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On Compatible Triangulations with a Minimum Number of Steiner Points
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Abstract

Two polygons are compatible if they have the same
clockwise cyclic ordering of vertices. The definition ex-
tends to polygonal regions (polygons with holes) and to
triangulations—for every face, the clockwise cyclic or-
der of vertices on the boundary must be the same. It is
known that every pair of compatible n-vertex polyg-
onal regions can be extended to compatible triangu-
lations by adding O(n2) Steiner points. Furthermore,
Ω(n2) Steiner points are sometimes necessary, even for
a pair of polygons. Compatible triangulations provide
piecewise linear homeomorphisms and are also a crucial
first step in morphing planar graph drawings, aka “2D
shape animation.” An intriguing open question, first
posed by Aronov, Seidel, and Souvaine in 1993, is to
decide if two compatible polygons have compatible tri-
angulations with at most k Steiner points. In this paper
we prove the problem to be NP-hard for polygons with
holes. The question remains open for simple polygons.

1 Introduction

For many computational geometry problems involving
a polygon or polygonal region, the standard first step
is to triangulate the region. However, for some prob-
lems, such as morphing of polygons, or finding a home-
omorphism between polygons, the input consists of two
polygons with a correspondence between them, and the
desirable first step is to triangulate them in a consistent
way. Unlike for a single polygon, it may be necessary
to add new vertices, called “Steiner points”. Our paper
is about this harder problem, which was called “joint
triangulation” by Saalfeld [12] and “compatible trian-
gulation” by Aronov, Seidel, and Souvaine [3].

Research on finding compatible triangulations is mo-
tivated by applications in morphing [2] and 2D shape
animation [5, 15], and in computing piecewise linear
homeomorphisms of polygons.

Throughout, we deal with vertex-labelled straight-
line planar drawings. The most general input we con-
sider is a polygon with holes (a polygonal region), where
we allow a hole to degenerate to a single point. Two
polygons are compatible if they have the same clockwise
cyclic ordering of vertices. Two polygonal regions P1
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Figure 1: Two compatible polygons, each with one hole
(shaded gray), and compatible triangulations of them
with 3 Steiner points.

and P2 are compatible if their outer polygons are com-
patible, and their holes are compatible, i.e. each hole
(considered as a polygon) in P1 corresponds to a com-
patible hole in P2. Note that the labelling provides the
correspondence.

A triangulation T (P ) of a polygonal region P is a sub-
division of its interior region into triangular faces. The
vertices of T (P ) \ P are called Steiner points of T (P ).
A pair of triangulations T (P1) and T (P2) of compatible
polygonal regions P1 and P2, respectively, are compati-
ble if their faces are compatible, i.e. every face of T (P1)
(considered as a polygon) corresponds to a compatible
face of T (P2). Again, the labelling provides the cor-
respondence. Figure 1 illustrates a pair of compatible
polygonal regions and their compatible triangulations.

Two special cases of compatible triangulations were
studied independently. Saalfeld in 1987 [12] considered
the case of two rectangles each with n points inside
them (where the correspondence between the points is
given) and showed that compatible triangulations al-
ways exist. Aronov et al., in 1993 [3] considered the
case of simple compatible polygons. They showed that
there exist compatible triangulations with O(n2) Steiner
points. (A similar construction was given by Thomassen
in 1983 [16, Theorem 4.1].) Furthermore, Aronov et
al. gave an O(n2)-time algorithm to compute such com-
patible triangulations, and they gave examples where
Ω(n2) Steiner points are necessary. They posed as an
open problem to decide if two polygons have a compat-
ible triangulation with k Steiner points, and observed
that the case k = 0 can be decided in polynomial time
via dynamic programming.

Our Result. We show that it is NP-hard to decide if
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two compatible polygonal regions have compatible tri-
angulations with at most k Steiner points, where k ∈ N
is given as part of the input.

