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Abstract. Angular resolution, area and the number of bends are some
important aesthetic criteria of a polyline drawing. Although trade-offs
among these criteria have been examined over the past decades, many
of these trade-offs are still not known to be optimal. In this paper we
give a new technique to compute polyline drawings for planar trian-
gulations. Our algorithm is simple and intuitive, yet implies significant
improvement over the known results. We present the first smooth trade-
off between the area and angular resolution for 2-bend polyline drawings
of any given planar graph. Specifically, for any given n-vertex triangula-
tion, our algorithm computes a drawing with angular resolution r/d(v)
at each vertex v, and area f(n, r), for any r ∈ (0, 1], where d(v) denotes
the degree at v. For r < 0.389 or r > 0.5, f(n, r) is less than the drawing
area required by previous algorithms; f(n, r) ranges from 7.12n2 when
r ≤ 0.3 to 32.12n2 when r = 1.

1 Introduction

Polyline drawing is a classic style of drawing planar graphs, which has a wide
range of applications in the area of software visualization [8, 18] and layout of
circuit diagrams [7]. Given an n-vertex planar graph G, a polyline drawing Γ of
G maps each vertex to a distinct point in R2, and each edge to a simple polygonal
chain between its endpoints such that no two edges intersect except possibly at
their common end point. Γ is a k-bend polyline drawing if the number of line
segments per edge is bounded by at most k+ 1, i.e., each edge contains at most
k bend points. Consequently, a k-bend polyline drawing can be considered as
a (k + λ)-bend drawing for any λ > 0. Figures 1(a) and (b) illustrate a plane
graph G and a 2-bend polyline drawing of G, respectively.

Researchers have examined the theoretical aspects of planar polyline draw-
ings over a long time [2, 4, 9, 10, 13, 17, 20]. Area (i.e., the size of the smallest
integer grid containing the drawing), angular resolution (i.e., the smallest angle
formed at any vertex), number of bends per edge, edge separation and bend
resolution are some examples of such aesthetic criteria. Even after decades of
research effort, finding the optimal trade-off between the number of total bends
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Fig. 1. (a) A planar graph G. (b)–(c) Two polyline drawings of G.

and area still seems to be an elusive goal. For example, every planar triangulation
with n vertices admits a straight-line drawing (i.e., a 0-bend polyline drawing)
in O(n2) area [9]. Several improvements on the constant hidden in O(.) notation
have been achieved [2, 4, 9, 17], and the best known bound is 8n2/9 = 0.89n2 [4].
Better upper bounds, i.e., 4n2/9 < 0.45n2, can be attained if we use 1-bend
polyline drawings, which takes at most 2n/3 bends in total [20]. Although these
drawings require small area, the compactness comes at the expense of bad an-
gular resolution, i.e., Ω(1/n). Garg and Tamassia [19] showed that there exists
planar graphs such that any of its straight-line drawing with angular resolution
Ω(1/ρ) requires at least Ω(cρn) area, where c > 1, which suggests that drawings
with angular resolution Ω(1/∆) and polynomial area may exist only if we allow
the edges to have bends.

Allowing bends helps both to reduce area and to improve angular resolution,
e.g., given an n-vertex planar graph with maximum degree ∆, one can construct
a 3-bend polyline drawing with 2/∆ radians of resolution and 3n2 area [13]. The
angular resolution can be improved to Ω(1/d(v)) radians (for each vertex v)
with an expense of higher area [10, 12], which also helps to reduce the number
of bends per edge. Table 1 presents a brief summary of the related results.

Table 1. Angular resolution, area and total bends in k-bend polyline drawings, where
α ∈ [1/4, 1/2], and β ∈ [1/3, 1].

