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Abstract. A straight-line (respectively, polyline) drawing Γ of a planar
graph G on a set Lk of k parallel lines is a planar drawing that maps each
vertex of G to a distinct point on Lk and each edge of G to a straight line
segment (respectively, a polygonal chain with the bends on Lk) between
its endpoints. The height of Γ is k, i.e., the number of lines used in the
drawing. In this paper we compute new upper bounds on the height of
polyline drawings of planar graphs using planar separators. Specifically,
we show that every n-vertex planar graph with maximum degree ∆,
having a simple cycle separator of size λ, admits a polyline drawing with
height 4n/9+O(λ∆), where the previously best known bound was 2n/3.
Since λ ∈ O(

√
n), this implies the existence of a drawing of height at

most 4n/9 + o(n) for any planar triangulation with ∆ ∈ o(
√
n). For

n-vertex planar 3-trees, we compute straight-line drawings with height
4n/9 +O(1), which improves the previously best known upper bound of
n/2. All these results can be viewed as an initial step towards compact
drawings of planar triangulations via choosing a suitable embedding of
the input graph.

1 Introduction

A polyline drawing of a planar graph G is a planar drawing of G such that each
vertex of G is mapped to a distinct point in the Euclidean plane, and each edge is
mapped to a polygonal chain between its endpoints. Let Lk = {l1, l2, . . . , lk} be a
set of k horizontal lines such that for each i ≤ k, line li passes through the point
(0, i). A polyline drawing of G is called a polyline drawing on Lk if the vertices
and bends of the drawing lie on the lines of Lk. The height of such a drawing is k,
i.e., the number of parallel horizontal lines used by the drawing. Such a drawing
is also referred to as a k-layer drawing in the literature [13, 18]. Let Γ be a
polyline drawing of G. We call Γ a t-bend polyline drawing if each of its edges
has at most t bends. Thus a 0-bend polyline drawing is also known as a straight-
line drawing. Drawing planar graphs on a small integer grid is an active research
area in graph drawing [7, 16], which is motivated by the need of compact layout
of VLSI circuits and visualization of software architecture. Since simultaneously
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optimizing the width and height of the drawing is very challenging, researchers
have also focused their attention on optimizing one dimension of the drawing [6,
11, 13, 17], while the other dimension is unbounded. In this paper we develop
new techniques that can produce drawings with small height. We distinguish
between the terms ‘plane’ and ‘planar’. A plane graph is a planar graph with
a fixed combinatorial embedding and a specified outer face. While drawing a
planar graph, we allow the output to represent any planar embedding of the
graph. On the other hand, while drawing a plane graph, the output is further
constrained to respect the input embedding.

State-of-the-art algorithms that compute straight-line drawings of n-vertex
plane graphs on an (O(n) × 2n/3)-size grid imply an upper bound of 2n/3 on
the height of straight-line drawings [5, 6]. This bound is tight for plane graphs,
i.e., there exist n-vertex plane graphs such as plane nested triangles graphs
and some plane 3-trees that require a height of 2n/3 in any of their straight-
line drawings. Recall that an n-vertex nested triangles graph is a plane graph
formed by a sequence of n/3 vertex disjoint cycles, C1, C2, . . . , Cn/3, where for
each i ∈ {2, . . . , n/3}, cycle Ci contains the cycles C1, . . . , Ci−1 in its interior, and
a set of edges that connect each vertex of Ci to a distinct vertex in Ci−1. Besides,
a plane 3-tree is a triangulated plane graph that can be constructed by starting
with a triangle, and then repeatedly adding a vertex to some inner face of the
current graph and triangulating that face.

The 2n/3 upper bound on the height is also the currently best known bound
for polyline drawings, even for planar graphs, i.e., when we are allowed to choose
a suitable embedding for the output drawing. Frati and Patrignani [10] showed
that in the variable embedding setting, an n-vertex nested triangles graph can
be drawn with height at most n/3 + O(1), which is significantly smaller than
the lower bound of 2n/3 in the fixed embedding setting. Similarly, Hossain et
al. [11] showed that an universal set of n/2 horizontal lines can support all n-
vertex planar 3-trees, i.e., every planar 3-tree admits a drawing with height at
most n/2. They also showed that 4n/9 lines suffice for some subclasses of planar
3-trees, and asked whether 4n/9 is indeed an upper bound for planar 3-trees.