Further Background. There are a number of further
results for the case of two simple polygons. Kranakis
and Urrutia [9] gave an O(n + r2)-time algorithm to
find compatible triangulations of simple compatible
polygons with O(n + r2) Steiner points, where r is
the number of reflex vertices. Gupta and Wenger [8]
gave a polynomial-time algorithm that provides an
O(log n) approximation to the minimum number of
Steiner points. A number of heuristic algorithms have
been proposed—see e.g., [5, 15].

There is also a line of research on the case of polygons
with point holes (Saalfeld’s problem). Souvaine and
Wenger [14] gave an O(n2)-time algorithm to compute
compatible triangulations with O(n2) Steiner points,
and asked if there is a polynomial-time algorithm to
construct compatible triangulations with the minimum
number of Steiner points. Pach et al. [10] proved that
Ω(n2) Steiner points are sometimes necessary.

For the case of general polygonal regions—which en-
compasses both the above special cases—Babikov et
al. [4] gave an O(n2)-time algorithm to compute com-
patible triangulations with O(n2) Steiner points.

One approach to computing compatible triangula-
tions is to first compute a triangulation for one of the
polygonal regions, and then draw its underlying graph
into the other polygonal region using polylines for draw-
ing edges. The edge bends give rise to the Steiner points.
This idea relates to the problem of drawing a planar
graph on a given set of points, where the correspon-
dence between vertices and the points is given. Pach
and Wenger [11] gave an O(n2)-time algorithm to com-
pute such an embedding with O(n2) bends in total, and
this was extended to deal with a bounding polygonal
region in [6].

The version of the compatible triangulation problem
where the correspondence between the two polygonal re-
gions is not given is also well-studied and very relevant
in practice, e.g. see [5]. In this setting, Aichholzer et
al. [1] made the fascinating conjecture that for any two
point sets each with n points, of which h lie on the con-
vex hull, there is a mapping between them that permits
compatible triangulations with no Steiner points.

2 Preliminaries

Let P be a polygon, possibly with holes. Two points
a, b in P are visible if the line segment between them
lies inside P ; they are 1-bend visible if there is a point
c inside P that is visible to both a and b.

A dent on the boundary of P consists of three consec-
utive vertices u, d, v of P such that d is convex and u, v
are reflex vertices, e.g., see the polygon P1 in Figure 2.

u

v
d

u

d

v

P1
P2

Figure 2: Illustration for Lemma 1. The visibility region
of d is shown in gray stripes.

We refer to d as the peak of the dent. The visibility
region of d consists of all the points inside P that are
visible to P . An inward dent on the boundary of P con-
sists of three consecutive vertices u, d, v of P such that
d is reflex and u, v are convex vertices. The following
simple lemma about dents in compatible triangulations
of polygons will be a key ingredient of our NP-hardness
proof.

Lemma 1 Let P1 and P2 be a pair of compatible poly-
gons. Assume that P1 contains a dent u, d, v, and let Ψ
be the visibility region of d in P1. If u, v are not visible
in P2, then in any compatible triangulations d must be
adjacent either to a Steiner point or a vertex (except u
and v) inside Ψ.

Proof. Any triangulation of P1 (even with Steiner
points) must use the edge (u, v) or an edge incident to
d. In compatible triangulations of P1 and P2 the edge
(u, v) is ruled out, and therefore d must be adjacent to
a Steiner point or a vertex in Ψ \ {u, v}. �

3 NP-Hardness

In this section we prove that given a pair of compatible
polygonal regions P1, P2, and k ∈ N, it is NP-hard to
decide if there are compatible triangulations of P1 and
P2 with at most k Steiner points.

