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Abstract. A set S of lines is universal for drawing planar graphs with
n vertices if every planar graph G with n vertices can be drawn on S
such that each vertex of G is drawn as a point on a line of S and each
edge is drawn as a straight-line segment without any edge crossing. It
is known that b 2(n−1)

3
c parallel lines are universal for any planar graph

with n vertices. In this paper we show that a set of bn−3
2

c + 3 parallel
lines or a set of dn+3

4
e concentric circles are universal for drawing planar

3-trees with n vertices. In both cases we give linear-time algorithms to
find such drawings. A by-product of our algorithm is the generalization
of the known bijection between plane 3-trees and rooted full ternary trees
to the bijection between planar 3-trees and unrooted full ternary trees.
We also identify some subclasses of planar 3-trees whose drawings are
supported by fewer than bn−3

2
c+ 3 parallel lines.

1 Introduction

Many researchers in the graph drawing community have concentrated their at-
tention on drawing graphs on point-sets [1, 5, 11] and on line-sets [6, 7, 9] due to
strong theoretical and practical motivation for such drawings (e.g., computing
small-width VLSI layout, approximating pathwidth and data visualization on
small form factor). A set S of lines supports a drawing of a planar graph G if G
has a planar drawing, where each vertex is drawn as a point on a line in S and
each edge is drawn as a straight line segment. We often say G has a drawing on
S if S supports a drawing of G. A set of lines that supports the drawing of all
n-vertex graphs in some class is called universal for that class. In this paper we
study the problem of finding universal line sets of smaller size for planar graphs.
Given a plane graph G with n vertices, Chrobak and Nakano [2] gave an algo-

rithm to compute a drawing of G on a b 2(n−1)
3 c × 4b 2(n−1)

3 c grid. This implies

that b 2(n−1)
3 c parallel lines are universal for any planar graph with n vertices.

Note that a plane graph is a planar graph with a fixed planar embedding.
Recently, several researchers have studied a labeled version of the problem

where both the lines in the point set S and vertices of G are labeled from 1
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Fig. 1. (a) A plane 3-tree G, (b) representative tree T of G, (c) another embedding G′

of G and (d) representative tree T of G′.

to n and each vertex is drawn on its associated line. Estrella-Balderrama et
al. [7] showed that no set of n parallel lines supports all n-vertex planar graphs
when each vertex is drawn as a point on its associated line. Dujmović et al. [6]
showed that there exists a set of n lines in general position that does not support
all n-vertex planar graphs. An unlabeled version of the problem has appeared
in the literature as “layered drawing.” A layered drawing of a plane graph G
is a planar drawing of G, where the vertices are drawn on a set of horizontal
lines called layers and the edges are drawn as straight line segments. Finding a
layered drawing of a graph on the minimum number of layers is a challenging
task. Dujmović et al. [4] gave a parametrized algorithm to check whether a
given planar graph with n vertices admits a layered drawing on h layers or not.
Mondal et al. [10] gave an O(n5)-time algorithm to compute a layered drawing
of a “plane 3-tree” G, where the number of layers is minimum over all possible
layered drawings of G.

In this paper we consider the problem of finding a universal line set of smaller
size for drawing of “planar 3-trees.” A planar 3-tree Gn with n ≥ 3 vertices is
a planar graph for which the following (a) and (b) hold: (a) Gn is a maximal
planar graph; (b) if n > 3, then Gn has a vertex whose deletion gives a planar
3-tree Gn−1. Many researchers have shown their interest on planar 3-trees for a
long time for their beautiful combinatorial properties which have applications in
computational geometry [3, 10]. In this paper we show that a set of bn−3

2 c + 3
parallel lines and a set of dn+3

4 e concentric circles are universal for planar 3-
trees with n vertices. In both cases we give a linear-time algorithm to find such
drawings. A by-product of our algorithm is the generalization of the known
bijection between plane 3-trees and rooted ternary trees to the bijection between
planar 3-trees and unrooted full ternary trees. We also identify some subclasses
of planar 3-trees whose drawings are supported by fewer than bn−3

2 c+3 parallel
lines.

