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Abstract. Let T be an edge weighted tree and let dmin, dmax be two
nonnegative real numbers. Then the pairwise compatibility graph (PCG)
of T is a graph G such that each vertex of G corresponds to a distinct leaf
of T and two vertices are adjacent inG if and only if the weighted distance
between their corresponding leaves in T is in the interval [dmin, dmax].
Similarly, a given graph G is a PCG if there exist suitable T, dmin, dmax,
such that G is a PCG of T . Yanhaona, Bayzid and Rahman proved
that there exists a graph with 15 vertices that is not a PCG. On the
other hand, Calamoneri, Frascaria and Sinaimeri proved that every graph
with at most seven vertices is a PCG. In this paper we construct a
graph of eight vertices that is not a PCG, which strengthens the result
of Yanhaona, Bayzid and Rahman, and implies optimality of the result of
Calamoneri, Frascaria and Sinaimeri. We then construct a planar graph
with sixteen vertices that is not a PCG. Finally, we prove a variant of
the PCG recognition problem to be NP-complete.

1 Introduction

Let T be an edge weighted tree and let dmin, dmax be two nonnegative real
numbers. Then the pairwise compatibility graph (PCG) of T is a graph G such
that each vertex of G corresponds to a distinct leaf of T and two vertices are
adjacent in G if and only if the weighted distance between their corresponding
leaves in T is in the interval [dmin, dmax]. Similarly, a given graph G is a PCG
if there exist suitable T, dmin, dmax, such that G is a PCG of T . Figure 1(a)
illustrates an edge weighted tree T , and Figure 1(b) shows the corresponding
PCG G, where dmin = 2 and dmax = 3.5. Figure 1(c) shows another edge
weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5 and dmax = 2.

In 2003, Kearney et al. [7] introduced the concept of PCG and showed how to
use them to model evolutionary relationships among a set of organisms. More-
over, they proved that the problem of finding a maximal clique can be solved
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Fig. 1. (a) An edge weighted tree T . (b) A PCGG of T , where dmin = 2, dmax = 3.5. (c)
Another edge weighted tree T ′ such that G is a PCG of T ′ when dmin = 1.5, dmax = 2.

in polynomial time for pairwise compatibility graphs if one can find their corre-
sponding edge weighted trees in polynomial time. They hoped that every graph
is a PCG, but later, Yanhaona et al. [12] constructed a 15-vertex graph that is
not a PCG. Several researchers have attempted to characterize pairwise com-
patibility graphs. Yanhaona et al. [13] proved that graphs having cycles as its
maximal biconnected components are PCGs. Salma and Rahman [10] proved
that every triangle free maximum degree three outerplanar graph is a PCG.
Calamoneri et al. [5] gave some sufficient conditions for a split matrogenic graph
to be a PCG, and examined the graph classes that arise from using the intervals
[0, dmax] (LPG) and [dmin,∞] (mLPG). They proved that the intersection of
these classes is not empty, and neither of them is contained in the other. The
graph classes LPG, mLPG and PCG are similar to the leaf powers and their
variants, which have been extensively studied in the literature [1–3, 6, 8, 9]. For
example, the complement of PCG and the graph class LPG are closely related
to the exact k-leaf powers, (k, l)-leaf powers and k-leaf powers, respectively.

Finding a pairwise compatibility tree of a given graph appeared to be difficult,
even for graphs with few vertices. Kearney et al. [7] showed that every graph
with at most five vertices is a PCG. The smallest graph known not to be a PCG
is a 15-vertex graph constructed by Yanhaona et al. [12]. This is a bipartite
graph with partite sets A and B, where |A| = 5 and |B| = 10, and each subset
of three vertices of A is adjacent to a distinct vertex of B. Recently, Calamoneri
et al. [4] proved that every graph with at most seven vertices is a PCG.

In this paper we construct a graph of eight vertices that is not a PCG, which
strengthens the result of Yanhaona et al. [12], and implies optimality of the result
of Calamoneri et al. [4]. We then construct a planar graph with sixteen vertices
that is not a PCG; this is the first planar graph known not to be a PCG. Finally,
we prove a variant of the PCG recognition problem to be NP-complete.