Graph Class Area Resolution k-Bends T. Bends Reference

Maximal Planar 7n2/8 Ω(1/n2) 0 0 [4]

Maximal Planar 9n2/2 Ω(1/n) 0 0 [16]

Maximal Planar 12.5n2 0.5/d(v) 1 3n [10]

Maximal Planar 450n2 1/d(v) 1 3n [5]

Maximal Planar 4n2/9 Ω(1/n2) 1 2n/3 [20]

Maximal Planar 200n2 1/d(v) 2 6n [12]

Maximal Planar (6α+ 8/3)2n2 α
(d(v)(α2+1/4) 2 5.5n Theorem 2

Maximal Planar (6β + 2/3)2n2 β
(d(v)(β2+1) 2 5.5n Theorem 3

3-connected Planar 6n2 2/∆ 3 5n− 15 [15]

General Planar 3n2 2/∆ 3 5n− 15 [13]
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Fig. 2. Trade-off between angular resolution and area for 2-bend polyline drawings,
where the bold line denotes the trade-off established in this paper. The square, circle
and diamond denote the reference [10], [12] and [5], respectively.

Early polyline drawing algorithms were developed as a generalization of or-
thogonal drawings [1]. Before Duncan and Kobourov’s algorithm [10], all the
polyline drawing techniques with good angular resolution and O(n2) area were
based on the idea of assigning an empty square surrounding each vertex (e.g.,
Figure 1(c)), which forced the constant factor in the O(.) notation to be very
large. The algorithm of Duncan and Kobourov [10] finds a drawing with smaller
area, but loses the square-emptiness property around the vertices, as well as
decreasing the angular resolution by a factor of 2. Observe that two solutions
in a multi-objective optimization are comparable if and only if one of them
dominates the other with respect to every optimization criteria. Hence although
the drawing of [10] has smaller area than that of [5] (see Table 1), it is not an
improvement over [5] because of its lower angular resolution.

Contributions. In this paper we examine the trade-offs between the angular
resolution and area for 2-bend polyline drawings of planar triangulations. Fig-
ure 2 illustrates the solution space dominated by our algorithm in gray, which
dominates all the previous 2-bend polyline drawing algorithms except Duncan
and Kobourov’s algorithm [10], which dominates our algorithm along a small
interval of X-axis. Even under the model where each vertex v is surrounded by
an empty square of size d(v)× d(v), we can construct a 2-bend polyline drawing
with angular resolution 1/∆ and area 32.12n2, where the best known bounds
can achieve an Ω(1/d(v)) angular resolution with an area at least 200n2 [5, 12,
14], or an 1/∆ angular resolution with 3 bends per edge [13].

2 Technical Background

Let G be a plane graph, i.e., a planar graph with a fixed combinatorial em-
bedding and a specified outerface. If every face of G including (respectively,
excluding) the outer face is a cycle of length three, then G is called triangulated
(respectively, internally triangulated). Let G be an n-vertex triangulated plane
graph, where v1, v2 and vn are the outer vertices of G in clockwise order, and
let σ = (v1, v2, ..., vn) be an ordering of all the vertices of G. Then Gk, where



2 ≤ k ≤ n, is the subgraph of G induced by v1 ∪ v2 ∪ ...∪ vk, and Pk is the path
(while walking clockwise) on the outer face of Gk that starts at v1 and ends at
v2. The vertex-ordering σ is called a canonical ordering [9] with respect to the
outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following conditions are satisfied:
(a) Gk is 2-connected and internally triangulated. (b) If k ≤ n, then vk is an
outer vertex of Gk and the neighbors of vk in Gk−1 appears consecutively on
Pk−1. Figures 3(a)–(b) illustrate an example.

For some j, where 3 ≤ j ≤ n, let Pj be the path w1(= v1), . . . , wl, vk(=
wl+1), wr, . . . , wt(= v2). We call the edges (wl, vj) and (vj , wr) the l-edge and
the r-edge of vj , respectively. The other edges incident to vj in Gj are called the
m-edges of vj . For example, in Figure 3(c), the edges (v6, v4), (v6, v5), and (v3, v6)
are the l-, r- and m-edges of v6, respectively. By dl(v), dr(v) and dm(v) we denote
the number of l, r and m-edges that are incoming to v, e.g., dl(v6) = 0, dr(v6) = 1
and dm(v6) = 1.