We reduce from the monotone rectilinear planar 3-
SAT problem (MRP-3SAT), which is NP-complete [7].
The input of an MRP-3SAT instance I is a collection C
of clauses over a set U of Boolean variables such that
each clause contains at most three literals, and is either
positive (consists of only positive literals), or negative
(consists of only negative literals). Moreover, the corre-
sponding SAT-graph GI (the bipartite graph with ver-
tex set C∪U and edge set {(c, x) ∈ C×U : x appears in
c}) admits a planar drawing Γ satisfying the following
properties:

- Each vertex in GI is drawn as an axis-aligned
rectangle in Γ.
- All the rectangles representing variables lie along
a horizontal line `.
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c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c1 = (x1 ∨ x3 ∨ x4)

c4 = (x̄1 ∨ x̄2 ∨ x̄4)

(a)

x1 x3x2 x4

(b)
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Figure 3: (a) An instance I of MRP-3SAT, and the corresponding drawing Γ. (b) Γ′. (c)–(d) Illustration for the
hardness reduction.

- The rectangles representing positive (respectively,
negative) clauses lie above (respectively, below) `.
- Each edge (c, x) of GI is drawn as a vertical line
segment that connects the rectangles correspond-
ing to c and x, e.g., see Figure 3(a).

The MRP-3SAT problem asks whether there is a truth
assignment for U satisfying all clauses in C.

Given an instance I = (U,C) of MRP-3SAT, we con-
struct a pair of compatible polygonal regions P1 and P2

such that they admit compatible triangulations with at
most 5|C| Steiner points, if and only if I is satisfiable.

Idea of the reduction: We first ensure that every
clause in I has exactly three literals, by duplicating lit-
erals if necessary. Let the resulting instance be I ′. It
is straightforward to observe that I ′ is also an instance
of MRP-3SAT, and I ′ is satisfiable if and only if I is
satisfiable. Let Γ be the drawing corresponding to GI′ .

We modify the drawing Γ such that the edges and
vertices corresponding to the positive (resp., nega-
tive) clauses become parallelograms, slanted 45◦ (resp.,
−45◦) to the right, e.g., see Figure 3(b). For each clause
c ∈ C, let R(c) denote the parallelogram corresponding
to c. We call R(c) the “clause region”. For each vari-
able u ∈ U , let B(u) denote the rectangle corresponding
to u. We call B(u) the “variable region”. We call the
edges of GI′ connectors and we call the connectors that
are incident to the top (resp., bottom) side of B(u) top

(resp., bottom) connectors of B(u). We ensure that the
extension of every top connector intersects the exten-
sions of all the bottom connectors inside B(u). Let the
resulting drawing be Γ′. We construct P1 and P2 by
modifying two distinct copies of Γ′.

We prove that in any compatible triangulations with
5|C| Steiner points, for each clause c, there is a trian-
gulation edge ec that lies along one of the connectors
incident to the clause region. If c is positive (resp., neg-
ative) then we can set the variable corresponding to ec
to true (resp., false) and this will satisfy the clause. We
get a valid truth-value assignment because a variable re-
gion cannot contain extensions of both top and bottom
connectors. Figures 3(c)–(d) illustrate a satisfying truth
assignment for I. On the other hand, given a satisfy-
ing truth assignment, we show how to find compatible
triangulations for P1 and P2 using 5|C| Steiner points.

3.1 Construction of Polygonal Region P1

We modify a copy Γ′1 of Γ′ to construct P1. First we cre-
ate a channel of small non-zero width around each con-
nector so that we have a polygon with holes. We denote
the copies of R(c) and B(u) in P1 by R1(c) and B1(u).
We create nine dents with peaks u, v, w, q, q′, r, r′, s, s′

in the boundary of R1(c), as shown in Figures 4(a)–(b).
The visibility region of each dent is illustrated using
gray straight lines.

As illustrated in Figure 4(a), we place a hole h in the
leftmost channel of R1(c), not intersecting the visibil-
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Figure 4: (a) A clause region in P1. (b) A close-up of the dents corresponding to u, v, w. (c) Illustration for B1(x).

ity regions of the peaks u, v, w, q, q′, r, r′, s, s′. We refer
the reader to Appendix A for the formal details of the
construction and the precise placement of h.