We now give an outline of our idea for drawing on parallel lines. A planar
3-tree with a fixed planar embedding is called a plane 3-tree. Let G be a plane
3-tree. Clearly the outer face of G is a triangle, and let a, b and c be the three
outer vertices of G. There is a vertex p in G, which is the common neighbor
of a, b and c. The vertex p is called the representative vertex of G [10]. The
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vertex p along with the three outer vertices of G divides the interior region
of G into three new regions. It is known that the subgraphs G1, G2 and G3

enclosed by those three regions are also plane 3-trees [10]. G can be represented
by a representative tree whose root is the representative vertex p of G and the
subtrees rooted at the children of p is the representative trees of G1, G2 and G3.
Figure 1(b) illustrates the representative tree of the plane 3-tree in Figure 1(a).
The depth ρ of a plane 3-tree is the height of the representative tree. We show
that G has a straight-line drawing on ρ+ 2 parallel lines. One can observe that
the depth of different embeddings of a planar 3-tree may differ. Figures 1(a) and
(c) illustrate two different planar embeddings of the same planar 3-tree, with
depths 3 and 4, respectively. We thus find an embedding of the planar 3-tree
with the minimum depth ρ′, and find a drawing on ρ′+2 parallel lines. We show
that ρ′ is at most bn−3

2 c+1. Thus bn−3
2 c+3 parallel lines support a drawing of

a planar 3-tree with n vertices.
The rest of the paper is organized as follows. Section 2 describes some def-

initions that we have used in our paper. Section 3 deals with drawing plane
3-trees on parallel lines and concentric circles. In section 4 we obtain our bound
on universal line set and universal circle set for planar 3-trees, and in Section 5
we consider drawing of some subclasses of planar 3-trees. Finally, Section 6 con-
cludes our paper with discussions.

2 Preliminaries

In this section we introduce some definitions and known properties of plane 3-
trees. For the graph theoretic definitions which have not been described here,
see [13].

A graph is planar if it can be embedded in the plane without edge crossing
except at the vertices where the edges are incident. A plane graph is a planar
graph with a fixed planar embedding. A plane graph divides the plane into some
connected regions called the faces. The unbounded region is called the outer face
and all the other faces are called the inner faces. The vertices on the outer face
are called the outer vertices and all the other vertices are called inner vertices. If
all the faces of a plane graph G are triangles, then G is called a triangulated plane
graph. We denote by C0(G) the contour outer face of G. For a cycle C in a plane
graph G, we denote by G(C) the plane subgraph of G inside C (including C).
A maximal planar graph is one to which no edge can be added without losing
planarity. Thus in any embedding of a maximal planar graph G with n ≥ 3
vertices, the boundary of every face of G is a triangle, and hence an embedding
of a maximal planar graph is often called a triangulated plane graph.

Let G be a plane 3-tree. By a triangle Cxyz of G we denote a cycle C of three
vertices, where x, y, z are the vertices on the boundary of C in anticlockwise
order. The following result is known on plane 3-trees [10].

Lemma 1. [10] Let G be a plane 3-tree of n ≥ 3 vertices and let C be any
triangle of G. Then the subgraph G(C) is a plane 3-tree.
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Let p be the representative vertex and a, b, c be the outer vertices of G in
anticlockwise order. The vertex p, along with the three outer vertices a, b and
c, form three triangles Cabp, Cbcp and Ccap. We call these triangles the nested
triangles around p.

We now define the representative tree of a plane 3-tree G of n > 3 vertices
as an ordered rooted tree T satisfying the following two conditions (a) and (b).

(a) if n = 4, then T is a single vertex, which is the representative vertex of G.
(b) if n > 4, then the root p of T is the representative vertex of G and the

subtrees rooted at the three anticlockwise ordered children q1, q2 and q3 of
p in T are the representative trees of G(C1), G(C2) and G(C3), respectively,
where C1, C2 and C3 are the nested triangles around p in anticlockwise order.

Figure 1(b) illustrates the representative tree T of the plane 3-tree G of
Figure 1(a). We define the depth ρ of G as the number of vertices that lie on the
longest path from the root to a leaf in its representative tree.

Let a, b and c be the three outer vertices of a plane 3-tree G. We denote by
4abc the drawing of the outer face of G as a triangle. A line or arc l crosses a
triangle 4abc if there exists at least one point p on l in the proper interior of
the triangle 4abc. A line or arc l touches the triangle 4abc if it does not cross
the triangle 4abc and at least one point among a, b, c lies on l.