2 Preliminaries

In this section we introduce some definitions and review some relevant results.
Let G = (V,E) be a graph with vertex set V and edge set E. The complement

graph G of G is the graph with vertex set V and edge set E, where E consists
of the edges that are determined by the non-adjacent pairs of vertices of G.
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Let T be an edge weighted tree. Let u and v two leaves of T . By Puv we denote
the unique path between u and v in T . By dT (u, v) we denote the weighted
distance between u and v, i.e., the sum of the weights of the edges on Puv.
Let dmin, dmax be two nonnegative real numbers. Then by PCG(T, dmin, dmax)
we denote the PCG of T that respects the interval [dmin, dmax]. By Tx1x2...xt

we denote the subgraph of T induced by the paths Pxixj , where 1 ≤ i, j ≤ t.
Figures 2(a)–(b) illustrate an example of such a subgraph.

Lemma 1 (Yanhaona et al. [12]). Let T be an edge weighted tree, and let u, v
and w be three leaves of T such that Puv is the longest path in Tuvw. Let x be a leaf
of T other than u, v and w. Then dT (w, x) ≤ dT (u, x), or dT (w, x) ≤ dT (v, x).

Let G = PCG(T, dmin, dmax). Then by u′ we denote the vertex of G that
corresponds to the leaf u of T . The following lemma illustrates a relationship
between a PCG and its corresponding edge weighted tree, which holds based on
the proof of [12, Lemma 3.3].

Lemma 2. Let G = PCG(T, dmin, dmax). Let a, b, c, d, e be five leaves of T and
a′, b′, c′, d′, e′ be the corresponding vertices of G, respectively. Let Pae and Pbd be
the longest path in Tabcde and Tbcd, respectively. Then any vertex x′ in G that is
adjacent to a′, c′, e′ must be adjacent to b′ or d′.

The rest of the paper is organized as follows. In Section 3 we construct a
graph G1 with nine vertices that is not a PCG. In Section 4 we prove that the
graph obtained by deleting a vertex of degree three from G1 is not a PCG. In
Section 5 we construct a planar graph that is not a PCG. In Section 6 we prove
the NP-hardness result. Finally, Section 7 concludes the paper.

3 Not all 9-Vertex Graphs are PCGs

In this section we construct a graph G1 of nine vertices that is not a PCG. Here
we describe an outline of the construction.

We use three lemmas to construct G1. In Lemma 3 we prove that for a cycle
a′, b′, c′, d′ of four vertices, dT (a, c) and dT (b, d) cannot be both greater than
dmax. We then construct a graph H with six vertices a′, b′, c′, d′, i′, j′ such that
each pair of vertices in H are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). Using Lemma 3 we prove in Lemma 4
that at least one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater
than dmax. In Lemma 5 we prove that any PCG that contains H as an induced
subgraph must satisfy the inequality dT (a, c) < dmin, where a′ and c′ are the
only vertices of degree four inH. We add three vertices k′, u′, v′ toH to construct
G1, as shown in Figure 2(d). In Theorem 1 we show that for every non-adjacent
pair (x′, y′) in H, the graph G1 contains an induced subgraph isomorphic to H
that contains x′ and y′ as its degree four vertices. By Lemma 5, dT (x, y) < dmin.
Observe that this contradicts Lemma 4. Consequently, G cannot be a PCG.

The following lemma proves that for a cycle a′, b′, c′, d′ of four vertices,
dT (a, c) and dT (b, d) cannot be both greater than dmax. We omit its proof due
to space constraints.
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Fig. 2. (a) An edge weighted tree T . (b) Tabe. (c) Illustration for H. (d) G1.

Lemma 3. Let G = PCG(T, dmin, dmax), which is a cycle a′, b′, c′, d′ of four
vertices. Let a, b, c, d be the leaves of T that correspond to the vertices a′, b′, c′, d′

of G, respectively. Then dT (a, c) and dT (b, d) cannot be both greater than dmax.

