edges (v, u1), (v, u2).

In all the three cases above, any cycle that passes through vertex v is not a
bichromatic cycle. All the other cycles are cycles of G′

m′
−1, thus are not bichro-

matic. Thus the computed coloring in each of Cases 1–3 is an acyclic 3-coloring
of a subdivision G′ of G. By construction, the number of division vertices on
each edge of G is at most one. ⊓⊔

v v v
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Fig. 5. Illustration for the proof of Lemma 3.

An independent set S of G is a set of vertices in G, where no two vertices in S
are adjacent in G. The following lemma is of independent interest.

Lemma 4. Let S be an independent set of a graph G. If G− S is acyclic then

G is acyclically 3-colorable.

Proof. If G − S is acyclic then G − S is a tree or a forest and hence, it is 2–
colorable. Color the vertices of G− S with colors c1 and c2. Add the vertices of
S to G−S and assign the vertices color c3. Since S is an independent set, a cycle
in G contains at least one edge (u1, u2) from G − S and at least one vertex u3

from S. Since, by the coloring method given above, u1, u2 and u3 have different
colors, there is no bichromatic cycle in G. ⊓⊔

3 Acyclic coloring of plane graphs

In this section we prove our results for acyclic 3 and 4-colorability of plane
graph subdivisions. We first introduce “canonical ordering” of triangulated plane
graphs. Let G be a triangulated plane graph on n ≥ 3 vertices. We denote by
C0(G) the outer cycle of G. Let the three vertices on C0(G) be v1, v2 and vn
in counterclockwise order. Let π = (v1, v2, . . . , vn) be an ordering of all vertices
in G. For each integer k, 3 ≤ k ≤ n, we denote by Gk the plane subgraph of G
induced by the k vertices v1, v2, . . . , vk. We call π a canonical ordering of G with
respect to the outer edge (v1, v2) if it satisfies the following conditions [12]:
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(a) Gk is 2-connected and internally triangulated for each k, 3 ≤ k ≤ n.
(b) If k+1 ≤ n, then the vertex vk+1 is located on the outer face of Gk, and all

neighbors of vk+1 in Gk appear on C0(Gk) consecutively.

Observe that the vertex partition obtained by a canonical decomposition of
a triangulated plane graph G determines a vertex ordering, which corresponds
to a canonical ordering of G.

Let E∗ be the set of edges that do not belong to any C0(Gk), 3 ≤ k ≤ n.
We call these edges the internal edges of G because they never appear on the
outer face of any Gk. We call all the other edges of G, the external edges. Let
V ∗ = V − {v1, v2} and let G∗ = (V ∗, E∗). Now we prove that G∗ is a tree.

Lemma 5. For any triangulated plane graph G with a canonical ordering π =
(v1, v2, . . . , vn), the subgraph G∗ = (V ∗, E∗) is a tree.

Proof. We prove that G∗ is a tree by first showing that G∗ is connected and
then showing that |E∗| = |V ∗| − 1.

To show that G∗ is connected, we show that each internal node vk, 3 ≤ k ≤ n,
has a path to vn inG∗. For a contradiction, let k be the maximum index such that
vk, k < n, does not have such a path to vn. Since vk ∈ C0(Gk) but vk /∈ C0(G),
there exists an integer l, k < l ≤ n, such that vk ∈ C0(Gl−1) but vk /∈ C0(Gl).
Hence by property (b) of π, (vk, vl) must be an internal edge in G. Since l > k,
by assumption there must be a path from vl to vn in G∗. Therefore vk has a
path to vn in G∗ which is a contradiction.

Each vk, 3 ≤ k ≤ n, is connected to Gk−1 by exactly two external edges.
Since (v1, v2) is also an external edge, the number of external edges in G is
2(n−2)+1 = 2n−3. By Euler’s formula, G has 3n−6 edges in total. Therefore,
|E∗| = 3n− 6− (2n− 3) = n− 3 = |V ∗| − 1. Therefore, G∗ is a tree. ⊓⊔

We use Lemma 5 to prove the following theorem on acyclic 3-colorability of
subdivisions of triangulated plane graphs. This theorem is originally proved by
Angelini and Frati [2]. However, our proof is simpler and relates acyclic coloring
of graph subdivisions with canonical ordering, which is an important tool for
developing graph algorithms.

Theorem 1. Any triangulated plane graph G has a subdivision G′ with one

division vertex per edge that is acyclically 3-colorable.