3 Drawings on Parallel Lines and Concentric Circles

In this section we prove that any plane 3-tree of depth ρ has a drawing on ρ+2
parallel lines. We first need the following lemma.

Lemma 2. Let a, b, and c be the three outer vertices of a plane 3-tree G, and let
v be the representative vertex of G. Let 4abc be a drawing of C0(G) on a set of
k+2 parallel lines, for some nonnegative integer k, such that two of the vertices
among a, b, c lie on the same or consecutive lines. Assume that k parallel lines
l1, l2, ..., lk cross 4abc. Then there exist a line lx, 1 ≤ x ≤ k such that we can
place vertex v on line lx interior to 4abc, where at least k−1 parallel lines cross
each of the triangles 4abv, 4bcv and 4acv.

Proof. Without loss of generality assume that a is a top-most and c is the
bottom-most vertices in the 4abc, i.e., vertex a and c lie on the lines l0 and
lk+1, respectively. We now consider the following four cases according to the
positions of the vertex b.
Case 1: Vertex b lies on the line lk+1.
In this case, vertices b and c lie on the same line lk+1. If we place the represen-
tative vertex v on the line l1 inside the 4abc, then k, k− 1 and k lines cross the
triangles 4abv, 4bcv and 4acv, respectively.
Case 2: Vertex b lies on the line l0.
In this case, vertices b and a lie on the same line l0. If we draw v on the line lk
inside the 4abc, then k − 1, k and k lines cross the triangles 4abv, 4bcv and
4acv, respectively.
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Case 3: Vertex b lies on the line l1.
In this case, vertices a and b lie on consecutive lines. If we draw v on the line
lk inside the 4abc, then k − 1, k − 1 and k lines cross the triangles 4abv, 4bcv
and 4acv, respectively.
Case 4: Vertex b lies on the line lk.
In this case, vertices b and c lie on consecutive lines. If we draw v on the line
l1 inside the 4abc, then k − 1, k − 1 and k lines cross the triangles 4abv, 4bcv
and 4acv, respectively. ut

We now have the following lemma.

Lemma 3. Let G be a plane 3-tree of depth ρ. Then G has a drawing on ρ+ 2
parallel lines.

Proof. We prove a stronger claim as follows: Given a drawing D of the outerface
of G on ρ+2 lines such that two of its outer vertices lie on the same or consecutive
lines, we can extend the given drawing to a drawing D′ of G such that D′ is also
a drawing on ρ+ 2 lines.

The case when ρ = 0 is straightforward, since in this case G is a triangle and
any given drawing D of the outerface of G on two lines is itself a drawing of
G. We may thus assume that ρ > 0 and the claim holds for any plane 3-tree of
depth ρ′, where ρ′ < ρ.

Let G be a plane 3-tree of depth ρ and let a, b and c be the three outer
vertices of G in anticlockwise order. Let p be the representative vertex of G. We
draw C0(G) on ρ+2 parallel lines by drawing the outer vertex a on Line l0 and
the other two outer vertices b and c on Line lρ+1. According to Lemma 2, there
is a line lx, 1 ≤ x ≤ ρ + 1 such that the placement of p on line lx inside 4abc
ensures that the triangles 4abp, 4acp and 4cbp are crossed by at least ρ − 1
parallel lines.

We place p on lx inside 4abc. By Lemma 1, G(Cabp), G(Cbcp) and G(Ccap)
are plane 3-trees. Observe that the depth of each of these plane 3-trees is at most
ρ− 1. By induction hypothesis, each of these plane 3-trees admits a drawing on
ρ+1 parallel lines inside the triangles 4abp, 4bcp and 4cap, respectively. ut

Based on the proof of Lemma 3, one can easily develop an O(n)-time algorithm
for finding a drawing of a plane 3-tree G of n vertices on ρ + 2 parallel lines,
where ρ is depth of G. Thus the following theorem holds.

Theorem 1. Let G be a plane 3-tree of n vertices. Then one can find a drawing
of G on ρ+ 2 parallel lines in O(n) time, where ρ is the depth of G.

We now consider the problem of drawing a plane 3-tree on a concentric circle
set. Since a set of ρ+2 parallel lines can be formed with dρ+2

2 e infinite concentric
circles, each of which contributes two parallel lines, every plane 3-tree admits a
drawing on dρ+2

2 e concentric circles. We can observe that Lemma 2 holds even if
we consider a set C of non-crossing concentric circular arcs1 of finite radii instead
of a set of parallel lines, and hence we have the following corollary.

