
Exploring Test Suite Diversification and Code
Coverage in Multi-Objective Test Case Selection

Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher
Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

Email: {jyoti,hemmati,durocher}@cs.umanitoba.ca

Abstract—Test case selection is a classic testing technique
to choose a subset of existing test cases for execution, due to
the limited budget and tight deadlines. While ‘code coverage’ is
the state of practice among test case selection heuristics, recent
literature has shown that ‘test case diversity’ is also a very
promising approach. In this paper, we first compare these two
heuristics for test case selection in several real-world case studies
(Apache Ant, Derby, JBoss, NanoXML and Math). The results
show that neither of the two techniques completely dominates the
other, but they can potentially be complementary. Therefore, we
next propose a novel approach that maximizes both code coverage
and diversity among the selected test cases using NSGA-II multi-
objective optimization, and the results show a significant improve-
ment in fault detection rate. Specifically, sometimes this novel
approach detects up to 16%(Ant), 10%(JBoss), and 14%(Math)
more faults compared to either of coverage or diversity-based
approaches, when the testing budget is less than 20% of the
entire test suite execution cost.

I. INTRODUCTION

The prime objective in software testing is to maximize
the number of faults detected within a limited testing budget.
Test case selection is one of the most classic problems in this
context. For many years, code coverage has been the only prac-
tical approach for test case selection. Recent studies, however,
reveals that code coverage may not necessarily be strongly cor-
related with test suite effectiveness [1]. Consequently, several
other heuristics, e.g., selecting test cases depending on their
past fault coverage history, eliminating test cases with similar
coverage and so on, have been introduced to improve the test
case selection effectiveness. Diversity-based test case selection
is one of these new approaches with promising results [2].
The core idea behind the diversity-based approach is to select
the most diverse subset of test cases rather than focusing on
maximizing code coverage. Given the assumption that there
is no evidence on the location of source code faults before
testing, all parts (in any given granularity, e.g., file, method,
or statement-level) of the system under test (SUT) are equally
fault-prone. Therefore, a diversity-based test case selection
optimizes the selected test cases by making sure that they cover
all parts evenly – we do not want to spend all testing budget
on a small part of the code-base, if there is no evidence that
the concentrated part is more fault-prone than other parts.

In this paper, we explore the effectiveness of coverage-
based and diversity-based test case selection, using their fault
detection ability for a given testing budget. We measure
testing budget as test execution time and apply a bi-objective
optimization algorithm to maximize the coverage/diversity,
while minimizing test execution time. Since the existing lit-
erature finds combination of Additional-Greedy and NSGA-II

is a good choice for optimizing coverage and diversity over
time [3], [2], we also use these algorithms for the bi-objective
optimization.

Then we compare the fault detection rate of the two test
case selection approaches on sixteen versions of five open
source projects (Apache Ant: 1 version, Derby: 1 version,
JBoss: 3 versions, NanoXML: 3 versions, and Math: 8 ver-
sions). The results show that for some versions of Ant, JBoss,
NanoXML and Math, diversity-based approach is significantly
more effective in revealing faults than coverage. On the other
hand, for Derby and some other versions of Math, the fault
detection rate for coverage is significantly larger than that of
diversity. Hence we examined whether the solutions obtained
by diversity and coverage-based heuristics are complementary,
and realized that the two solution sets (the subsets given
by coverage-based and diversity-based test case selection ap-
proaches) have little overlap. Therefore, we suggest a novel
three-objective optimization approach using NSGA-II to max-
imize both code coverage and diversity, while minimizing
test execution time. Afterwards, we analyze the results of
an experiment on the same sixteen SUTs and compare the
effectiveness of the novel three-objective approach with the
two bi-objective approaches. The results show that optimizing
both heuristics together improves the fault detection rate of
the selected test cases. For example, there exists cases where
the combined approach improves the bi-objective approach by
up to 16%(Ant V7), 10%(JBoss V1), and 14%(Math V105)
when selecting test cases with execution cost equal to 20% or
less than the entire test suite’s cost. Besides, we could not find
any scenario where the three-objective approach is significantly
worse than both bi-objective formulations, which suggests that
the three-objective formulation is also a safe technique.

Contributions: The main contributions of this paper are
listed below.