Let Em be the set of all m-edges in G. Then the graph Tm induced by the
edges in Em is a tree with root vn. Similarly, the graph Tl induced by all l-
edges except (v1, vn) is a tree rooted at v1 (Figure 3(d)), and the graph Tr
induced by all r-edges except (v2, vn) is a tree rooted at v2. These three trees
form the Schnyder realizer [17] of G. A Schnyder realizer is called a minimum
realizer if all the cyclic inner faces are oriented clockwise. By ∆0 we denote
the number of cyclic inner faces in the minimum realizer [21]. If {Tl, Tr, Tm} is a
minimum Schnyder realizer of G, then we have leaf(Tl)+leaf(Tr)+leaf(Tm) =
2n− 5−∆0 [3]. Hence we can observe the following property.

Remark 1. Let {Tl, Tr, Tm} be a minimum Schnyder realizer of an n-vertex
triangulation. Then min{leaf(Tl) + leaf(Tr), leaf(Tl) + leaf(Tm), leaf(Tr) +
leaf(Tm)} ≤ (4n− 2∆0 − 10)/3.

A non-root vertex in Tl is called a primary vertex of Tl if it is the first child of
its parent in the clockwise order. Similarly, a non-root vertex in Tr is a primary
vertex of Tr if it is the first child of its parent in the anticlockwise order. We
now have the following lemma, whose proof is omitted due to space constraints.

Lemma 1. Let nl and nr be the nonprimary vertices in Tl and Tr, respectively.
Then nl + nr ≤ leaf(Tl) + leaf(Tr).

In a plus-contact representation of G, each vertex of G is represented as an axis-
aligned plus shape (i.e., a shape consisting of two intersecting line segments)
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Fig. 3. (a) A canonical ordering of a plane triangulation G. (b) G6. (c) The l-, r- and
m- edges are shown in dashed, bold-solid, and thin-solid edges respectively. (d) Tl.



such that two plus shapes touch if and only if their corresponding vertices are
adjacent in G [11]. Let Γ be a plus contact representation, and let v be any
vertex in Γ . Then by P(v) we denote the plus-shape that corresponds to v in
Γ . By the center C(v) of P(v), we denote the intersection point of the vertical
and horizontal straight line segments of P(v). The four straight line segments
that start at C(v) and extend to the left, right, above and below C(v) are the
left, right, up and down hands of v, which we denote by L(v), R(v), U(v) and
D(v), respectively. A j-shift operation on Γ with respect to an infinite horizontal
line (respectively, vertical line) ` is performed as follows: Remove all the edges
that are lying completely above (respectively, to the right of) `. Increase the y-
coordinate (respectively, x-coordinate) of every vertex lying above (respectively,
to the right of) ` by j units. Draw the edges that were removed using the new
vertex positions. Extend the edges intersected by ` upwards (respectively, to the
right) until they reach to their other endpoint.

3 Polyline Drawing

Let G be an n-vertex maximal planar graph. We construct the drawing of G
in three phases. In the first phase we construct a plus-contact representation
of G \ Tm on a rectangular grid. In the next phase we expand the drawing by
inserting dummy grid lines, and in the third phase we use these grid lines to
draw the edges of Tm, and route the l- and r-edges avoiding degeneracy.