We now construct a graph H with six vertices a′, b′, c′, d′, i′, j′ such that
each pair of vertices in H are adjacent except the pairs (a′, c′), (b′, d′), (i′, d′),
(j′, b′), (i′, j′), as shown in Figure 2(c). The following lemma proves that at least
one of dT (a, c), dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than dmax.

Lemma 4. Let H = PCG(T, dmin, dmax). Let a, b, c, d, i, j be the leaves of T
that correspond to the vertices a′, b′, c′, d′, i′, j′ of H. Then at least one of dT (a, c),
dT (b, d), dT (i, d), dT (j, b), dT (i, j) must be greater than dmax.

Proof. For each pair (x′, y′) ∈ {(a′, c′), (b′, d′), (i′, d′), (j′, b′), (i′, j′)}, x′ and y′

are non-adjacent in H. Therefore, either dT (x, y) < dmin or dT (x, y) > dmax.
If one of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is greater than dmax, then the

lemma holds irrespective of whether dT (i, j) < dmin or dT (i, j) > dmax. We thus
assume that each of dT (a, c), dT (b, d), dT (i, d), dT (j, b) is less than dmin, and then
prove that dT (i, j) must be greater than dmax.

Suppose for a contradiction that dT (i, j) < dmin. Recall that we assumed
dT (j, b) < dmin. Consequently, since i′ and b′ are adjacent in H, the path Pib

must be the longest path Tijb. By Lemma 1, dT (j, d) ≤ dT (i, d) or dT (j, d) ≤
dT (b, d). Since we assumed that dT (i, d) < dmin and dT (b, d) < dmin, the in-
equality dT (j, d) < dmin holds. But this contradicts that j′, d′ are adjacent in G.
Therefore, dT (i, j) must be greater than dmax. ut

In the following lemma we prove that any PCG that containsH as an induced
subgraph must satisfy the inequality dT (a, c) < dmin, where a′ and c′ are the
only vertices of degree four in H.

Lemma 5. Let G = PCG(T, dmin, dmax) be a graph that contains an induced
subgraph G′ isomorphic to H. Let a, b, c, d, i, j be the leaves of T that correspond
to the vertices a′, b′, c′, d′, i′, j′ of G′. Let a′ and c′ be the vertices of degree four
in G′. Then dT (a, c) must be less than dmin.

Proof. Since a′, c′ are non-adjacent in G′, either dT (a, c) < dmin or dT (a, c) >
dmax. Suppose for a contradiction that dT (a, c) > dmax.
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Since the subgraph induced by a′, b′, c′, d′ is a cycle, by Lemma 3, dT (b
′, d′) <

dmin. Again, since the subgraph induced by a′, i′, c′, d′ is a cycle, by Lemma 3,
dT (i

′, d′) < dmin. Consequently, Pbi is the longest path in Tibd. Observe that we
assumed dT (a, c) > dmax. On the other hand, for each pair (x′, y′) ∈ {(a′, b′), (a′, d′),
(a′, i′), (b′, d′), (b′, c′), (b′, i′), (c′, d′), (c′, i′), (d′, i′)}, dT (x, y) ≤ dmax. Therefore,
Pac is the longest path in Tabcdi. By Lemma 2, any vertex j′ in G′ that is adja-
cent to a′, c′, d′ must be adjacent to i′ or b′. Although j′ is adjacent to a′, c′, d′

in G, neither i′ nor b′ is adjacent to j′, a contradiction. ut

We now add three vertices k′, u′, v′ to H to construct G1, as shown in Fig-
ures 3(a)–(b). In the following theorem we show that G1 is not a PCG.

Theorem 1. G1 is not a PCG.

Proof. For every non-adjacent pair (x′, y′) in H, the graph G1 contains an in-
duced subgraph isomorphic to H that contains x′ and y′ as its degree four
vertices, as shown in Figures 3(c)–(g). By Lemma 5, dT (x, y) < dmin. This con-
tradicts Lemma 4 that says there exists a non-adjacent pair (x′, y′) in H such
that dT (x, y) > dmax. Consequently, G cannot be a PCG. ut
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Fig. 3. (a) H. (b) G1. (c)–(g) Five induced subgraphs of G, when (c) dT (a, c) > dmax,
(d) dT (b, d) > dmax, (e) dT (i, d) > dmax, (f) dT (j, b) > dmax, (g) dT (i, j) > dmax.