A. The paper proposes a new approach for bi-objective op-
timization of diversity and test execution time, using α-
Shape analysis of the Pareto front solutions.

B. The paper compares the effectiveness of diversity-based
vs. coverage-based test case selection, in terms of fault-
detection rate, on sixteen versions of five real-world pro-
grams (Apache Ant: 1 version, Derby: 1 version, JBoss: 3
versions, NanoXML: 3 versions, and Math: 8 versions).

C. The paper proposes a novel three-objective test case selec-
tion approach that maximizes code coverage and test suite
diversity, while minimizing the test execution time.

D. The paper also empirically evaluates the proposed approach
and compares that with the two bi-objective approaches
(diversity-time and coverage-time). The results show sig-



nificant improvement in terms of fault-detection rate on the
selected test cases from the SUTs under investigation.

II. BACKGROUND

In this section we introduce a brief overview of test case
selection heuristics, algorithms and evaluation techniques.

A. Test Case Selection

Over the last decade, test case selection has been an im-
portant task in different software testing phases. For example,
the test case selection problem appears while we construct a
test suite from a set of automatically generated test cases, or in
regression testing, where we select a subset of test cases from
a test suite to test the newer version of a program. Although
the goal in the test case selection problem is to choose those
test cases that would reveal the maximum number of faults,
aiming for such an optimum selection is impractical since the
faults are not known beforehand. Hence a common strategy
is to select those test cases that have the maximum amount
of code coverage [3], with the hope that covering more code
helps revealing more faults. A more recent heuristic is to select
test cases that are dissimilar to each other [2], [4]. Some
other test case selection heuristics optimize the total execution
time or past fault coverage. In the following, we describe the
coverage- and diversity-based test case selection techniques in
more detail.

1) Coverage-based Test Case Selection: The most widely
examined objective for test case selection is code coverage [5],
[6]. The code coverage of a test case can be measured at
various levels of details. The coverage of a test case can
measured by the percentage of total the number of lines
executed by the test case. However, such information is
usually unavailable unless the code is executed. Determining
the coverage without executing the test cases requires static
analysis of the test case, where a test case can be encoded
by its associated function calls [7]. The coverage of such a
test case is the percentage of total functions that it calls. For
example, the following test case fragment can be encoded as
〈StringUtils.split, StringUtils.lineSplit,
StringUtils.replace〉. If the number of distinct
functions in the system under test is 100, then the coverage
of the fragment is 3%.

public void testStringUtils(){
final String data = "a,b,,";
Vector res = StringUtils.split(data,

’,’);
assertEquals(4, res.size());
assertEquals("a", res.elementAt(0));
final String data = "a\r\nb\nc\nd\ne";
Vector res =

StringUtils.lineSplit(data);
assertEquals(5, res.size());
assertEquals("c", res.elementAt(2));
final String data = "abcabcabca";
String res = StringUtils.replace(data,

"a", "");
assertEquals("bcbcbc", res);

}

2) Diversity-based Test Case Selection: Over the past few
years, test case diversity is shown to be an important optimiza-
tion function in test case selection [2], [4], [8]. Intuitively,
diversity between two test cases is a distance function that
measures their dissimilarity. The diversity of a set of three or
more test cases is the average pairwise diversity of that set.

Assume that each test case is encoded as a binary vector,
where 1s correspond to the program units such as functions
that are called in the test case. For such an encoding, diversity
functions used in the literature [2], [9] are Hamming distance,
Dice diversity, Levenshtein, and so on.

Hamming diversity: Hamming distance is a distance
measure on two sequences of bits of equal length. Hamming
distance between two test cases is the ratio of the number of
mismatches over the total number of positions. For example,
let A = 〈1, 1, 0, 1, 0, 0〉 and B = 〈1, 0, 1, 1, 0, 1〉 be two test
cases, then Hamming div (A,B) = 3/6 = 0.5.

Levenshtein: Levenshtein diversity measures the dissim-
ilarity based on the string edit distance [2], [10]. Unlike
Hamming distance, this does not require the sequences (i.e.,
test cases) to have equal length. Levenshtein distance is the
minimum number of edit operations (insertion, deletion, or
replacement) needed to transform one sequence into another.
For example, the Levenshtein distance bettween the test cases
A = 〈f1, f3, f7, f8, f9〉 and B = 〈f3, f4, f5, f8〉 is four since
one can delete f1 from A and then replace f7, f8, f9 by
f4, f5, f8 to obtain the target sequence B.