In the context of optimization, Dujmović et al.[9] gave fixed-parameter-
tractable (FPT) algorithms, parameterized by pathwidth, to decide whether a
planar graph admits a straight-line drawing on k horizontal lines. Drawings with
minimum number of parallel lines have been achieved for trees [13]. Recently,
Biedl [2] gave an algorithm to approximate the height of straight-line drawings
of 2-connected outerplanar graphs within a factor of 4.

Contributions. In this paper we show that every n-vertex planar graph
with maximum degree ∆, having a simple cycle separator of size λ, admits a
drawing with height 4n/9 + O(λ∆), which is better than the previously best
known bound of 2n/3 for any λ∆ ∈ o(n). This result is an outcome of a new
application of the planar separator theorem [8]. Although the technique is simple,
it has the potential to be a powerful tool while computing compact drawings for
planar triangulations in the variable embedding setting. If the input graphs are
restricted to planar 3-trees, then we can improve the upper bound to 4n/9+O(1),



which settles the question of Hossain et al. [11]. Furthermore, the drawing we
construct in this case is a straight-line drawing.

2 Preliminary Definitions and Results

Let G be an n-vertex triangulated plane graph. A simple cycle C in G is called a
cycle separator if the interior and the exterior of C each contains at most 2n/3
vertices. Let v1, vn and v2 be the outer vertices of G in clockwise order on the
outer face. Let σ = (v1, v2, ..., vn) be an ordering of all vertices of G. By Gk,
2 ≤ k ≤ n, we denote the subgraph of G induced by v1 ∪ v2 ∪ ... ∪ vk. For each
Gk, the notation Pk denotes the path (while walking clockwise) on the outer
face of Gk that starts at v1 and ends at v2. We call σ a canonical ordering of
G with respect to the outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following
conditions are satisfied [7]:

(a) Gk is 2-connected and internally triangulated.
(b) If k ≤ n, then vk is an outer vertex of Gk and the neighbors of vk in Gk−1

are consecutive on Pk−1.

Let Pk, for some k ∈ {3, 4, . . . , n}, be the path w1(= v1), . . . , wl, vk(= wl+1),
wr, . . . , wt(= v2). The edges (wl, vk) and (vk, wr) are the l-edge and r-edge of
vk, respectively. The other edges incident to vk in Gk are called the m-edges.
For example, in Figure 1(c), the edges (v6, v1), (v6, v4), and (v5, v6) are the l-, r-
and m-edges of v6, respectively. Let Em be the set of all m-edges in G. Then the
graph Tvn induced by the edges in Em is a tree with root vn. Similarly, the graph
Tv1 induced by all l-edges except (v1, vn) is a tree rooted at v1 (Figure 1(b)),
and the graph Tv2 induced by all r-edges except (v2, vn) is a tree rooted at v2.
These three trees form the Schnyder realizer [16] of G.

Lemma 1 (Bonichon et al. [4]). The total number of leaves in all the trees
in any Schnyder realizer of an n-vertex triangulation is at most 2n− 5.

Let G be a planar graph and let Γ be a straight-line drawing on k parallel
lines. By l(v), where v is a vertex of G, we denote the horizontal line in Γ that
passes through v. We now have the following lemma that bounds the height of
a straight-line drawing in terms of the number of leaves in a Schnyder tree. The
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Fig. 1. (a) A plane triangulation G with a canonical ordering. The associated realizer,
where the l-, r- and m- edges are shown in dashed, bold-solid, and thin-solid lines,
respectively. (b) Tv1 . (c) Neighbors of v6 in G6. (d)–(e) Illustrating Lemma 3.



lemma can be derived from the known straight-line [5] and polyline drawing
algorithms [4]. We omit the proof due to space constraints.

Lemma 2. Let G be an n-vertex plane triangulation and let v1, vn, v2 be the
outer vertices of G in clockwise order on the outer face. Assume that Tvn has
at most p leaves. Then for any placement of vn on line l1 or lp+2, there exists a
straight-line drawing Γ of G on Lp+2 such that v2 and v1 lie on lines lp+2 and
l1, respectively.