4 Not all 8-Vertex Graphs are PCGs

In this section we analyze the structure of the graph G1, and modify it to obtain
a graph of eight vertices that is not a PCG.

We refer the reader to Figure 3. Observe that G1 has only one vertex of degree
three, i.e., vertex k′. The proof of Theorem 1 refers to vertex k′ only in the case
when dT (a, c) > dmax, as shown in Figure 3(c). This observation inspired us to



6 S. Durocher, D. Mondal, and M.S. Rahman

examine whether the graph G1 \ k′ is a PCG or not. In this section we denote
the graph G1 \ k′, shown in Figure 4(a), by G2 and prove that G2 is not a PCG.
The following lemma will be useful to prove the main result.

Lemma 6. Let G = PCG(T, dmin, dmax) be a graph of four vertices a′, b′, c′, d′

and two edges (a′, b′) and (c′d′). Let a, b, c, d be the leaves of T that correspond to
the vertices a′, b′, c′, d′ of G, respectively. Then at least one of dT (a, d), dT (b, d),
dT (b, c), dT (a, c) must be greater than dmax.

Proof. Since every pair of vertices among (a′, d′), (b′, d′), (b′, c′), (a′, c′) are non-
adjacent in G, each of dT (a, d), dT (b, d), dT (b, c), dT (a, c) is either greater than
dmax or less than dmin. Suppose for a contradiction that dT (a, d), dT (b, d), dT (b, c),
dT (a, c) are less than dmin.

Since a′ and b′ are adjacent and dT (a, c), dT (b, c) are less than dmin, Pab

must be the longest path in Tabc. By Lemma 1, dT (c, d) ≤ dT (a, d) or dT (c, d) ≤
dT (b, d). By assumption, both dT (a, d) and dT (b, d) are less than dmin. Therefore,
dT (c, d) < dmin, which contradicts that c′ and d′ are adjacent in G. ut

We now use Lemma 6 to obtain the following corollary.

Corollary 1. Let G2 = PCG(T, dmin, dmax) and let a, b, c, d, i, j, u, v be the
leaves of T that correspond to the vertices a′, b′, c′, d′, i′, j′, u′, v′ of G2. Then
(a) at least one of dT (u, v), dT (a, v), dT (a, c), dT (u, c) must be greater than dmax,
and (b) at least one of dT (b, j), dT (b, d), dT (i, d), dT (i, j) must be greater than
dmax.

a ciu v
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v d jc

b

v j

(a) (b) (c) (d)

u

Fig. 4. (a) G2. (b) Another drawing of G2. (c) Illustration for ((w′, x′), (y′, z′)),
where (w′, x′) and (y′, z′) are shown in dashed lines and dotted lines, respectively.
(d) ((w′, x′), (y′, z′)) = ((u′, v′), (b′, j′)).

Theorem 2. G2 is not a PCG.

Proof. Suppose for a contradiction that G2 = PCG(T, dmin, dmax), where a, b, c,
d, i, j, u, v are the leaves of T that correspond to the vertices a′, b′, c′, d′, i′, j′, u′, v′

of G2. Observe that for any ((w′, x′), (y′, z′)), where (w′, x′) ∈ {(u′, v′), (a′, v′),
(a′, c′), (u′, c′)} and (y′, z′) ∈ {(b′, j′), (b′, d′), (i′, d′), (i′, j′)}, the vertices {w′, x′,
y′, z′} induce a cycle C such that w′, x′ and y′, z′ are non-adjacent in C. Fig-
ures 4(b)–(d) illustrate this scenario. By Corollary 1, for some ((w′, x′), (y′, z′)),
both dT (w, x) and dT (y, z) are greater than dmax. This contradicts Lemma 3
since the vertices {w′, x′, y′, z′} induce a cycle. ut
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5 Not all Planar Graphs are PCGs

In this section we prove that the planar graph Gp, shown in Figure 5(a), is not
a PCG.
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Fig. 5. (a) Gp. (b) Illustration for the proof of Theorem 3. The graphs isomorphic to
H are shown in bold lines (dT (b, c) > dmax), regular dashed lines (dT (a, c) > dmax),
regular dotted lines (dT (b, d) > dmax) and irregular dashed lines (dT (a, d) > dmax).