Dice diversity: Hemmati et al. [4] found the Gower-
Legendre (or Dice) formula to be most effective in model-
based testing. Given two test cases A and B, each represented
by a binary vector with ones denoting the function calls asso-
ciated with the corresponding test case, the diversity between
A and B is

div(A,B) = 1− |A ∩B|
|A ∩B|+ w(|A ∪B| − |A ∩B|)

where w = 0.5 for the Dice function. If A = 〈1, 1, 0, 1, 0, 0〉
and B = 〈1, 0, 1, 1, 0, 1〉, then Dice div (A,B) = 0.43.

Diversity vs. Coverage: Coverage and diversity are two
fundamentally different criteria. While the coverage never
decrease with the increase in the number of selected test cases,
the diversity value may decrease. Besides, a set of test cases
with the maximum coverage does not guarantee that the set
has fair amount of diversity and vice versa. As an example
consider the following three test cases T1, T2, T3.

T1(){
a.f1();
a.f2();
a.f3();
a.f4();

}

T2(){
a.f1();
a.f2();
a.f5();

}

T3(){
a.f6();

}

Table I shows the encoding of these test cases, and the
(Dice) diversity and coverage values for all possible subsets of
two test cases. The set {T1, T2} achieves maximum possible
coverage with any two test cases, but does not have maximum
diversity. On the other hand, the set {T2, T3} maximizes
diversity, but cannot achieve the maximum coverage. Note that
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although {T1, T2} achieves maximum coverage, the test cases
T1 and T2 are very similar, and hence they may reveal the same
fault. However, maximizing both coverage and diversity gives
the set {T1, T3} that achieves the same amount of coverage as
{T1, T2}, but the dissimilarity of T1 and T3 makes them more
likely to detect different faults.

TABLE I. (LEFT) TEST-CASE ENCODING. (RIGHT) COVERAGE AND
DIVERSITY ACHIEVED FOR DIFFERENT PAIRWISE SELECTION.

f1 f2 f3 f4 f5 f6
T1 1 1 1 1 0 0
T2 1 1 0 0 1 0
T3 0 0 0 0 0 1

Cov. Div.
T1, T2 5/6 3/7
T1, T3 5/6 1
T2, T3 4/6 1

B. Optimization Algorithms

The problem of selecting a set of k test cases, for some
fixed value of k, that achieves maximum coverage or diversity
is NP-complete [11], [12]. Hence researchers have studied
several greedy and search based optimization techniques for
test case selection. Here we briefly describe some of these
algorithmic techniques.

1) Single-objective Optimization: In a single-objective test
case selection, the objective of an algorithm is to maximize a
single objective function, i.e., either coverage or diversity.

Greedy and Additional-Greedy Algorithms: The Greedy
algorithm starts with an empty solution set and in each
iteration, it chooses the best test case among the available
test cases. For example, a greedy ordering of the test cases
in Table I is T1, T2, T3 (optimizing coverage). In a test case
selection problem, a sequence of test cases are selected from
the beginning of this sequence depending on the available
budget and resources for test execution.

A variant of the Greedy algorithm is the Additional-Greedy
algorithm. Here the next test case is chosen such that it gives
the best objective value while considered along with all the
selected test cases. While optimizing coverage, the two valid
Additional-Greedy orderings of the test cases in Table I are
T1, T2, T3 and T1, T3, T2. Similarly, while optimizing Dice
diversity, the valid Additional-Greedy orderings are T2, T3, T1
and T1, T3, T2. Note that the Additional-Greedy algorithm for
diversity starts with the most diverse pair of test cases, while
for coverage the algorithm starts with a single test case with
the highest coverage. Additional-Greedy has been found to be
more effective than Greedy [3] for optimization problems.

Genetic Algorithms: Genetic Algorithms [13] (GAs) are
search algorithms based on the mechanism of natural selection
and natural genetics. GAs start off by an initial population of
individuals (each of them corresponds to a set of test cases,
i.e., a candidate for an optimal solution) and improves the
quality of individuals (in terms of the objective value, i.e.,
coverage or diversity) by iterating through generations. The
transaction from one generation to another consists of four
main operations: selection, crossover, mutation and sampling.