Phase 1 (Plus-Contact): Let σ = (v1, v2, . . . , vn) be a canonical ordering of
G and let {Tl, Tr, Tm} be the corresponding Schnyder realizer. Let Γk, where
2 ≤ k ≤ n, be the drawing of all the edges of Gk except the m-edges. We first
construct the drawing Γ2 for G2, as follows. Place C(v1) and C(v2) at coordinates
(1, 2) and (2, 1), respectively. Then the horizontal and vertical unit-segments to
the left and below (1, 2) correspond to L(v1) and D(v1), respectively. Similarly,
the horizontal and vertical unit-segments to the left and below (2, 1) correspond
to L(v2) and D(v2), respectively, as illustrated in Figure 4(b). We now insert the
vertices in the canonical ordering maintaining the following invariants. While
inserting a new vertex, we only draw the l and r-edges.

I1. The upper envelope of Γi is x-monotone, where the upper envelope is deter-
mined by the left and down hands of the vertices in Pi.

I2. The ray with slope +1 starting at any outer vertex of Γi can be extended
towards infinity avoiding any edge crossing.

I3. Every l-edge starts as a left hand of some plus shape and ends either at a
center or at a down hand of some other plus shape.

I4. Every r-edge starts as a down hand of some plus shape and ends either at a
center or at a left hand of some other plus shape.

Since the upper envelope of G2 forms a staircase, and does not contain any
l- or r-edge, it is straightforward to verify the invariants for Γ2. We now assume
that invariants I1–I4 hold for G2, G3, . . . , Gk−1, where k − 1 < n, and consider
the insertion of vertex vk.



Insertion of vk: Let wl, wl+1, . . . , wr−1, wr be the neighbors of vk on Pk−1.
Consider an infinite horizontal line `h that lies in between the horizontal grid
line determined by L(wl) and the horizontal grid line immediately below L(wl).
Similarly, let `v be an infinite vertical line that lies in between the vertical grid
line determined by D(wr) and the vertical grid line immediately to the left of
D(wr). We now add vk considering the following cases. The case when k = n is
special, which is handled by Case 4.

Case 1 (vk is a nonprimary vertex in both Tl and Tr): We first perform
a 1-shift with respect to `h. This increases the number of horizontal lines by 1
and ensures that D(wl) contains at least 1 grid point p that does not contain
any vertex or contact point. Similarly, we perform a 1-shift with respect to
`v, which increases the number of vertical lines by 1 and ensures that L(wr)
contains at least 1 grid point q that does not contain any vertex or contact
point. We now consider the horizontal ray rp that starts at p. Since the upper
envelope of Γk−1 is x monotone and p does not contain any vertex or contact
point, rp does not intersect Γk−1 except at p. Similarly, we define a vertical ray
rq that starts at q, which does not intersect Γk−1 except at q. We now place vk
at the intersection point of rp and rq, and draw the edges (vk, wl) and (vk, wr).
Since rp and rq do not intersect Γk−1 except at p and q, respectively, drawing
of these edges does not introduce any crossing. Figure 4(c) illustrates such a
scenario. We omit the proof that Γk respects the invariants I1–I4 due to space
constraints.
Case 2 (vk is a primary vertex in Tl but a nonprimary vertex in Tr):
In this case we perform a 1-shift with respect to `v, which increases the number
of vertical lines by 1 and ensures that L(wr) contains at least 1 grid point q
that does not contain any vertex or contact point. Assume that p = C(wl). We
now consider the horizontal ray rp that starts at p. Since the upper envelope
of Γk−1 is x monotone and p does not contain any vertex or contact point,
rp does not intersect Γk−1 except at p. Similarly, we define a vertical ray rq
starting at q, which does not intersect Γk−1 except at q. We now place vk at
the intersection point of rp and rq, and draw the edges (vk, wl) and (vk, wr).
Figure 4(e) illustrates such a scenario.
Case 3 (vk is a nonprimary vertex in Tl but a primary vertex in Tr):
This case is symmetric to Case 2, i.e., we perform a 1-shift with respect to `h
to obtain a new grid point p on D(wl) and assume that q = C(wr).
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Fig. 4. (a) A plane graph G and a minimum Schnyder realizer of G. (b)–(h) Illustration
for the drawing of G \ Tm.