We now modify the rectangles that correspond to the
variables. Let x be a literal and let B1(x) be the cor-
responding rectangle in Γ′1. See Figure 4(c). For every
positive (resp., negative) clause c containing x, one or
more1 visibility regions corresponding to the peaks of
R1(c) enter B1(x). We ensure that the visibility regions
entering from the top (resp., bottom) of B1(x) are dis-
joint and only intersect the bottom (resp., top) side of
B1(x). For each clause c containing x, we construct a
vertex µc,x on the side of B1(x) such that µc,x is visible
to the corresponding peak of R1(c). We refer to these
newly constructed points as the µ-points of B1(x).

3.2 Construction of Polygonal Region P2

We modify a copy Γ′2 of Γ′ to construct P2. As in the
construction of P1, we create a channel of small non-
zero width around each connector so that we have a
polygon with holes. We denote the copies of R(c) and
B(u) in P2 by R2(c) and B2(u). We create four in-
ward dents on the boundary of R2(c), and place the
points u, v, w, d, q, q′, r, r′, s, s′, as shown in Figure 5(a).
Finally, we place the hole h ensuring that no peak in
{u, v, w} is 1-bend visible to {q′, r′, s′}, e.g., see Fig-
ure 5(b). We refer the reader to Appendix A for the
formal details of the construction.

We now modify the rectangles that correspond to the
literals. Let x be a literal and let B2(x) be the corre-
sponding rectangle in Γ′2. The modification for B2(x)
is analogous to that of B1(x). Specifically, for every
visibility region (of some peak p ∈ {q′, r′, s′}) that in-
tersects the box B1(x) in Γ′1, we construct a point µ on
the boundary of box B2(x) such that µ and p are vis-
ible in P2. Figure 5(b) illustrates such visibilities with
dashed lines.

1Recall that c may contain duplicates of a literal.

3.3 Properties of Compatible Drawings

In this section we prove some key properties of com-
patible triangulations T (P1) and T (P2) of P1 and P2,
respectively. For clause c, let R1(c) be the clause region
R1(c) plus its three attached channels.

Lemma 2 If c is a clause such that no peak q′, r′, s′ is
adjacent in T (P1) to a point outside R1(c), then there
are at least 6 Steiner points in R1(c).

Proof. Consider the 9 points {u, v, w, q, q′, r, r′, s, s′}.
In P1 each point in this set is the peak of a dent, so by
Lemma 1, each of these 9 points must be adjacent in
T (P1) to a vertex or a Steiner point. The only vertices
visible to any of the 9 peaks are the µ-points visible to
q′, r′, s′, but they lie outside R1(c). We assumed there
is no edge from q′, r′, s′ to a point outside R1(c). The
other 6 peaks are not visible to any point outside R1(c).
Thus each of the 9 peaks must be adjacent to a Steiner
point in R1(c). No point in R1(c) is visible to more
than two peaks. Thus we need at least d 92e = 5 Steiner
points. The only way that 5 Steiner points suffice is to
use 4 Steiner points that are each adjacent to two peaks.
Pairs of peaks that are visible to a common point in both
P1 and P2 are indicated by edges in the graph H shown
in Figure 6(a). We require a matching of size 4 in H.
Observe that H is bipartite so the maximum size of a
matching is equal to the minimum size of a vertex cover.
The set {q, r, s} is a vertex cover of size 3. Thus there
is no matching of size 4, and the Lemma follows. �

Lemma 3 For any clause c, there are at least 5 Steiner
points in R1(c).

Proof. Consider the triangulation of P1. The case
where no peak q′, r′, s′ has an incident edge to a point
outside R1(c) is covered by Lemma 2. It remains to
consider the cases when there is such an edge.