Chrobak and Nakano [6] showed that every planar graph admits a straight-
line drawing with height 2n/3. We now observe some properties of Chrobak and
Nakano’s algorithm [6]. Let G be a plane triangulation with n vertices and let
x, y be two user prescribed outer vertices of G in clockwise order. Let Γ be the
drawing of G produced by the Algorithm of Chrobak and Nakano [6]. Then Γ
has the following properties:

(CN1) Γ is a drawing on Lq, where q ≤ 2n/3.
(CN2) For the vertices x and y, we have l(x) = l1 and l(y) = lq in Γ . The

remaining outer vertex z lies on either l1 or lq.

Note that the user cannot choose the placement of z, i.e., the algorithm may
produce a drawing where l(x) = l1, l(y) = lq and l(z) = l1, however, this does
not imply that there exists another drawing where l(x) = l1, l(y) = lq and
l(z) = lq. We end this section with the following lemma.

Lemma 3. Let G be a plane graph and let Γ be a straight-line drawing of G on
k horizontal lines, but the lines are not necessarily equally spaced. Then there
exists a drawing Γ ′ of G on a set of k horizontal lines that are equally spaced.
Furthermore, for every i ∈ {1, 2, . . . , k}, the left to right order of the vertices on
the ith line in Γ coincides with that of Γ ′.

Proof (Outline). One can construct Γ ′ by first transforming Γ into a ‘flat-
visibility representation’ on equally spaced horizontal lines, as shown in Fig-
ures 1(d)–(e), and then transforming this representation again into a straight-
line drawing [1, 3]. ut

In the following sections we describe our drawing algorithms. Note that for
simplicity we often omit the floor and ceiling functions while defining different
parameters of the algorithms. One can describe a more careful computation using
proper floor and ceiling functions, but that does not affect the asymptotic results
discussed in this paper.

3 Drawing Triangulations with Small Height

Let G = (V,E) be an n-vertex planar triangulation and let Γ be a planar drawing
of G on the Euclidean plane. Let C = (Vc, Ec) be a simple cycle separator of
G of size λ. Let Gi = (Vi, Ei) be the graph induced by the vertices that lie
inside C and on the boundary of C. Similarly, let Go = (Vo, Eo) be the graph
induced by the vertices that lie outside C and on the boundary of C. Specifically,
V = Vi ∪ Vo, E = Ei ∪ Eo, Vi ∩ Vo = Vc, and Ei ∩ Eo = Ec. We now compute a
polyline drawing of G.



3.1 Drawing Technique

If any edge (a, b) ∈ Ec lies on the outer face of Γ , then we will draw G respecting
the combinatorial embedding determined by Γ . Otherwise, there exists an edge
(a, b) ∈ Ec such that the face a, b, c with c ∈ Vo does not lie interior to C. We
redefine Γ as the embedding of G obtained by choosing a, b, c as the outer face,
as illustrated in Figures 2(a)–(b).

Drawing Gi. Assume that x = 4n/9 + 2λ/3 + 3. Construct a plane graph
G′i by taking a copy of Gi from Γ , and then adding a vertex z to the outer face
of Gi along with the edges (z, w), for all w ∈ Vc. Figure 2(c) illustrates G′i. Since
Gi has at most (2n+ 3λ)/3 vertices, we now use the algorithm of Chrobak and
Nakano [6] to compute a drawing Γi of G′i on Lx, where a, b lie on l1, lx and z
lies on either l1 or lx. Assume without loss of generality that z is in the right
half-plane of the line through a, b.

Drawing Go. Take a copy of Go from Γ . Let u be any vertex in Go. Then by
do(u) we denote the degree of vertex u in Go. Let the cycle C be a(= w1), w2, . . . ,
b(= wλ). For each vertex wi ∈ Vc, where 1 ≤ i ≤ λ and wλ+1 = w1, if

do(wi) > 3, then replace (wi, wi+1) with a path wi, w
1
i , w

2
i , . . . , w

do(wi)−3
i , wi+1

of do(wi)−3 division vertices. Let u1, u2, . . . , udo(wi)−2 be the neighbors of wi in
clockwise order outside of C. Then delete the edges from wi to these neighbors,

and add the edges (wi, u1), (w1
i , u2), . . . , (w

do(wi)−3
i , udo(wi)−2). Replace the edge

(w1, w
do(wλ)−3
λ ) by a path w1, w

′, w′′, w
do(wλ)−3
λ , and redefine a and b such that

a = w′′ and b = w′. Let the resulting graph be H and let the newly constructed
cycle be C ′. Figure 2(d) illustrates H.