Case 4 (vk is a primary vertex in both Tl and Tr): In this case we do
not perform any shift, and assume that p = C(wl) and q = C(wr).

We now have the following lemma whose proof is omitted due to space con-
straints.

Lemma 2. Γn is a drawing on a (W + 2) × (H + 2) grid, where W + H ≤
leaf(Tl) + leaf(Tr).

Phase 2 (Expansion): For any plus-contact representation on an integer grid,
we define a free grid line as a grid line that does not contain any vertex-center
or contact points. We refer the reader to Figure 5.

Consider the horizontal grid lines from top to bottom. For every horizontal
grid line ` containing at least one vertex of Γ , we now perform two bd(v)/2c-
shifts, where v is the vertex with the largest degree over all the vertices on `. Let
`h (respectively, `′h) be an infinite horizontal line that lies in between the hori-
zontal grid line ` and the horizontal grid line immediately below (respectively,
above) `. Perform a bd(v)/2c-shift with respect to `h, and then a bd(v)/2c-shift
with respect to `′h. Observe that for each vertex w on `, we now have a set of
bd(v)/2c free grid lines above w and a set of bd(v)/2c free grid lines below w.
We consider a corresponding set Sw that consists of these 2bd(v)/2c free grid
lines along with the line `. Furthermore, we assume that the grid lines of Sw are
ordered in the increasing order of y-coordinates. Figure 5(b) illustrates Sv4 .

Similarly, we consider the vertical grid lines from right to left, and for every
vertical grid line `′ containing at least one vertex of Γ , we perform two bd(v)/2c-
shifts to the left and right side of `′, where v is the vertex with the largest degree
over all the vertices on `′. We consider a corresponding set S′w that contains
these 2bd(v)/2c free vertical grid lines along with the line `′, where the lines are
ordered in the decreasing order of x-coordinates. Let the resulting drawing be Γ ′n,
as shown in Figure 5(c). The following property is a straightforward consequence
of the Expansion phase.

Remark 2. For every vertex v in Γ ′n, the point C(v) lies at the center of an
integer grid Av of size (2bd(v)/2c + 1) × (2bd(v)/2c + 1). The grid Av does
not contain any vertex, contact point, or edge of Γ ′ except the four hands of v.
Furthermore, for any other vertex u( 6= v), the grids Au and Av are disjoint, i.e.,
they do not share any common grid point.

Phase 3 (Edge Routing): For each vertex in canonical order, we first route
the incoming m-edges incident to vk, as follows. Recall that the m-edges start
at the vertices wl+1, . . . , wr−1 and ends at vk.

By the construction of Γ ′n, the vertices wl+1, . . . , wr−1 lie below Svk and to
the left of S′vk . Hence all the boundary grid points of Avk , which lie below Svk
and to the left of S′vk , are visible from the top-right corner cwj

of Awj
, for all

l + 1 ≤ j ≤ r − 1. Assume that z = ddm(v)/2e. Let M be the monotone chain
determined by the last line of Sw and first line of S′w, where w ∈ {wl+1, . . . wr−1}.
Figure 5(d) illustrates M with a dotted line. For each w ∈ {wl+1, . . . wz}, we
now route the m-edge incident to w through the top-right corner cw upto M ,



and then to a distinct grid point on the leftmost boundary of Avk below L(vk).
Observe that ddm(vk)/2e ≤ dm(vk)/2 + 1 ≤ (d(vk) − 3)/2 + 1 ≤ (d(vk) − 1)/2.
Since (d(vk)− 1)/2 is at most bd(vk)/2c (irrespective of the parity of d(vk)), the
grid points on the leftmost boundary of Avk below L(vk) are sufficient to route all
the m-edges incident to {wl+1, . . . wz}. Similarly, for each w ∈ {wz+1, . . . wr−1},
we now route the m-edge incident to w through the top-right corner cw upto
M , and then to a distinct grid point to the left of D(vk) on the bottommost
boundary of Avk . Since bdm(vk)/2c ≤ bd(vk)/2c − 1 (irrespective of the parity
of d(vk)), we have sufficient number of boundary points to route all the m-edges
incident to {wz+1, . . . wr−1}.