Others: Ramanathan et al. [14] proposed a graph-based
algorithm for the test case ordering, where each node of the
graph is a distinct test case and each edge of the graph is
weighted by the dissimilarity between the corresponding pair
of test cases. They used Fiedler (spectral) ordering of the nodes

to find the prioritization order. Their experimental evaluation
suggested that the average performance of Fiedler ordering and
greedy-based ordering is similar, but Fiedler ordering performs
better in the worst case. Some other optimization test case
selection algorithms [2], [15] are base on integer programming,
clustering, hill climbing, simulated annealing, and so on.

2) Multi-objective Optimization: A multi-objective test
case selection algorithm seeks to simultaneously optimize
multiple objective functions at the same time. For example,
in a regression test case selection, one may want to find a
solution that has good code coverage and does not take much
time to execute. In such a scenario, the trade-off among the
optimization criteria becomes non-trivial. Instead of arguing
whether a set of test cases with (coverage, executiontime) =
(40%, 0.5h) is better than another set of test cases with
(coverage, executiontime) = (60%, 1h), a multi-objective
test case selection reports both solutions. Specifically, we
report the set of all non-dominated solutions, i.e., the Pareto
front. In the following we describe the multi-objective test case
selection techniques in details.

3) Pareto Front: Pareto optimality is a concept used fre-
quently in economics and game theory for multi-objective
optimization. In game theory, Pareto efficiency is said to be
a strategy in which one player’s situation cannot be improved
without making the other player’s situation worse. In terms of
multi-objective optimization, Pareto optimality is defined as
follows. Given a vector of M objective functions fi(x), where
i = 1, 2, . . . ,M , the objective is to find a decision vector x of
variables that optimizes the functions vector. A decision vector
x dominates a decision vector y if and only if the followings
are satisfied:

fi(x) ≥ fi(y),∀i = 1, 2, . . . ,M, and
∃i ∈ {1, 2, . . . ,M}|fi(x) > fi(y).

While the above equation is for maximization, the analogous
notion holds also for the minimization problem. Consider now
the set S of decision vectors such that no vector in S is
dominated by any other decision vector. Then the vectors in S
are Pareto optimal and the corresponding objective functions
fi(x) form the Pareto front. Figure 1(left) illustrates a Pareto
front. Figure 1(right) further illustrates the non-dominating
property of the Pareto optimal solutions, i.e., solution b is
dominated by a since a achieves higher coverage spending a
smaller amount of execution time. However, a and c are both
on the Pareto front, and hence none of them is dominated by
the other.

Fig. 1. (left) The points on the Pareto front are shown in black. (right)
Illustration for domination and non-domination.
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4) α-Shape: A Pareto front analysis may sometimes pro-
vide us little information about the best solution vectors if
the objective function value does not change monotonically
over time. We observed such a scenario while working with
diversity, as in Figure 2(left). Unlike coverage, the increase in
diversity with time is initially very sharp, but starts to decrease
soon. However, over time diversity may again increase and
then decrease. Due to the sharp initial increase in diversity,
the Pareto front of the diversity-time plot contains only a few
points (e.g., the points enclosed in squares in Figure 2(left)).
Hence to select the optimal choices over time, we try to
determine the shape of the plot. Specifically, we choose the
points on the upper envelope of the α-shape of the diversity-
time plot, i.e., the black points in Figure 2(left).

An α-shape is a mathematically well defined geometric
concept [16] that captures the shape of a point set, where the
parameter α determines the curvature in the shape. A more
formal definition is as follows. Let P be a set of points in the
Euclidean space. For α > 0, let Dα be a disk of radius 1/α
that does not contain any point of P . Then the α-shape of
P is the complement of the union of all Dαs. Figure 2(right)
illustrates the α-shape of the diversity-time plot along with the
disks. Note that before computing the α-shape we add some
dummy points along the time-axis. Hence the upper envelope
of the α-shape corresponds to the optimal solutions over time.
Since we are only interested in the upper envelope of the α-
shape, throughout the paper, while we refer to an α-shape, we
only consider the upper envelope of the shape.