If z lies on l1 in Γi, then we add the edges (a,w) to H, for each vertex w on C ′.
Otherwise, we add the edges (b, w) to H. Finally, we add a vertex z′ on the outer
face and triangulate H such that (a, b) remains an outer edge. Let the resulting
graph be G′o. Figure 2(e) illustrates G′o. Observe that the number of vertices in
G′o is at most 2n/3 + λ∆ + 3. Hence we can use the algorithm of Chrobak and
Nakano [6] to compute a drawing Γo of G′o on Ly, where y = (4n+ 6λ∆+ 18)/9,
such that a, b lie on l1, ly, respectively, and the segment ab is vertical. Assume
without loss of generality that all the vertices of G′o are in the right half-plane
of the line through a, b.

Merging Gi and Go. Without loss of generality assume that l(z) = lx
in Γi, and recall that in this case b is adjacent to all the vertices on C ′ in
Γo. Let `o be a vertical line to the right of segment ab in Γo such that all the
other vertices of Γo are in the right half-plane of `o. Furthermore, `o must be
close enough such that all the intersection points with the edges incident to b
lie in between the horizontal line through b and the next horizontal line. For
each intersection point, we insert a division vertex at that point and create a
horizontal line through that vertex. We then delete vertex b from Γo, but not the
division vertices. Figures 2(i)–(j) illustrate this scenario. By Lemma 3, we can
modify Γo such that the horizontal lines are equally spaced. Since C ′ contains at
most λ∆ vertices, Γo is a drawing on at most y+ λ∆ horizontal lines. Similarly,
we modify Γi, as follows.
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Fig. 2. (a) A plane triangulation G, where C is shown in bold. (b) Γ , where v4 =
a, v8 = b and v2 = c. (c) G′i. (d) H, where the division vertices are shown in white. (e)
G′o, where the edges added to H are shown in gray. (f)–(j) Drawing G.

Let `i be a vertical line to the left of z in Γi such that all the other vertices
of Γi are in the left half-plane of `i. Furthermore, `i must be close enough such
that all the intersection points with the edges incident to z lie in between two
consecutive parallel lines. For each intersection point, we insert a division vertex
at that point and create a horizontal line through that vertex. Let v1, v2, . . . , vλ
be the division vertices on `i in the order of decreasing y-coordinate, where for
each i ∈ {1, 2, . . . , λ}, vi is incident to the vertex wi on C. Delete vertex z, but
not the division vertices. For each vertex wi, if do(wi) > 3, then we place a set

of division vertices v1i , v
2
i , . . . , v

do(wi)−3
i below vi and above the horizontal line

closest to vi. Besides, these new division vertices must be sufficiently close to vi
such that drawing of the edges (wi, v

j
i ), where 1 ≤ j ≤ do(wi)− 3, do not create

any edge crossing. Figures 2(f)–(h) illustrate this scenario. Finally, by Lemma 3,
we can modify Γi such that the horizontal lines are equally spaced. Note that Γi
is a drawing on at most x+ λ∆ horizontal lines.

Since the division vertices in Γi and Γo take a set of consecutive horizontal
lines from their respective topmost lines, it is straightforward to merge these
two drawings on a set of λ∆ + max{x, y} = 4n/9 + O(λ∆) horizontal lines.
We delete the edges on C ′, and consider all vertices of C ′ as division vertices.
Since the division vertices correspond to the bends, each edge may contain at
most six bends (two bends to enter Γo from Γi, two bends on C ′, and two bends
to return to Γi from Γo). Since there are at most λ∆ edges that may have
bends, the number of bends is at most 6λ∆ in total. However, via ‘flat-visibility
representation’ (similar to the proof of Lemma 3) one can reduce the number of
bends to enter and exit Γo by one, we omit the details due to space constraints.
Hence the number of bends reduces to 4λ∆. The following theorem summarizes
the result of this section.



Theorem 1. Let G be an n-vertex planar graph with maximum degree ∆. If
G contains a simple cycle separator of size λ, then G admits a 4-bend polyline
drawing with height 4n/9 +O(λ∆) and at most 4λ∆ bends in total.

Since every planar triangulation has a simple cycle separator of size O(
√
n) [8],

we obtain the following corollary.