The l- and r-edges of Γ ′n contain edge overlapping on the left and down hands.
From the Expansion phase it is straightforward to observe that the l-edges that
are incoming to some vertex v in Γ ′n, are incident to D(v), and properly intersects
the first half of the S′v. Let ` be the nearest vertical grid line to the right of S′v, and
remove the parts of these l-edges that lie in between D(v) and ` (except for the l-
edge incident to C(v)). Since all these l-edges lie below Sv, the points where these
l-edges are incident to ` can see all the grid points on the rightmost boundary of
Av and on the right-half of the bottommost boundary of Av. Consequently, we
can route the l-edges to C(v) through these boundary grid points, which removes
the edge overlaps on D(v). Figure 5(e) illustrates such a scenario. Symmetrically,
we can remove the degeneracy of r-edges on L(v). Remark 2 and the property
that the lines in Sv and S′v do not contain any vertex except v ensure that
the above modifications do not introduce any edge crossing. Let the resulting
drawing be Γ ′′, which is a planar polyline drawing of G, e.g., see Figure 5(e).

Area: By Lemma 2, the area before the Expansion phase was (W+2)×(H+
2). For each i, where 1 ≤ i ≤ W + 2, the Expansion phase increases the width
of the drawing by 2bd(ui)/2c, where ui is the vertex with the largest degree

on the ith column. Hence the total increase is at most (
∑W+2
i=1 d(ui)) − 3(n −

W − 2) ≤ (6n − 12) − 3(n −W − 2) = 3n + 3W − 6. Similarly, the increase in
height is at most 3n+ 3H − 6. Hence Γ ′′ is a drawing on an integer grid of size
(3n+4W−4)×(3n+4H−4). SinceW+H ≤ (4n−2∆0−10)/3 (see Remark 1), the
area can be at most (3n+4(2n−∆0−5)/3)2 = ((17n−4∆0−20)/3)2 ≤ 32.12n2.
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Bends per Edge: If (v, v′) is an l-edge or r-edge in ΓG, which starts at v
and ends at v′, then the edge has at most 2 bends: one before entering Av′ , and
another at the boundary of Av′ . If (v, v′) is an m-edge, then it contains one bend
on M , and another bend on the boundary of Av′ . The l-and r-edges that connect
a primary vertex to its parent, do not contain any bend. Since ∆0 < n/2 and
leaf(Tm) < n, the drawing has at most 6n−leaf(Tl)−leaf(Tr)≤11n/2 bends.

Angular Resolution: To compute the angular resolution, observe that the
smallest possible angle θ at v is realized by a pair of consecutive integer grid
points on the boundary of Av where one of them is the corner of Av, e.g., see
Figure 6(a). Since Av is a grid of size (2bd(v)/2c + 1) × (2bd(v)/2c + 1), the
length of the line segment l connecting the center to any corner is

√
2bd(v)/2c.

Hence we have θ = arctan
(

1/
√
2

(
√
2bd(v)/2c−1/

√
2

)
> 1/d(v), by the MacLaurin series

expansion of arctan [12]. Observe that any edge e that intersects some grid Av,
where v does not correspond to any end vertex of e, must be an m-edge. We can
avoid any such intersection by choosing for each vertex u, a rectangular grid of
size (2bd(u′)/2c+ 1)× (2bd(u′′)/2c+ 1) (instead of Au), where u′ (respectively,
u′′) is the vertex with the largest degree over all the vertices on the horizontal
(respectively, vertical) line through u. For example, see the gray rectangles in
Figure 5(d). However, the angular resolution increases to 1/∆.