Proof. Let G = (V,E) be a triangulated plane graph and let π = (v1, v2, ..., vn)
be a canonical ordering of G. Let E′ be the set of external edges and let E∗ =
E − E′ be the set of internal edges of G. Let Gs = (V,E′). We now compute a
subdivision G′

s of Gs and color G′

s acyclically with three colors as follows.
We assign colors c1, c2 and c3 to the vertices v1, v2 and v3, respectively. For

3 ≤ k ≤ n, as we traverse C0(Gk) in clockwise order starting at v1 and ending
at v2, let lvk

be the first neighbor of vk encountered and let rvk
be the other

neighbor of vk on C0(Gk). Then assign vk a color other than the colors of lvk

and rvk
.
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We now subdivide each edge in E′ with one division vertex to get G′

s. Finally,
we assign each division vertex a color other than the colors of its two neighbors.
It is easy to see that every edge in Gs along with its division vertex uses three
different colors. Therefore, the resulting coloring of G′

s is an acyclic 3-coloring.
We now add the edges of E∗ to G′

s and subdivide each of these edges with
one division vertex to obtain G′. We assign each new division vertex a color
other than the colors of its two neighbors. By Lemma 5, E∗ is the edge set of
a tree. Therefore, any cycle in G′ must contain an edge from E′. Consequently,
the cycle must use three different colors. Figure 6(a) shows an example of G′,
where the edges of E′ are shown by solid lines and the edges of E∗ are shown
by dashed lines. ⊓⊔

We now extend the technique used in the proof of Theorem 1 to obtain the
following theorem on acyclic 4-colorability of triangulated plane graphs.

Theorem 2. Any triangulated plane graph G has a subdivision G′ with at most

one division vertex per edge that is acyclically 4-colorable, where the number of

division vertices in G′ is at most 2n− 6.

Proof. We define π and Gs as in the proof of Theorem 1. We first compute
a subdivision G′

s of Gs and color G′

s acyclically with three colors as follows.
We assign colors c1, c2 and c3 to the vertices v1, v2 and v3, respectively. For
3 ≤ k ≤ n, as we traverse C0(Gk) in clockwise order starting at v1, let lvk

be
the first neighbor of vk encountered and let rvk

be the other neighbor of vk on
C0(Gk). Then for each vertex vk we consider the following two cases.

Case 1: The colors of lvk
and rvk

are the same. In this case we assign vk a
color other than the color of lvk

and rvk
. Then we subdivide edge (vk, rvk

) with
one division vertex and assign the division vertex a color other than the colors
of its two neighbors.

Case 2: The colors of lvk
and rvk

are different. In this case we assign vk a
color other than the color of lvk

and rvk
and do not subdivide any edge.

At each addition of vk, Cases 1 and 2 ensure that any cycle passing through
vk has three different colors. Hence, the resulting subdivision is the required G′

s

and the computed coloring of G′

s is an acyclic 3-coloring.
We now add the edges of E∗ to G′

s and subdivide each of these edges with
one division vertex to obtain G′. We assign each new division vertex the fourth
color. Any cycle that does not contain any internal edge is contained in G′

s and
hence, uses three different colors. On the other hand, any cycle that contains an
internal edge must use the fourth color and two other colors from the original
vertices on the cycle. Therefore, the computed coloring of G′ is an acyclic 4-
coloring. Figure 6(b) shows an example of G′. We have not subdivided any
edges between the vertices v1, v2 and v3. Moreover, for each vk, we subdivided
exactly one external edge. Therefore the number of division vertices is at most
(3n− 6)− (n− 3)− 3 = 2n− 6. ⊓⊔

Observe that canonical ordering and Schnyder’s realizer of a triangulated
plane graph are equivalent notions [11]. Using the fact that G∗ = (V ∗, E∗) is a
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Fig. 6. Illustration for the proof of (a) Theorem 1 and (b) Theorem 2.

tree of Schnyder’s realizer [5], one can obtain alternate proofs for Theorems 1
and 2.

4 NP-completeness

In this section we prove that it is NP-complete to decide whether a graph with
maximum degree 7 has an acyclic 4-coloring or not. We denote the problem by
Acyclic 4-Color Max-deg 7. The equivalent decision problem is given below.

Instance: A graph G with maximum degree 7.
Question: Can the vertices of G be acyclically colored with 4 colors?

Theorem 3. Acyclic 4-Color Max-deg 7 is NP-complete.

Proof. The problem is in NP. If a valid 4-coloring of the vertices of G is given,
we can check in polynomial time whether that is an acyclic coloring or not. We
consider each pair of colors and the subgraph induced by the vertices of those
two colors. We check whether that subgraph contains a cycle. If none of the

(

4

2

)

subgraphs contains any cycles, the 4-coloring is an acyclic coloring.
We will prove the NP-hardness by reducing the problem of deciding acyclic 3-

colorability of plane graphs with maximum degree 4 to our problem. The problem
of acyclic 3-colorability, which was proved to be NP-complete by Angelini and
Frati [2], is given below.
Instance: A plane graph H with maximum degree 4.
Question: Can the vertices of H be acyclically colored with 3 colors?