Theorem 3. Gp is not a PCG.

Proof. Suppose for a contradiction that Gp = PCG(T, dmin, dmax), where a, b,
. . . , s, t are the leaves of T that correspond to the vertices a′, b′, . . . , s′, t′ of Gp.

Since the subgraph induced by a′, b′, c′, d′ consists of exactly two edges (a′, b′)
and (c′, d′), by Lemma 6, at least one of dT (a, d), dT (b, d), dT (b, c), dT (a, c) must
be greater than dmax. For any pair (x′, y′) ∈ {(a′, d′), (b′, d′), (b′, c′), (a′, c′)},
there exists an induced subgraph in Gp that is isomorphic to H (i.e., the graph
of Figure 3(c)) that contains x′ and y′ as its degree four vertices. By Lemma 5,
dT (x, y) < dmin, which contradicts that at least one of dT (a, d), dT (b, d), dT (b, c),
dT (a, c) must be greater than dmax. Consequently, Gp cannot be a PCG. ut

Observe that Gp has twenty vertices. However, the proof of Theorem 3
holds even for the planar graph obtained from Gp by merging the pair of ver-
tices (e′, t′), (h′, i′), (l′,m′), (p′, q′) and then removing the resulting multi-edges.
Therefore, there exists a planar graph with sixteen vertices that is not a PCG.
We omit the details due to space constraints.

6 NP-hardness

In this section we examine a generalized PCG recognition problem that given a
graph G and a set S ⊆ E1, asks to determine a PCG G′ = (T, dmin, dmax) that

1 E is the set of edges of the complement graph of G.
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contains G as a subgraph2 but does not contain any edge of S. Observe that if
S = E, then the problem asks to decide whether G is a PCG. We prove that
the generalized PCG recognition problem is NP-hard if we require the maximum
number of edges of S to have weighted tree distance greater than dmax between
their corresponding leaves. A decision version of the problem is as follows.

Problem : Max-Generalized-PCG-Recognition
Instance : A graph G, a subset S of the edges of its complement graph, and
a positive integer k.
Question : Is there a PCG G′ = PCG(T, dmin, dmax) such that G′ contains
G as a subgraph2, but does not contain any edge of S; and at least k edges of
S have distance greater than dmax between their corresponding leaves in T?

We prove the NP-hardness of Max-Generalized-PCG-Recognition by re-
duction form Monotone-One-In-Three-3-SAT [11].

Problem : Monotone-One-In-Three-3-SAT
Instance : A set U of variables and a collection C of clauses over U such that
each clause consists of exactly three non-negated literals.
Question : Is there a satisfying truth assignment for U such that each clause
in C contains exactly one true literal?

Given an instance I(U,C) of Monotone-One-In-Three-3-SAT, we con-
struct an instance I(G,S, k) of Max-Generalized-PCG-Recognition such
that I(U,C) has an affirmative answer if and only if I(G,S, k) has an affirmative
answer. The idea of the reduction is as follows. Given an edge weighted tree T
with n leaves, dmin = 0 and dmax = +∞, the corresponding PCG is a com-
plete graph Kn of n vertices. Observe that as the interval [dmin, dmax] begins to
shrink, more and more edges of Kn disappear. Some edges disappear due to the
increase of dmin and some other edges disappear due to the decrease of dmax.
We use these two events to set the truth values of the literals.

Let Gnot be the graph of Figure 6(a). The following lemma shows how to use
this graph as a NOT gate.