Fig. 2. (left) The points on the α-shape and Pareto front are shown in black
and enclosed in square, respectively. (right) Illustrating α-shape using disks.

5) Optimization Techniques: The algorithms for single-
objective optimization is also applicable to the multi-objective
optimization problem. However, in this case we need to
combine multiple objectives into a single objective function. A
traditional approach to combine coverage and execution time is
to take the ratio of coverage and time as a single objective [3].
Similarly, we can combine diversity and execution time by
taking their ratio as the objective function. For more than
two objective functions, a simple strategy is to optimize the
weighted average of the objective values [3].

NSGA-II Algorithm: The Non-Dominating Sorting Ge-
netic Algorithm (NSGA-II) is a genetic algorithm-based opti-
mization technique developed by Deb et al. [17] for multi-
objective optimization. The output of NSGA-II is a set of
non-dominated solutions. Besides, NSGA-II tries to spread the
solution all over the Pareto front. Deb et al.’s implementation
of NSGA-II is capable of handling constraints. For example,
if the constraint is to select a set with at least 10 test cases,
then every solution generated by NSGA-II contains at least 10

test cases.

III. EMPIRICAL STUDIES

In this section we present the experimental details, discuss
the research questions and evaluation techniques.

A. Experimental design

1) Systems Under Test: We study the following programs
in this paper:

- Apache Ant: This Java program is a Java-based build tool,
similar to the Unix tool ‘make’, which consists of ≈80500
LOC and 627 classes.

- Derby: Derby is a Java-based database management system,
which consists of around 503833 LOC and 1967 classes.

- JBoss: JBoss is a Java-based application platform for web
services, which consists of 116638 LOC and 1125 classes.

- NanoXML: NanoXML is a XML parser for Java, which
consists of around 7646 LOC and 24 classes.

- Math: Commons Math is an open-source Java-based library
for statistics and mathematics, which consists of around
85000 LOC.

The above programs are all real-world applications. We chose
these systems to be both diverse in terms of application domain
and be publicly available (The dataset for Math versions can be
found from [18] and the rests at Software-artifact Infrastructure
Repository (SIR) [19]). We also chose SUTs with both seeded
and real faults, to make sure we are not biased toward only
seeded faults, which are more common in academic public
repositories.

Table II shows the number of test cases, the number of
method calls that appeared in all test cases, and the fault status
of different programs.

TABLE II. FAULT STATUS.

System Tests Method calls Faults Avg. faults per test
Ant V7 105 320 6 (seeded) 0.21

Derby V5 52 258 26 (seeded) 5.09
JBoss V1 97 422 10 (seeded) 0.91
JBoss V2 147 621 35 (seeded) 4.20
JBoss V3 133 564 9 (seeded) 3.35

NanoXML V1 74 26 7 (seeded) 0.45
NanoXML V2 74 23 7 (seeded) 0.13
NanoXML V3 76 23 7 (seeded) 0.15

Math V99 146 528 5 (real) 0.03
Math V100 146 528 6 (real) 0.04
Math V101 146 528 6 (real) 0.04
Math V102 144 512 10 (real) 0.06
Math V103 140 495 8 (real) 0.05
Math V104 140 495 9 (real) 0.06
Math V105 100 414 7 (real) 0.07
Math V106 97 414 8 (real) 0.08

2) Test Case Representaion and Execution Time: We rep-
resent a test case by a sequence of method calls and thus
the diversity and coverage will be defined on the method
call levels. We analyzed each test case statically to extract
its method calls (similar to [20], [7]).

Note that for our analysis, we need the execution time of
the test case. We estimated the execution time of a test case in
a test suite as the percentage of total method calls in the test
suite that appeared in the test cases.
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B. Research Questions

Since we are comparing the effectiveness of diversity and
coverage in revealing faults, we ask the following.

RQ1. Which test case selection heuristic, among diversity-
time and coverage-time based formulations, is more effective
in revealing faults?

RQ2 Are the solutions produced by diversity-time and
coverage-time formulations complementary?

Diversity and Coverage are completely different ap-
proaches toward test selection. Therefore, a follow up question
on RQ1, i.e., RQ2, is how much overlap the two solutions have
and if little, can we improve both by combining them, which
is examined in RQ3?