Our argument will be partly about the graph H (in
Figure 6(a)) of pairs of peaks that are visible to a com-
mon point in both P1 and P2, and partly about the
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Figure 5: (a) A clause region in P2. (b) The vertex u is not 1-bend visible to q′, r′, s′.

geometry of P1. First we note that the argument used
above in the proof of Lemma 2 can be strengthened to
show that if we use just one edge from a peak to a point
outside the clause region then we still need 5 Steiner
points inside the region. In graph H, observe that if
one of q′, r′, s′ is removed, then we have 8 vertices, and
a maximum matching of size 3, which means that we can
use 3 edges (Steiner points) to cover 6 vertices, leaving
2 vertices that need one Steiner point each, for a total of
5 Steiner points. It remains to consider the cases where
at least two of the points q′, r′, s′ have an incident edge
to a point outside the clause region. We deal with the
case where q′ has such an edge and the case where r′

has such an edge but q′ does not.
Suppose there is an edge e from q′ to a point outside

R1(c). Observe that edge e cuts off the visibility regions
of v and w. The effect on graph H is to remove the
edges of H incident to v and w, e.g., see Figure 6(b).
Thus we need one Steiner point for each of v and w, one
Steiner point for r (irrespective of how r′ is connected),
one Steiner point for s and one more for u, a total of at
least 5.

Next suppose there is no edge from q′ to a point
outside of R1(c), but there is an edge e′ from r′ to a
point outside of R1(c). The edge e′ cuts off the vis-
ibility region of w. The effect on graph H is to re-
move the edges (w, r) and (w, s), e.g., see Figure 6(c).
We then need a Steiner point for s (irrespective of
how s′ is connected), and for the remaining 6 vertices
{u, v, w, q, q′, r}, we have a subgraph with a minimum
vertex cover {q, r} of size 2, thus a maximum matching
of 2 edges (Steiner points) to cover 4 vertices, leaving 2
vertices that need one Steiner point each, for a total of
5 Steiner points. �

Lemma 4 If T (P1) and T (P2) use 5|C| Steiner points
each, then for any clause c, there is an edge in T (P1)
from at least one of q′, r′, s′ to a µ-point.

Proof. By Lemma 3 every region R1(c) has at least
5 Steiner points. Thus every such region must have
exactly 5 Steiner points and there are no Steiner points
in the variable regions. Suppose there is a clause c such
that T (P1) has no edge from q′, r′ or s′ to a µ-point.
Then there is no edge from q′, r′ or s′ to a point outside
R1(c). But then by Lemma 2 the clause region must
have at least 6 Steiner points, a contradiction. �

(a)
u v w

q q′ r r′ s s′

u v w

q q′ r r′ s s′

u v w

q q′ r r′ s s′

(b) (c)

Figure 6: (a) Graph H of pairs of peaks that that are
visible to a common Steiner point in both P1 and P2.
(b)–(c) Illustration for Lemma 3.

3.4 Reduction

Theorem 5 The following problem is NP-hard: Given
a pair of compatible polygonal regions P1, P2, and k ∈ N,
decide if P1 and P2 have compatible triangulations with
at most k Steiner points.

Proof. Let I = (U,C) be an instance of MRP-3SAT,
and let P1 and P2 be the corresponding compatible
polygons, as described in Sections 3.1–3.2. Appendix
A presents further details on how to construct P1 and
P2 using a polynomial number of bits, so this is a
polynomial-time reduction. We now prove that P1 and
P2 admit a pair of compatible triangulations, each with
at most 5|C| Steiner points, if and only if I admits a
satisfying truth assignment.

We first assume that P1 and P2 admit compatible
triangulations with at most 5|C| Steiner points. By
Lemma 4, for any clause c there is an edge in the trian-
gulation of P1 from at least one peak z ∈ {q′, r′, s′} to a
µ-point, say µc,x. We use the edge (z, µc,x) to assign a
truth value to variable x. If c is a positive (resp., nega-
tive) clause, then we set x to true (resp., false). Clearly
we have satisfied each clause. If there is a variable u
whose truth value is not assigned yet, then setting the
truth value of u arbitrarily would still keep the clauses
satisfied. It remains to show that the truth-value as-
signment is consistent. Suppose there is a variable u
such that some clause c forces u to be true, and some
other clause c′ forces u to be false. Without loss of
generality we may assume that c is positive and c′ is
negative. Consequently, in each of R1(c) and R1(c′),
there exists a peak that is incident to some µ-point in
B1(x). By construction of the µ-points in B1(x), the
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µc,x µc′,x µc′′,x

R1(c) R1(c′′)R1(c′)

B1(x)

Figure 7: A triangulation for B1(x), where x = true.

two corresponding edges cross, a contradiction.