Let H be an instance of the problem of deciding acyclic 3-colorability of
plane graphs with maximum degree 4, as in Figure 7. Let p be the number of
vertices in H. Then we construct a plane 3-tree G4p of 4p vertices as in Figure 7
as follows. We first take a triangle with vertices v1, v2 and v3. Next we take a
vertex v4 in the inner face of the triangle and connect v4 to v1, v2 and v3 to get

11



G4. In any valid coloring of G4, v1, v2, v3 and v4 must be assigned four different
colors and hence the coloring is acyclic. Let the colors assigned to v1, v2, v3 and
v4 be c1, c2, c3 and c4, respectively. Now we place a new vertex v5 inside the face
bounded by the triangle v2, v3, v4 and connect v5 with the three vertices on the
face to get G5. It is obvious that G5 is 4–colorable and v5 must be assigned the
same color as v1 in a 4-coloring of G5. In this recursive way, we construct the
graph G4p with 4p vertices, where each inner vertex of G4p has degree exactly
six. In any valid 4-coloring of G4p, each of the four colors is assigned to exactly
p vertices.

We now prove that any valid 4-coloring of a plane 3-tree Gn with n vertices
is an acyclic coloring. The proof is by induction on n. When n ≤ 4, any 4-
coloring of G3 is an acyclic coloring. We thus assume that n > 4 and that any
valid 4-coloring of a plane 3-tree with less than n vertices is an acyclic coloring.
By definition of plane 3-tree, Gn has a vertex v of degree three. We remove v
from Gn to get another plane 3-tree Gn−1 with n− 1 vertices. By the induction
hypothesis, any 4-coloring of Gn−1 is an acyclic coloring. We now add v to Gn−1

to get Gn. By construction of plane 3-trees, v must be placed in a face of Gn−1

and must be connected to the three vertices on the face. Let the colors assigned
to three neighbors of v be c1, c2 and c3. Then v is assigned color c4. Now, any
cycle that goes through v must also go through at least two of the neighbors of v.
Hence any cycle containing v contains vertices of at least three colors. Therefore,
Gn has no bichromatic cycle.

v1

v3
G4p

H

v4 v2

v5

G

c1 c2

c3

c1

c1

c1

c2

c2

c2

c2

c3

c3

c3

c3

c2 c1

c3

c1

c3

Fig. 7. Illustration for the proof of Theorem 3.

Let S be the set of the vertices of G4p that are assigned color c4 in a 4-coloring
when the outer vertices use the colors c1, c2, c3. We connect each vertex of H to
exactly one vertex of S as illustrated in Figure 7, so that the edges connecting
vertices of H and G4p form a matching. Let the resulting graph be G. It is easy

12



to see that the degree of each vertex of G is at most seven. We argue that G has
an acyclic 4-coloring if and only if H has an acyclic 3-coloring.

First we assume that G admits an acyclic 4-coloring. Let the colors assigned
to the vertices of G be c1, c2, c3 and c4. Let the colors assigned to the outer
vertices of G4p be c1, c2 and c3. Then each vertex in S has color c4 and hence no
vertex in H receives color c4. Therefore, the vertices of H are acyclically colored
with three colors c1, c2 and c3.

We now assume that H has an acyclic 3-coloring where the colors assigned to
the vertices of H are c1, c2 and c3. We assign the three colors to the three outer
vertices v1, v2 and v3 of G4p. Clearly the common neighbor v4 of the three outer
vertices must be assigned a fourth color c4. In the same way, all the vertices of
S get the color c4. Suppose for a contradiction that G contains a bichromatic
cycle C. C cannot be a cycle of H. Since any 4-coloring of G4p is acyclic, C
cannot be a cycle of G4p. Therefore, C must contain vertices from both G4p and
H. Since the edges connecting G4p and H form a matching, no two vertices of
G4p have the same neighbor in H. Therefore, C must contain at least one edge
e of H. The end vertices of e have two of the three colors c1, c2, c3. Since C
must contain a vertex in G4p with color c4, C contains vertices of at least three
colors and hence cannot be a bichromatic cycle. Therefore, the 4-coloring of G
described above is acyclic. ⊓⊔

5 Open Problems

Acyclic colorings of plane graph subdivisions with fewer division vertices will be
an interesting direction to explore. We ask the following question:

What the minimum positive constant c such that every triangulated planar
graph with n vertices has an acyclic k-coloring, k ∈ {3, 4}, with at most cn
division vertices?

Every cubic graph is acyclically 4-colorable [14]. On the other hand, we have
proved that testing acyclic 4-colorability is NP-complete for graphs with the
maximum degree 7. The problem of obtaining acyclic 4-colorings for graphs
with maximum degree greater than three and less than seven remains open, as
does using our results to improve volume bounds on 3-dimensional polyline grid
drawings.
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