Lemma 7. Assume that Gnot = PCG(T, dmin, dmax), where a, b, . . . , q are the
leaves of T that correspond to the vertices a′, b′, . . . , q′ of Gnot. Then dT (a, b) <
dmin if and only if dT (c, d) > dmax.

Proof. By Lemma 6, one of dT (e, g), dT (e, h), dT (f, g), dT (f, h) must be greater
than dmax. Observe that for any pair (x, y) ∈ {(e′, g′), (e′, h′), (f ′, g′), (f ′, h′)},
the vertices b′, x′, d′, y′ form an induced cycle. Therefore, by Lemma 3, dT (b, d) <
dmin. Similarly, we can prove that dT (a, q) < dmin and dT (c, q) < dmin. Since
a′, c′, b′, q′, d′ induce a cycle of five vertices, one of dT (a, b), dT (c, d), dT (a, q),
dT (c, q), dT (b, d) is greater than dmax [5, Lemma 2]. Since dT (a, q), dT (c, q), dT (b, d)
are less than dmin, one of or both dT (a, b) and dT (c, d) are greater than dmax.

Without loss of generality assume that dT (a, b) > dmax. Then by Lemma 1,
dT (c, d) ≤ dT (a, d) or dT (c, d) ≤ dT (b, d). Since dT (a, d) ≤ dmax and dT (b, d) <

2 Not necessarily an induced subgraph.
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dmin ≤ dmax, dT (c, d) must be less than dmin. Similarly, we can prove that if
dT (c, d) > dmax, then dT (a, b) < dmin. ut
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Fig. 6. (a) Gnot, and its hypothetical representation. (b) Gnot = PCG(T, 7, 11). (c)
Simplified representation of T .

Properties of Gnot. The vertices a, b and c, d play the role of the input and
output of a NOT gate, respectively. Figure 6(b) illustrates a pairwise compat-
ibility tree T , where Gnot = PCG(T, 7, 11) and dT (a, b) > dmax. Observe that
once we construct the tree Tabqcd, it becomes straightforward to add the trees
Tefgh, Tijkl and Tmnop. Therefore, in the rest of this section we only consider the
simplified representation for T , as shown in Figure 6(c). We can cascade several
NOT gates to duplicate or invert the input, but we omit the details due to space
constraints.

In the reduction, all the edges of Gnot will belong to S. Every Gnot has 101
non-adjacent pairs, and by construction, in any pairwise compatibility tree T ′ of
Gnot, dT ′(a, q), dT ′(c, q), dT ′(b, d) and one of dT ′(a, b), dT ′(c, d) must be less than
dmin. Therefore, at most 97 edges of Gnot can have distance greater than dmax

between their corresponding leaves in T ′. Since the tree T , shown in Figure 6(b),
determines 97 such edges, it maximizes the number of edges of Gnot that have
distance greater than dmax between their corresponding leaves.

Gadget. Each literal gadget consists of a pair of non-adjacent vertices. Every
edge determined by these two vertices, belongs to S. We say that a literal (or,
any non-adjacent pair of vertices) (a′, b′) is true if and only if dT (a, b) > dmax;
otherwise, it is false.

Every clause gadget Gclause, as shown in Figure 7(a), corresponds to a logic
circuit L that is consistent if and only if at most one of its three inputs is true.
The three pairs of vertices (a′, b′), (c′, d′), and (e′, f ′) of Gclause play the role of
the inputs. For each pair of inputs, e.g., ((a′, b′), (c′, d′)), Gclause contains a Gnot

such that the ports o′1, o
′
2 of Gnot form a cycle with a′, b′, and the ports o′3, o

′
4

of Gnot form a cycle with c′, d′. In the following we show that L is consistent if
and only if at most one input is true.

Suppose for a contradiction that at least two of the three inputs, without
loss of generality (a′, b′) and (c′, d′), are true. Since (a′, b′) is true, by Lemma 3,
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Fig. 7. (a) A clause gadget Gclause. (b) Simplified representation of a pairwise com-
patibility tree T that determines the truth values of its literals. Here, (a′, b′), (c′, d′)
and (e′, f ′) correspond to the values true, false and false, respectively. (c)–(e) Subtrees
of T that correspond to a Gnot and its associated literal gadgets.