1 Note that the circular arc segments in C can be partitioned into two (possibly empty)
sets C1 and C2 such that two arcs c′ and c′′ are parallel if they belong to the same
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Corollary 1. Let G be a plane 3-tree of depth ρ. Then G has a drawing on dρ+2
2 e

concentric circles. Furthermore, such a drawing can be found in linear-time.

4 Universal Line Sets for Drawing Planar 3-Trees

In this section we give an algorithm to find an embedding of a planar 3-tree with
minimum depth and prove the bn−3

2 c+3 upper bound on the size of the universal
line set for planar 3-trees. For any planar 3-tree the following fact holds.

Fact 1. Let G be a planar 3-tree and let Γ and Γ ′ be two planar embeddings of
G. Then any face in Γ is a face in Γ ′ and vice versa.

We call a triangle, i.e., a cycle of three vertices, in a planar 3-tree G a facial
triangle if it appears as a face boundary in a planar embedding of G.

Let G be a planar 3-tree of n vertices and let Γ be a planar embedding of
G. That is Γ is a plane 3-tree. We define the face-representative tree of Γ as an
ordered rooted tree Tf satisfying the following conditions.

(a) Any vertex in Tf is either a vertex-node, which corresponds to a vertex of Γ
or a face-node, which corresponds to a face of Γ .

(b) If n = 3, then Tf is a single face-node, which corresponds to the outer face
of Γ . If n > 3, then (c)–(d) hold.

(c) Root is a face-node that corresponds to the outer face of Γ . Root has only
one child which is the representative vertex p of Γ . Every vertex-node has
exactly three children. Every face-node other than the root is a leaf in Tf .

(d) If n > 4, the subtrees rooted at the three anticlockwise ordered children
q1, q2 and q3 of p in Tf are the face-representative trees of Γ (C1), Γ (C2)
and Γ (C3), respectively, where C1, C2 and C3 are the three nested triangles
around p in anticlockwise order.

Figure 2 illustrates a face-representative tree of a plane 3-tree where black
nodes are vertex-nodes and white nodes are face-nodes. Observe that every inter-
nal node in a face-representative tree has exactly four neighbors. We call such a
tree an unrooted full ternary tree. A face-representative tree has 2n−4 face-nodes
and n− 3 vertex-nodes. Deletion of the face-nodes from the face-representative
tree yields the representative tree of Γ .

A rooted tree is semi-labeled if some of its nodes do not have any label. Two
semi-labeled trees are isomorphic at root, if we can assign labels to the unlabeled
nodes such that the trees become identical and the labels of the two roots are
the same. It is easy to see that if two semi-labeled trees are isomorphic at root,
then they are isomorphic. The unordered rooted tree obtained by deleting the
labels of the internal nodes of a face-representative tree is a semi-labeled face-
representative tree. Let T1 and T2 be two semi-labeled face representative trees

set and non-parallel otherwise. The crucial part of the algorithm for drawing G on
C is to draw ∆abc carefully.
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Fig. 2. (a)A plane 3-tree Γ and (b) the face-representative tree Tf of Γ .

of two different embeddings of a planar 3-tree G. If f is a facial triangle in G,
then there is a face-node corresponding to f in T1 and in T2, by Fact 1. For
convenience, we often denote each of these face-nodes as f .

We now prove that the face-representative trees obtained from different em-
beddings of a planar 3-tree are isomorphic. In fact, we have a stronger claim in
the following lemma whose proof is omitted in this version.

Lemma 4. Let G be a planar 3-tree and let Γ, Γ ′ be two different planar embed-
dings of G. Let f be a facial triangle in Gn, and let T ′ and T ′′ be the semi-labeled
face-representative trees obtained from the face-representative trees of Γ and Γ ′,
respectively, by choosing f as their roots. Then T ′ and T ′′ are isomorphic at f .