Theorem 1. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing Γ with angular resolution at least 1/d(v) for each vertex v, and area
at most (3n + 4W − 4) × (3n + 4H − 4), where W + H ≤ (4n − 2∆0 − 10)/3.
Within the same area, we can assign each vertex v in Γ a bounding box of size
(2bd(v)/2c + 1) × (2bd(v)/2c + 1) that only intersect with the edges incident to
v, but the angular resolution increases to 1/∆.

4 Trade-offs between Angular Resolution and Area

In this section we show that one can significantly improve the area with an small
expense of angular resolution. We consider the following two scenarios.

Angular Resolution is γ/d(v), where γ ∈ [0.8, 1]: Observe that the
bottom-left quadrants of Av (with respect to the center C(v)) has at most
2bd(v)/2c − 1 ≥ dm(v) boundary points, which are sufficient to route the m-
edges, and sometimes necessary. However, the boundary points that are available
to route the l-edges (similarly, r-edges) are significantly more than necessary, e.g.,
the number of boundary points to route the l-edges is 3bd(v)/2c − 2 (lying on
the bottom-right quadrants and on the right-boundary of Av). Hence assigning
a grid of size (bd(v)/2c+1+dd(v)/4e)× (bd(v)/2c+1+dd(v)/4e) to each vertex
v would be sufficient for routing the edges.

Observe that for each vertex v, the increase in width is at most (bd(v)/2c+
dd(v)/4e) ≤ (3d(v)/4 + 1). Since one column may contain multiple vertices, and
the degree of each vertex is at least three, we are overcounting the increase for
(n−W − 2) vertices. The amount of over computation for each such vertex v′ is
at least b3d(v′)/4c+ 1 ≥ 3. Consequently, the total increase in the width in the
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Fig. 6. Illustration for angular resolution.

Expansion phase is now bounded by (
∑W+2
i=1 (3d(vi)/4 + 1)) − 3(n −W − 2) ≤

3n/2 + 4W − 1. Similarly, the increase in height is at most 3n/2 + 4H + 1. Since
W +H ≤ (4n−2∆0−10)/3, the area can be at most (3n/2+5(2n−∆0−5)/3+
5)2 ≤ 23.37n2. The number of bends remains the same, but the minimum angle
θ is now at least 0.8/d(v), which is now determined by two consecutive points
along the bottom-right corner, as shown in Figure 6(b).

We can parametrize the grid size with a parameter α, i.e., consider the grid
assigned to v as (bd(v)/2c+ 1 +αd(v))× (bd(v)/2c+ 1 +αd(v)), where α ≥ 1/4.

Then the increase in width is at most (
∑W+2
i=1 ((α+ 1/2)d(vi) + 1))− 3(n−W −

2) ≤ (6(α + 1/2)n − 3n + 4W + 8) ≤ (6αn + 4W + 8). Similarly, the increase
in height is at most (6αn + 4H + 8), respectively. Hence the area is at most
(6αn+ 4(W +H)/2 + 10)2 ≤ (6αn+ 8n/3 + 10)2 ≈ (6α+ 8/3)2n2. The angular

resolution is at least
α/
√
α2+1/4

d(v)
√
α2+1/4

> α
d(v)(α2+1/4) , as illustrated in Figure 6(c).

Theorem 2. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing with angular resolution α

d(v)(α2+1/4) for each vertex v, and area (6αn+

4W+10)×(6αn+4H+10). Here α ∈ [1/4, 1/2], andW+H ≤ (4n−2∆0−10)/3.

Angular Resolution is γ/d(v), where γ ∈ [0.3, 0.5]: Recall that the
new grid lines in the Expansion phase are inserted such that each vertex v has
h = βvd(v) free grid lines, where βv ≥ 1/d(v), in each of the four sides (above,
below, left, right) around v, i.e., C(v) is at the center of a free integer grid Av of
size h×h. As in the Expansion phase, let Sv be the ordered set of horizontal free
grid lines along with the horizontal line through v, and let S′v be the ordered set
of vertical free grid lines along with the vertical line through v. We now show
that these free grids are sufficient for routing the l-, r- and m-edges.