(o′1, o
′
2) must be false. Consequently, (o′3, o

′
4) must be true. Since c′, o′3, d

′, o′4
induce a cycle, by Lemma 3, (c′, d′) must be false, a contradiction.

Assume now that at most one of the three inputs is true. In this case, we
show how to construct a pairwise compatibility tree such that the corresponding
PCG G′

clause contains Gclause as a subgraph. Without loss of generality assume
that (a′, b′) is true. (The construction when when all the inputs are false are
similar.) Construct an edge weighted tree T as illustrated in Figure 7(b). Ob-
serve that dT (c, d)<dmin, dT (e, f)<dmin and dT (a, b)>dmax, which implies that
(c′, d′), (e′, f ′) are false and (a′, b′) is true. We call r, s, t the medial path of T .
Figure 7(c)–(e) illustrates how to add the subtrees (shown in thin lines) that
correspond to the Gnots to T . These trees not only realize the Gnots, but also
determine the cycles that are incident to the inputs of the clause gadget.

We now have the following theorem. We omit the details due to space con-
straints.

Theorem 4. Max-Generalized-PCG-Recognition is NP-hard.

Proof (Outline). Given an instance I(U,C) of Monotone-One-In-Three-3-
SAT, we construct a corresponding instance I(G,S, k) of Max-Generalized-
PCG-Recognition in polynomial time by constructing a clause gadget for each
clause, and duplicating the literals that occurs in multiple clauses by cascading
NOT gates, as illustrated in Figure 8(a). The set S consists of the edges of Gnots
and the edges that are determined by the literal gadgets. Let N and t′ be the
number of NOT gates and clauses, respectively. We set k = 97N + t′.
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Fig. 8. (a) The graph G that correspond to the instance I(U,C) = (x1∨x2∨x3)∧(x4∨
x2 ∨ x5), where x1, x2, x3, x4, x5 correspond to (a′, b′), (c′, d′), (e′, f ′), (g′, h′), (i′, j′),
respectively. (b)–(c) Compatibility trees for the clauses, where the literals except x1

and x2 are false. (d) Merging the medial paths. (e)–(f) Compatibility trees for Gnots
that propagate the truth value from (c′, d′) to (k′, l′). (g) A compatibility tree ofG′. The
edges with weights 1, 2 and 4 are shown in dotted, dashed and solid lines, respectively.

Assume first that I(U,C) has an affirmative answer. For each clause, we
construct an edge weighted tree as shown in Figure 7(a). We then merge the
medial paths of these trees, as shown in Figures 8(b)–(d). Finally, we add the
subtrees that correspond to the Gnots that we used to duplicate (or, propagate)
the input values, as depicted in Figures 8(e)–(g). Let G′ be the PCG of the
resulting tree. G′ contains G as a subgraph since we constructed T using the trees
for the basic gadgets. G′ does not contain any edge of S since every redundant
edge of G′ lie between different Gnots, or different literal gadgets, or between a
Gnot and a literal gadget. Finally, there are 97 edges in each Gnot that contribute
to k, and t′ true literals, one from each clause, that contribute to k.

Assume now that I(U,C) does not have any affirmative answer. Since each
Gnot can have at most 97 edges that contribute to k, at least t′ edges that
contribute to k must come from the literal gadgets. Since no two literal gadget
that lie in the same clause can be true, each clause must have at least one true
literal, which contradicts that I(U,C) does not have any affirmative answer. ut
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7 Conclusion

We have constructed a nonplanar graph with eight vertices that is not a PCG,
but the graph is not split matrogenic. Therefore, the question of Calamoneri et
al. [5] of whether every split matrogenic is a PCG remains open. We also con-
struct a planar graph that is not a PCG, but the graph is not outerplanar. Since
every triangle-free outerplanar graph with degree at most three is a PCG [10], an
interesting question is whether there exists any outerplanar graph that is not a
PCG. An important open problem that remains is to determine the complexity
of the (original, or generalized) PCG recognition problem.
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