Corollary 1. Every n-vertex planar triangulation with maximum degree o(
√
n)

admits a polyline drawing with height at most 4n/9 + o(n).

Pach and Tóth [15] showed that polyline drawings can be transformed into
straight-line drawings while preserving the height if the polyline drawing is mono-
tone, i.e., if every edge in the polyline drawing is drawn as a y-monotone curve.
Unfortunately, our algorithm does not necessarily produce monotone drawings.

4 Drawing Planar 3-Trees with Small Height

In this section we examine straight-line drawings of planar 3-trees.

4.1 Technical Background

Let G be an n-vertex planar 3-tree and let Γ be a straight-line drawing of G.
Then Γ can be constructed by starting with a triangle, which corresponds to the
outer face of Γ , and then iteratively inserting the other vertices into the inner
faces and triangulating the resulting graph. Let a, b, c be the outer vertices of Γ
in clockwise order. If n > 3, then Γ has a unique vertex p that is incident to all
the outer vertices. This vertex p is called the representative vertex of G.

For any cycle i, j, k in G, let Gijk be the subgraph induced by the vertices
i, j, k and the vertices lying inside the cycle. Let G∗ijk be the number of vertices
in Gijk. The following two lemmas describe some known results.

Lemma 4 (Mondal et al. [14]). Let G be a plane 3-tree and let i, j, k be a
cycle of three vertices in G. Then Gijk is a plane 3-tree.

Lemma 5 (Hossain et al. [11]). Let G be an n-vertex plane 3-tree with
the outer vertices a, b, c in clockwise order. Let D be a drawing of the outer
cycle a, b, c on Ln, where the vertices lie on l1, lk and li with k ≤ n and
i ∈ {l1, l2, ln, ln−1}. Then G admits a straight-line drawing Γ on Lk, where
the outer cycle of Γ coincides with D.

Let G be a plane 3-tree and let a, b, c be the outer vertices of G. Assume that
G has a drawing Γ on Lk, where a, b lie on lines l1, lk, respectively, and c lies on
line li, where 1 ≤ i ≤ k. Then the following properties hold for Γ [11].

Reshape. Let p, q and r be three different points on lines l1, lk and li, respec-
tively. Then G has a drawing Γ ′ on Lk such that the outer face of Γ ′ coincides
with triangle pqr (e.g., Figures 3(a)–(b)).



Stretch. For any integer t ≥ k, G admits a drawing Γ ′ on Lt such that a, b, c
lie on l1, lt, li, respectively (e.g., Figure 3(c)).

For any triangulation H with the outer vertices a, b, c, let Ta,H , Tb,H , Tc,H
be the Schnyder trees rooted at a, b, c, respectively. By leaf(T ) we denote the
number of leaves in T . The following lemma establishes a sufficient condition for
a plane 3-tree G to have a straight-line drawing with height at most 4(n+3)/9+4.

Lemma 6. Let G be an n-vertex plane 3-tree with outer vertices a, b, c in clock-
wise order. Let w1, . . . , wk(= p), wk+1(= q), . . . , wt(= c) be the maximal path P
such that each vertex on P is adjacent to both a and b. Assume that n′ = n+ 3,
and x = 4n′/9. If G∗apq ≤ (n′+2)/3, G∗bpq ≤ G∗abp ≤ n′/2 and max∀i>k+1{G∗awiwi−1

,
G∗bwiwi−1

} ≤ 4n′/9, then G admits a drawing with height at most 4n′/9 + 4.

Proof. Let H be the subgraph of G induced by the vertices {a, b}∪{wk, . . . , wt}.
The idea of the proof is first to construct a drawing of H on Lx+4, and then to
extend it to the required drawing using Lemmas 2–5. We distinguish two cases
depending on whether leaf(Tp,Gabp) ≤ x or not.

Case 1 (leaf(Tp,Gabp) ≤ x). Since G∗bqp≤n′/2, by Lemma 1, one of the trees
in the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves. We now draw Gabq
considering the following scenarios.