Routing m-edges: Let lvk and l′vk be the grid lines that are immedi-
ately below and to the left of Svk and S′vk , respectively. For each w ∈
{wl+1, . . . , wr−1}, we now extend a line segment with slope +1 from C(w)
until we hit either lvk or l′vk . Let B = {b(wl+1), . . . , b(wr−1)} be the set
of points on lvk and l′vk reached by these extensions. We now extend these
extensions further to reach C(vk), as follows:
- If the number of points of B that lie on lvk is z, where z ≤ h, then we route

the extensions of lvk through z consecutive grid points lying on the left
side of Avk immediately below L(vk). We then route the extensions on l′vk



through the next consecutive grid points along the same vertical line. Since
there are at most dm(vk) m-edges, we need at most d(v) consecutive grid
points below L(vk). Figure 6(d) illustrates such a scenario, where h = 2.

- If the number of points of B that lie on l′vk is at most z′, where z′ ≤ h,
then the drawing is symmetric to the case when z < h.

- Otherwise, both lvk and l′vk contains more than h extensions. In this case
min{z, z′} > h, and hence max{z, z′} ≤ dm(v) − h. We first extend the
extensions on lvk to the grid points that lie consecutively to the left of
Av (on the first line of Svk). We then extend the extensions on l′vk to the
grid points that lie consecutively below of Av (on the last line of S′vk).
Finally, we connect all these new extensions directly to C(vk). Note that
the maximum horizontal (respectively, vertical) distance between C(v) and
a bend point on lvk (respectively, l′vk) is at most (dm(v)− h) + h ≤ d(v).

Routing l-edges: Let u1, u2, . . . , uq be the vertices in top-to-bottom order
that are incident to D(vk) by incoming l-edges. Let ` be the nearest vertical
grid line to the right of S′v, and remove the parts of these l-edges that lie
in between D(vk) and ` (except for the l-edge incident to C(vk)). We then
connect these extensions to the q consecutive grid points on the first line
of S′vk that lie immediately below the top-right corner of Av. Finally, we
connect all these new extensions directly to C(vk).
Routing r-edges: This scenario is symmetric for routing l-edges.

Angular Resolution and Area: In all the cases, the smallest angle θ at any
vertex v is equal to the angle determined by the points (−d(v),−h) and (−d(v)+
1,−h) at C(v) = (0, 0), as illustrated in Figure 6(e). Here the angular resolution
is at least βv

d(v)(1+β2
v)

, where 1/d(v) ≤ βv ≤ 1, and the area is (6β + 2/3)2n2. We

omit the details due to space constraints.

Theorem 3. Every n-vertex maximal planar graph admits a 2-bend polyline
drawing with angular resolution β

d(v)(1+β2) for each vertex v, and area (6nβ +

W + 2)× (6nβ +H + 2). Here β ∈ [1/3, 1], and W +H ≤ (4n− 2∆0 − 10)/3.

5 Conclusion

In this paper we have given the first smooth trade-off between the area and
angular resolution for 2-bend polyline drawings of any given planar graph. Our
algorithm dominates all the previous 2-bend polyline drawing algorithms except
Duncan and Kobourov’s algorithm [10], which uses 1-bend per edge and dom-
inates our algorithm when the angular resolution is in the interval [0.38/d(v),
0.5/d(v)]. Similar to the previously known polyline drawing algorithms, one can
implement our algorithm using standard techniques [6] such that the drawings
are computed in linear time.

A natural open question is whether Duncan and Kobourov’s algorithm could
be modified (allowing 2-bends per edge) to achieve a better trade-off. Finding
tight lower bounds would also be very interesting. Finally, we hope that the re-
sults in this paper will encourage the study of smooth trade-offs among different
aesthetic criteria for other styles of drawing graphs.
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