Let G be a planar 3-tree of n vertices. Since the face-representative trees
obtained from different planar embeddings of G are isomorphic, we can choose
any leaf of a face-representative tree Tf to obtain another face-representative
tree that corresponds to a different planar embedding of G. Observe that Tf has
2n−4 face-nodes and let x be a face-node in Tf such that the depth of the tree Tx

obtained from Tf by choosing x as the root is minimum over all the 2n−4 possible
choices for x. Recall that deletion of the face-nodes from the face-representative
tree yields the representative tree of the corresponding embedding. Therefore,
deletion of the face-nodes from Tx gives us a representative tree with minimum
depth, which in turn corresponds to a minimum-depth embedding of G. The
following fact states that x is the nearest face-node from the center of Tf .

Fact 2. Let Tf be a face-representative tree and let x be a face-node of Tf such
that the length of the shortest path between x and the center of Tf is minimum
over all the face nodes of Tf . Then the depth of the tree obtained from Tf by
choosing a face-node as the root is greater than or equal to the depth of the tree
obtained from Tf by choosing x as the root.

The center of a tree is either a single node or an edge, and it is straightforward
to find the center of Tf in O(n) time by repeatedly deleting the nodes of degree
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one, until a single node or an edge is left. We then do a breath-first search
to select a nearest node x, which also takes O(n) time. Then by Fact 2, the
planar embedding of G that corresponds to the face-representative tree obtained
by choosing x as the root is the minimum-depth embedding of G. Thus the
following lemma holds.

Lemma 5. Let G be a planar 3-tree. An embedding Γ of G with the minimum
depth can be found in linear time.

We now have the following lemma on the bound of minimum-depth.

Lemma 6. The depth of a minimum-depth embedding Γ of a planar 3-tree G
with n vertices is at most bn−3

2 c+ 1.

Proof. Let Tx be the face-representative tree of Γ , where the root of Tx is x.
By Fact 2, the length k of the shortest path between x and the center of Tx is
minimum over all the face nodes of Tx. Let O be the center of Tx, which may be a
node or an edge of Tx. Since every internal node of Tx has exactly four neighbors
and x is a nearest node from the center, the depth of the representative tree T

obtained by deleting all the face-nodes from Tx is at most b (n−3)
2 c + 1, when

k = 1 and (n−3)−(1+4·30+4·31+4·3k−2)
2 + 2(k − 1), when k > 1. In both cases the

depth of T can be at most b (n−3)
2 c+ 1. The detail of the proof is omitted here.

ut

We now use Theorem 1 and Corollary 1 to obtain the upper bounds on the
sizes of universal line set and universal circle set for planar 3-trees, as in the
following theorem.

Theorem 2. A set of bn−3
2 c + 3 parallel lines and a set of dn+3

4 e concentric
circles are universal for planar 3-trees with n vertices.

5 Bounds for Special Classes of Planar 3-Trees

In this section we categorize planar 3-trees into three types: Type 0, Type 1
and Type 2. We prove that every planar 3-tree of Type 0 and Type 1 can be

embedded on d (n−3)
3 e+ 3 and b4n/9c parallel lines, respectively. We conjecture

that every planar 3-tree of Type 2 admits an embedding on b4n/9c parallel lines.
Let T be a rooted tree with n vertices. Then there exists a vertex v in T such

that the number of inner vertices in the subtree rooted at v is more than 2n/3
and the number of vertices in each of the subtrees rooted at the children of v is
at most 2n/3. See the proof of Theorem 9.1 in [12]. Consequently, we have the
following lemma.

Lemma 7. Let Γ be a plane 3-tree. Then there exists a triangle C in Γ satisfying
the following. Let r be the representative vertex of Γ (C) and let C1, C2, C3 be the
three nested triangles around r. Then the number of inner vertices in Γ (C) is
more than 2(n− 3)/3 and the number of inner vertices in each Γ (Ci), 1 ≤ i ≤ 3,
is at most 2(n− 3)/3.
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We call C a heavy triangle of Γ . Observe that for any heavy triangle C of Γ ,
one of the following properties hold.

(a) No Γ (Ci) contains more than (n− 3)/3 inner vertices.
(b) The number of inner vertices in exactly one plane 3-tree among Γ (C1), Γ (C2)

and Γ (C3) is more than (n− 3)/3.
(c) The number of inner vertices in exactly two plane 3-trees among Γ (C1),

Γ (C2) and Γ (C3) is more than (n− 3)/3.