Case 1A (leaf(Tp,Gbqp) ≤ x). By Lemma 2 and the Stretch condition,
Gabp admits a drawing Γabp on Lx+2 such that the vertices a, b, p lie on
l1, lx+2, lx+2, respectively. Similarly, Gbqp admits a drawing Γbpq on Lx+2

such that the vertices q, b, p lie on l1, lx+2, lx+2, respectively, as shown in
Figure 3(d). By the Stretch property, Γabp can be extended to a drawing
Γ ′abp on Lx+3, where a, b, p lie on l1, lx+3, lx+2, respectively. Similarly, Γbqp
can be extended to a drawing Γ ′bqp on Lx+3, where q, b, p lie on l1, lx+3, lx+2,
respectively. Since G∗apq ≤ (n′ + 2)/3, by Lemma 5 and the Stretch con-
dition, Gapq admits a drawing Γapq on L(n′+2)/3. Finally, by the Stretch
property Γapq can be extended to a drawing Γ ′apq on Lx+2 such that a, p, q
lie on l1, lx+2, l1, respectively, and by the Reshape property we can merge
these drawings to obtain a drawing of Gabq on Lx+3. Figure 3(e) depicts an
illustration.

Case 1B (leaf(Tb,Gbqp) ≤ x). By Lemma 2 and the Stretch condition, Gabp
admits a drawing Γabp on Lx+2 such that the vertices a, b, p lie on l1, lx+2, l1,
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Fig. 3. (a)–(b) Illustrating Reshape. (c) Illustrating Stretch. (d)–(e) Illustration for
Case 1A. (d)–(e) Illustration for Case 1B.



respectively. Similarly, Gbqp admits a drawing Γbpq on Lx+2 such that the
vertices p, b, q lie on l1, lx+2, lx+2, respectively. By Lemma 5, Gapq admits
a drawing Γapq on L(n′+2)/3 such that a, p, q lie on l1, l1, lx+2, respectively.
Finally, by Stretch and Reshape we can merge these drawings to obtain a
drawing of Gabq on Lx+3. Figures 3(f)–(g) show an illustration.

Case 1C (leaf(Tq,Gbqp) ≤ x). The drawing of this case is similar to Case
1B. The only difference is that we use Tq,Gbqp while drawing Gbqp.

Observe that each of the Cases 1A–1C produces a drawing of Gabq such that
a, b lie on l1, lx+3, respectively, and q lies on either l1 or lx+3. We stretch it to a
drawing on Lx+4 such that a, b lies on l1, lx+4, respectively, and q lies on either
l2 or lx+3. If q lies on l2, then we draw the path wk+1, . . . , wt(= c) in a zigzag
fashion, placing the vertices on l2 and lx+3 alternatively such that each vertex
is visible to both a and b. Similarly, if q lies on lx+3, then we place the vertices
wk+1, . . . , wt(= c) on lx+3 and l2 alternatively, as shown in Figure 4(a). For each
i > k + 1, Lemma 4 ensures that the graphs Gawiwi−1

and Gbwiwi−1
are plane

3-trees. Since max∀i>k+1{G∗awiwi−1
, G∗bwiwi−1

} ≤ x, we can draw Gawiwi−1
and

Gbwiwi−1 using Lemma 5 inside their corresponding triangles.

Case 2 (leaf(Tp,Gabp) > x). Since G∗abp≤n′/2, by Lemma 1, leaf(Ta,Gabp) +
leaf(Tb,Gabp) ≤ n′ − leaf(Tp,Gabp) ≤ 5n′/9. Hence we draw Gabq considering
the following scenarios.

Case 2A (leaf(Ta,Gabp) ≤ x and leaf(Tb,Gabp) ≤ x). Since G∗bqp≤n′/2,
by Lemma 1, one of the trees in the Schnyder realizer of Gbqp has at most
n′/3 ≤ x leaves. If leaf(Tp,Gbpq ) ≤ x, then we draw Gabq on Lx+3, where
a, b, p, q lie on l1, lx+3, lx+2, l1, respectively, as in Figure 4(b). Otherwise,
either leaf(Tb,Gbpq ) ≤ x or leaf(Tq,Gbpq ) ≤ x. In this case we draw Gabq on
Lx+3, where a, b, p, q lie on l1, lx+3, l2, lx+3, respectively, as in Figure 4(c).