Assume now that I admits a satisfying truth assign-
ment. We will find corresponding compatible triangu-
lations of P1 and P2. For each variable x, if x is set to
true, then we close the channels of the negative clauses
and construct the compatible triangulations of the rect-
angles B1(x) and B2(x) using the µ-points on the bot-
tom side of these rectangles, e.g., see Figure 7. The
construction when x is set to false is symmetric.

Since every clause contains at least one true literal, for
every clause c, there exist one or more peaks in P1 that
are visible to their corresponding µ-points. We show
that in each scenario, the corresponding clause gadgets
can be triangulated in a compatible fashion. We include
the details in Appendix B. �

4 Conclusion

We have proved that computing compatible triangula-
tions with at most k Steiner points is NP-hard for poly-
gons with holes. The following questions are open:

1. Is the problem in NP? Is it complete for existential
theory of the reals [13]?

2. What is the complexity of the problem for a pair
of simple polygons? For a pair of rectangles with
points inside?

3. How hard is it to decide if two polygonal regions,
or two rectangles with points inside, have compati-
ble triangulations with no Steiner points? For sim-
ple polygons, this can be decided in polynomial-
time [3].
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Figure 8: Transforming Γ into Γ′.

Appendix A

In this section we describe the construction details of P1

and P2. Furthermore, we show that the construction can
be accomplished in polynomial time, in particular, with a
polynomial number of bits for the coordinates of all points.

The construction has two stages. In the first stage we
construct Γ′ from Γ (see Figures 3(a)–(b)) and in the second
stage we construct P1 and P2 from copies of Γ′ by adding
the appropriate dents (see Figures 4 and 5).

For the first stage we claim that Γ′ can be constructed on
a polynomial-sized grid (thus, with a logarithmic number of
bits per coordinate). We make each variable rectangle B(x)
of width 9|C| + 1 and height 3|C| + 1, as illustrated in Fig-
ure 8. The length allocated for channel attachments is 3|C|
to incorporate possible variable duplicates. The distance be-
tween successive µ-points on the bottom (top) of B(x) is at
least 1. We make each clause parallelogram Rc of height 1.
The resulting drawing Γ′ has height O(|U |+ |C|) and width
O(|U ||C|).

We now turn to the second stage, the construction of P1

and P2. We refer the reader to Figure 11, which illustrates
for each positive clause c, the correspondence between the
vertices of R1(c) and R2(c). Observe that the left, top, and
right sides of holes h1 and h2 have no dents added to them
and remain straight line segments.

We construct the peaks u, v, w, q, q′, r, r′, s, s′ of R1(c) it-
eratively. Our plan is to first construct the visibility lines
of the peaks (see Figure 9) and later enlarge these to visi-
bility cones. Start by placing the points q′, r′, s′ above the
top boundary of R1(c) so that the lines from them to the
corresponding µ-points are parallel to the channel sides and
centered in the channels. Next, place points u, v, w to the
left of R1(c) and in the top half of R1(c), and choose points
u′, v′, w′ on the boundary of B(x) to be the endpoints of the
visibility lines emanating from u, v, w respectively. Specifi-
cally, choose u′ and v′ by taking the midpoints of the tops
of h1 and h2 and projecting upward at 45◦.

We can explicitly compute the equations of the 6 visibil-
ity lines emanating from q′, r′, s′, u, v, w and we can compute
the intersection points formed by them. Let pu,q′ be the in-
tersection point of the visibility line of u and the visibility
line of q′, etc. We can next choose points a, b, c on the vis-
ibility lines of q′, r′, s′, respectively, such that each point is
in-between the appropriate p points. For example, point a
is the midpoint of pv,q′ and pu,q′ . From these, we can con-

struct points q, r, s and their visibility lines through a, b, c to
appropriate points on the channels. Observe that because
a, b, c lie in the upper half of B1(x), points q, r, s lie in the ex-
tensions of the channels, and remain to the right of d, u′, v′,
respectively.