Let G be a planar 3-tree. If G admits a plane embedding that contains a
heavy triangle satisfying Property (a), then we call G a planar 3-tree of Type
0. If G is not a planar 3-tree of Type 0, but admits a plane embedding that
contains a heavy triangle satisfying Property (b), then we call G a planar 3-tree
of Type 1. If G is not a planar 3-tree of Type 0 or Type 1, but admits a plane
embedding that contains a heavy triangle satisfying Property (c), then we call
G a planar 3-tree of Type 2.

Before proving the upper bounds for planar 3-trees of Type 0 and Type 1,
we need to explain some properties of drawings on line set and some properties
of the drawing algorithm of Chrobak and Nakano [2].

Fact 3. Let G be a plane 3-tree and let x, y, z be the outer vertices of G. Assume
that G has a drawing D on k parallel lines, where x lies on line l0, y lies on line
lk−1 and z lies on line li, 0 ≤ i ≤ k − 1.

(a) Let p, q and r be three different points on lines l0, lk−1 and li, respectively.
Then G has a drawing D′ on k parallel lines, where the vertices x, y, z lie
on points p, q, r, respectively, and for each vertex u, if u lies on line l in D
then u lies on line l in D′.

(b) G has a drawing D′′ on k + 1 parallel lines, where y lies on line lk and for
each vertex u of G other than y, if u lies on line l in D then u lies on line l
in D′′.

Fact 3 can be easily proved by induction. See Lemma 8 in [10] for such an
induction technique. Figure 3(a) illustrates a plane 3-tree Γ , and Figures 3(b),
(c) and (d) illustrates examples of D, D′ and D′′.

(a) (b) (c) (d)
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Fig. 3. (a)A plane 3-tree Γ . (b) A layered drawing D of Γ . (c) Illustration for D′. (d)
Illustration for D′′.
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We now observe some properties of the drawing algorithm of Chrobak and
Nakano [2]. Let Γ be a triangulated plane graph with n vertices and let x, y
be two user prescribed outer vertices of Γ in anticlockwise order. Let D be the
drawing of Γ produced by the Algorithm of Chrobak and Nakano [2]. Then D
has the following properties.

(CN1) D is a drawing on a set of lines l0, l1, . . . , lq, where q = b 2(n−1)
3 c.

(CN2) Vertex x and vertex y lie on lines l0 and lq in D, respectively. The re-
maining outer vertex lies on either line l0 or lq.

We now have the following theorem.

Theorem 3. Every planar 3-tree of Type 0 with n vertices has a drawing on

d (n−3)
3 e + 3 parallel lines. Every planar 3-tree of Type 1 with n vertices has a

drawing on b4n/9c parallel lines.

Proof. Let G be a planar 3-tree with n vertices and let Γ be a plane embedding
of G. Let Cxyz be a heavy triangle in Γ . Let w be the representative vertex of
G(Cxyz). Recall that Cxyw, Cyzw, Czxw are the three nested triangles around w.
We now consider the following two cases.

Case 1. The number of inner vertices in each of the plane 3-trees Γ (Cxyw),
Γ (Cyzw) and Γ (Czxw) is at most (n− 3)/3 (G is a planar 3-tree of Type 0.)

If (x, y) is an outer edge of Γ , then redefine Γ as Γ ′. Otherwise, consider an
embedding Γ ′ of G such that (x, y) is an outer edge of Γ ′ and the embeddings of
Γ ′(Cxyz) and Γ (Cxyz) are the same. Observe that any embedding of G taking a
face xyv of G as the outerface, where v is not a vertex of Γ (Cxyz), will suffice.
An example is illustrated in Figure 4.

a

b
c

x

y z

v

x

y

z a
b

c

v
(a) (b)

Fig. 4. Two different embeddings of G; (a) Γ and (b) Γ ′.