Case 2B (leaf(Ta,Gabp) > x and leaf(Tb,Gabp) ≤ n′/9). If leaf(Tp,Gbpq ) ≤
n′/3, then we first draw Gbpq using Lemma 2 such that b, p, q lie on ln′/3+2,
ln′/3+2, l1, respectively, and then use the Stretch condition to shift b to
lx+3. By Lemma 2 and the Stretch condition, there exists a drawing of
Gabp on Lx+3 with a, b, p lying on l1, lx+3, ln′/3+2, respectively. Since G∗apq ≤
(n′+2)/3, we can draw Gapq using Lemma 5 inside triangle apq. Figure 4(d)
illustrates the scenario after applying Stretch and Reshape.

If leaf(Tp,Gbpq ) > n′/3, then by Lemma 1 either leaf(Tb,Gbpq ) ≤ n′/3 or
leaf(Tq,Gbpq ) ≤ n′/3. Hence we can use Lemma 2 and the Stretch condition

(a) (b) (c) (d) (e)
a

b
q

wk+1

wk+2

lx+4

l1 a

lx+3

l1 q

b

p

a

qb

p

lx+3

l1

ln′/3+2

a

lx+3

l1

qb

ln′/9 p
a q

b

p

Fig. 4. (a) Illustrating Case 1. (b)–(c) Illustrating Case 2A. (d)–(e) Case 2B.



to draw Gbpq such that b, p, q lie on lx+3, ln′/9, lx+3, respectively. On the
other hand, we use Lemma 2 and the Stretch condition to draw Gabp such
that a, b, p lie on l1, lx+3, ln′/9, respectively. Since G∗apq ≤ (n′ + 2)/3, we can
draw Gapq using Lemma 5 inside triangle apq. Figure 4(e) illustrates the
scenario.

Case 2C (leaf(Ta,Gabp) ≤ n′/9 and leaf(Tb,Gabp) > x). Since each of the
edges among (a, b) and (b, p) spans at least n′/9 + 2 parallel lines in Case
2B, the drawing in this case is analogous to Case 2B. The only difference is
that we use Ta,Gabp while drawing Gabp.

Each of the Cases 2A–2C produces a drawing of Gabq such that a, b lies on
l1, lx+3, respectively, and q lies on either l1 or lx+3. Hence we can extend these
drawings to draw G as in Case 1. ut

4.2 Drawing Algorithm

Decomposition. Let G be an n-vertex plane 3-tree with the outer vertices
a, b, c and the representative vertex p. A tree spanning the inner vertices of G is
called the representative tree T if it satisfies the following conditions [14]:

(a) If n = 3, then T is empty.
(b) If n = 4, then T consists of a single vertex.
(c) If n > 4, then the root p of T is the representative vertex of G and the

subtrees rooted at the three clockwise ordered children p1, p2 and p3 of p in
T are the representative trees of Gabp, Gbcp and Gcap, respectively.

Recall that every n-vertex tree T ′ has a vertex v′ such that the connected
components of T ′ \ v′ are all of size at most n/2 [12]. Such a vertex v in T
corresponds to a decomposition of G into four smaller plane 3-trees G1, G2, G3,
and G4, as follows.

- The plane 3-tree Gi, where 1 ≤ i ≤ 3, is determined by the representative tree
rooted at the ith child of v, and thus contains at most (n+ 3)/2 vertices.

- The plane 3-tree G4 is obtained by deleting v and the vertices from G that are
descendent of v in T , and contains at most (n+ 3)/2 vertices.

Drawing Technique. Without loss generality assume that G∗3 ≤ G∗2 ≤ G∗1. If
G1 is incident to the outer face of G, then let (a, b) be the corresponding outer
edge. Otherwise,G1 does not have any edge incident to the outer face ofG. In this
case there exists an inner face f in G that is incident to G1, but does not belong
to G1. We choose f as the outer face of G, and now we have an edge (a, b) of G1

that is incident to the outer face. Let P=(w1, . . . , wk(= p), wk+1(= q), . . . , wt)
be the maximal path in G such that each vertex on P is adjacent to both a and b,
where {a, b, p}, {a, p, q}, {b, q, p} are the outer vertices of G1, G2, G3, respectively.
Assume that n′ = n + 3 and x = 4n′/9. We draw G on Lx+4 by distinguishing
two cases depending on whether G∗4 > x or not.