It remains to enlarge the visibility lines to cones. We can
do this by explicitly computing a tolerance τ such that if the
width of every cone is at most τ inside P1 then no visibility
cone will contain points it should not, and no two visibility
cones will intersect when they should not. Since we only
need a lower bound on τ , this can be done with a polynomial
number of bits. Finally, from τ we can explicitly choose the
points where each visibility cone intersects the boundary of
P1 (see for example points va and vb in Figure 10), and from
these we can compute the dent vertices for each peak (see
points v1 and v2 in the same figure).
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h h1 h2

Figure 9: Details of the construction of R1(c).
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Figure 10: Details of visibility cone construction for v.

Finally, we place the hole h in the first channel of R1(c)
such that the base of h is aligned with the top sides of h1

and h2. Furthermore, we ensure that h remains to the left
of the visibility region of q′.

The construction of the channels and inward dents for
R2(c) is simpler compared to R1(c). We choose the inward
dent D with peak d such that the entire left side of each
remaining inward dent is visible to d, as illustrated using
dotted lines in Figure 11(b). Furthermore, we ensure that
exactly one µ-point is visible to each of q′, r′, s′. Figure 11(b)
illustrates these visibilities with dashed lines.

The placement of the triangular hole h is similar to that
of R1(c). Here we ensure an additional constraint that the
base of h must be large enough to block any 1-bend visibility
between {u, v, w} and {q′, r′, s′}.
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Figure 11: (a)–(b) Schematic representations for R1(c) and R2(c).

Appendix B

In this appendix we fill in the remaining details of the proof
of Theorem 5. These details concern the second half of the
proof, where we assume that I admits a satisfying truth
assignment and we find corresponding compatible triangu-
lations of P1 and P2. As explained in the main text, for each
variable x, if x is set to true, then we close the channels of
the negative clauses and construct the compatible triangu-
lations of the rectangles B1(x) and B2(x) using the µ-points
on the bottom side of these rectangles, e.g., see Figure 7.
The construction when x is set to false is symmetric.

Since every clause contains at least one true literal, for
every clause c, there exist one or more peaks in P1 that are
visible to their corresponding µ-points. It remains to show
that in each scenario, the corresponding clause gadgets can
be triangulated in a compatible fashion.

We only describe the case when c is a positive clause. The
case when c is negative is symmetric.

Let xq, xr, xs be the literals of c, and assume that their
corresponding peaks q′, r′, s′ appear in this order from left
to right in R1(c).

Case 1 (xq = true): Figures 12(a)–(b) illustrate the com-
patible triangulations of R1(c) and R2(c) for the case when
xq = true and xr = xs = false. Figures 12(c)–(d) illustrate
the compatible triangulations of R1(c) and R2(c) for the case
when xq = true and xr = xs = true. The scenarios when
xr = true and xs = false, or vice versa, can be handled by
switching between the local configurations corresponding to
the true and false values.

Case 2 (xq = false, xr = true): Figures 13(a)–(b) illus-
trate the compatible triangulations of R1(c) and R2(c) for
the case when xs = true. The scenario when xs = false can
be handled by switching between the local configurations
corresponding to the true and false values.

Case 3 (xq = xr = false, xs = true): The compatible
triangulations of R1(c) and R2(c) for this case are illustrated
in Figures 13(c)–(d).
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Figure 12: Illustration for Case 1. Colors are used to better illustrate the correspondence between the two drawings.
Some edges are drawn curved but that is only to make the drawing more readable.
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Figure 13: Illustration for (a)–(b) Case 2, and (c)–(d) Case 3. Some edges are drawn curved but that is only to make
the drawing more readable.