Let t0(= z), t1, t2, . . . , tq(= v) be all the vertices of Γ ′ such that no ti is
interior to Γ ′(Cxyz) and each ti, 0 ≤ i ≤ q is adjacent to both x and y, and
for each j, 0 ≤ j < q, vertex tj is interior to the triangle xytj+1. We claim
that t0(= z), t1, t2, . . . , tq(= v) is a path in Γ ′. Otherwise, assume that tj and
tj+1 are not adjacent. By Lemma 1, Γ ′(Cxytj+1) is a plane 3-tree. Let t′j be the
representative vertex of Γ ′(Cxytj+1) which is adjacent to both x and y. If t′j does
not coincide with tj , then j′ > j + 1, a contradiction to the assumption that t′j
is the representative vertex of G′(Cxytj+1).
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We now draw Γ ′ on k = d (n−3)
3 e+3 parallel lines as follows. Place the vertices

x and y on lines l0 and lk−1, respectively, with the same x-coordinate. Place
the vertices t0(= z), t1, t2, . . . , tq(= v) on lines l1 and lk−2 alternatively with
increasing x coordinates such that the triangles xyti can be drawn maintaining
their nesting order avoiding edge crossings. Then add the edges between tj and
tj+1. Let the resulting drawing be D. Since Γ ′(Cxyz) contains more than 2(n−
3)/3 inner vertices, each plane 3-tree Γ ′(Cxtjtj+1) and Γ ′(Cytjtj+1) contains less
than (n−3)/3 vertices. Consequently, the depth of the representative tree of each
plane 3-tree Γ ′(Cxtjtj+1) and Γ ′(Cytjtj+1) is at most (n−3)/3. Since each triangle
xtjtj+1 and ytjtj+1 in D is intersected (crossed or touched) by k − 1 parallel
lines and two vertices of the triangle are on consecutive lines, we can draw each
plane 3-tree on k−1 lines and then insert those drawings into the corresponding
triangle in D using Property (a) of Fact 3. To complete the drawing of Γ ′, we
have to draw Γ ′(Cxyz) into triangle xyt0 in D. Observe that triangle xyt0 is
intersected by k parallel lines and two vertices of the triangle are on consecutive
lines. On the other hand, since the number of inner vertices in each of the plane
3-trees Γ ′(Cxyw), Γ

′(Cyzw), Γ
′(Czxw) is at most (n− 3)/3 = k− 3, the depth of

the representative tree of Γ ′(Cxyz) is at most k− 2. It is now straightforward to
draw Γ ′(Cxyz) on k lines and then insert the drawings into the corresponding
triangle in D using Property (a) of Fact 3.

Case 2. The number of inner vertices in exactly one of the plane 3-trees
among Γ (Cxyw), Γ (Cyzw) and Γ (Czxw) is more than (n − 3)/3 (G is a planar
3-tree of Type 1.)

Without loss of generality assume that the number of inner vertices in Γ (Cxyw)
is more than (n − 3)/3. If (x, y) is an outer edge of Γ , then redefine Γ as Γ ′.
Otherwise, consider an embedding Γ ′ of G such that (x, y) is an outer edge of
Γ ′ and the embeddings of Γ ′(Cxyz) and Γ (Cxyz) are the same.

We now draw Γ ′ on k = b4n/9c parallel lines as follows. We first Place the
vertices x and y on lines l0 and lk−2, respectively, with the same x-coordinate.
We then use the algorithm of Chrobak and Nakano [2] to draw Γ ′(Cxyw) on
lines l0, l1, . . . , lk−2 respecting the placement of x and y. Recall the properties
(CN1) and (CN2). Since the number of inner vertices in Γ ′(Cxyw) is at most N =
2(n−3)/3, therefore k−2 = b2(N−1)/3c = b4n/9c−2. Without loss of generality
assume that w is placed on line lk−2. Modify the drawing using Property (b) of
Fact 3 to get an embedding of Γ ′ on lines l0, l1, . . . , lk−1 where x, y, w lies on
lines l0, lk−1, lk−2, respectively. Let the resulting drawing of Γ ′(Cxyw) be D.

We now add the vertices not in Γ ′(Cxyw) to D to complete the drawing in a
similar way as in Case 1. We omit the details in this short version. ut

Conjecture 1. Every planar 3-tree with n vertices admits a drawing on b4n/9c
parallel lines.

6 Conclusion

Let n be a positive integer multiple of six, then there exists a planar 3-tree with
n vertices requiring at least n/3 parallel lines in any of its drawing on parallel
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lines [8]. On the other hand, we have proved that bn−3
2 c + 3 parallel lines are

universal for planar 3-trees with n vertices. It would be interesting to close the
gap between the upper bound and the lower bound on the size of universal line
set for planar 3-trees. Finding a universal line set of smaller size for drawing
planar 3-trees where the lines are not always parallel is left as an open problem.
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