Case 1 (G∗4 > x). Observe that G∗2 ≤ G∗1 ≤ n′/2 and since G∗3 +G∗2 +G∗1 ≤
n′+ 5−G∗4, we have G∗3 ≤ 5n′/27 + 5/3 ≤ n′/3 for sufficiently large values of n.
If max∀i>k+1{G∗awiwi−1

, G∗bwiwi−1
} ≤ x holds, then G admits a drawing on Lx+4

by Lemma 6. We may thus assume that there exists some j > q such that either
G∗awjwj−1

> x or G∗bwjwj−1
> x. Hence max∀i>k+1,i6=j{G∗awiwi−1

, G∗bwiwi−1
} ≤

n′/9.
We first show that Gabq can be drawn on Lx+3 in two ways: One drawing

Γ1 contains the vertices a, b, q on l1, lx+3, l2, respectively, and the other drawing
Γ2 contains a, b, q on l1, lx+3, lx+2, respectively. We then extend these drawings
to obtain the required drawing of G. Consider the following scenarios depending
on whether G∗1 ≤ x or not.

- If G∗1 ≤ x, then G∗3 ≤ G∗2 ≤ G∗1 ≤ x. Here we draw the subgraph G′ induced by
the vertices a, b, p, q such that they lie on l1, lx+3, lx+2, l2, respectively. Since
G∗3 ≤ G∗2 ≤ G∗1 ≤ x, by Lemma 5, G1, G2 and G3 can be drawn inside their
corresponding triangles, which corresponds to Γ1. Similarly, we can find an-
other drawing Γ2 of Gabq, where the vertices a, b, p, q lie on l1, lx+3, l2, lx+2,
respectively.

- If G∗1 > x, then G∗3 ≤ G∗2 ≤ n′/9. We use Chrobak and Nakano’s algorithm [6]
and the Stretch condition to draw G1 on Lx+3 layers such that a, b lie on
l1, lx+3, respectively, and p lies either on l2 or ln′/3+2. If l(p) = l2 (i.e., Γ2),
then we place q on lx+2. Otherwise, l(p) = ln′/3+2 (i.e., Γ1), and we place q on
l2. Since G∗3 ≤ G∗2 ≤ n′/9, for each of these two placements we can draw G2

and G3 using Lemma 5 inside their corresponding triangles.

We now show how to extend the drawing of Gabq to compute the drawing of G.
Consider two scenarios depending on whether G∗awjwj−1

> x or G∗bwjwj−1
> x.

- Assume that G∗awjwj−1
> x. Shift b to lx+4, and draw the path wk+1, . . . , wj−1

in a zigzag fashion, placing the vertices on l2 and lx+3 alternatively, such that
l(wk+1) 6= l(wk+2), and each vertex is visible to both a and b. Choose Γ1 or Γ2

such that the edge (a,wj−1) spans at least x+ 3 lines. We now draw Gawjwj−1

using Chrobak and Nakano’s algorithm [6]. Since x < Gawjwj−1 ≤ n′/2, we
can draw Gawjwj−1 on at most n′/3 parallel lines. By the Stretch and Reshape
conditions, we merge this drawing with the current drawing such that wj lies on
either lx+3 or ln′/9+2. Since G∗bwjwj−1

≤ n′/9, we can draw Gbwjwj−1
inside its

corresponding triangle using Lemma 5. Since max∀i>j{G∗awiwi−1
, G∗bwiwi−1

} ≤
n′/9, it is straightforward to extend the current drawing to a drawing of G on
x+ 4 parallel lines by continuing the path wj , . . . , wt in the zigzag fashion.

- Assume that G∗bwjwj−1
> x. The drawing in this case is similar to the case

when G∗awjwj−1
> x. The only difference is that while drawing the path

wk+1, . . . , wj−1, we choose Γ1 or Γ2 such that the edge (b, wj−1) spans at
least x+ 3 lines.

Case 2 (G∗4 ≤ x). Observe that G∗2 ≤ G∗1 ≤ n′/2. Since G∗3 ≤ G∗2 ≤ G∗1 and
G∗3 +G∗2 +G∗1 = n+ 5, we have G∗3 ≤ (n′ + 2)/3. Hence G admits a drawing on
Lx+4 by Lemma 6.

The following theorem summarizes the result of this section.



Theorem 2. Every n-vertex planar 3-tree admits a straight-line drawing with
height 4(n+ 3)/9 + 4 = 4n/9 +O(1).

Acknowledgement: We thank the anonymous reviewers for their detailed feed-
back to improve the presentation of the paper.
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