RQ3. Does three-objective formulation improve fault detec-
tion rate of the bi-objective formulations, from RQ1?

C. Execution of Algorithms and Evaluation

We used the Additional-Greedy and NSGA-II algorithms
for bi-objective formulations (i.e., for optimizing coverage over
time and diversity over time), as the most effective algorithms
reported in the literature [3], [2].

For NSGA-II, we used a random initial population of size
200. We iterated the algorithm for 5000 fitness evaluations,
with single point crossover and bit-flip mutation. We stopped
at 5000 since our tuning showed that running NSGA-II for
extended period of time does not show any noticeable im-
provement in its performance.

For three-objective formulation (i.e., when optimizing both
diversity and coverage over time), we computed a global Pareto
frontier from the solutions found by NSGA-II. To have a
fair comparison, in this case we also used a random initial
population of size 200, with 5000 fitness evaluations with
single point crossover and bit-flip mutation.

To take into account the inherent randomness of the algo-
rithms, for each system under test, we executed 20 independent
runs of these algorithms. Note that the running time for
Additional-Greedy is negligible compared to the running time
of NSGA-II. For example, while a single run for Apache Ant
using NSGA-II (for bi-objective formulation) takes around
2 minutes, Additional-Greedy takes around 10 seconds. For
three-objective formulation, NSGA-II takes around 5 minutes.

IV. RESULTS

In this section we present and analyze the results of our
experiments, and discuss the research questions based on the
empirical analysis.

Discussion on RQ1. RQ1 asks about the relative effectiveness
of the bi-objective optimizations, in terms of fault detection.

For a fair comparison among these two approaches, we
need to use the algorithms that best optimize the diversity
and coverage. Let X and Y be the techniques that best
optimize diversity and coverage, respectively. We then assess
the solutions produced by X and Y and identify the more
effective approach.

Previous studies [3], [2] have shown that the Additional-
Greedy and NSGA-II algorithms are very successful for both
optimizing coverage over time and diversity over time. There-
fore, we used these algorithms for our experiments.

While optimizing coverage over time, we computed a
global Pareto frontier from the solutions found by both al-
gorithms. Similarly, while optimizing diversity over time, we
computed a global α-shape from the solutions found by these
algorithms. Besides, to have a good spread of the solutions over
the Pareto front and α-shape, we executed NSGA-II several
times with the constraint that each solution must have at least
a particular number of test cases.

Note that by executing the algorithms, we obtain two sets
of solutions. One of these sets is computed by optimizing
diversity over time, and the other set is computed by opti-
mizing coverage over time, while both sets are constructed
using the best algorithms (Additional-Greedy and NSGA-II)
suggested in the literature. We now examine the fault-revealing
capabilities of these two sets of solutions, which helps us to
understand the relative effectiveness of the diversity-time and
coverage-time formulations.

Figure 3 illustrates the mean percentage of faults detected
over time, where the error bars correspond to the 95% confi-
dence interval. Since in the context of test case selection the
smaller subsets are usually preferred (due to limited budget),
we look into the results for the data over the first 20% of total
test suite’s execution time.

For eleven of the sixteen systems under study (Ant V7,
JBoss V1-2, NanoXML V1-3, Math V99-104), as the time in-
creases, diversity-based approach achieves higher mean faults
than the coverage-based approach. For some Math versions
(e.g., Math V99-104), diversity continues to detect newer faults
while coverage seems to saturate over time.

However, there are scenarios where the performance of
diversity is not very distinctive compared to the performance
of coverage-based approach, and sometimes coverage seems
to perform even better than diversity-based approach. For
example, the effectiveness of diversity and coverage seems
similar for JBoss V1 and V3. On the other hand, for Derby
V5 and Math V105-106, the number of faults detected using
coverage-time formulation are much larger than the faults
revealed by the diversity-time formulation.

Table III shows the same results in more details. The term
ci denotes the median of the percentage of faults revealed,
while using the coverage-based approach within the time
interval [0, ti]. Similarly, di denotes the median of percentage
of faults revealed while using diversity-based approach within
the time interval [0, ti].

We conducted Mann-Whitney U test on these data, to see
whether the differences are statistically significant. The cells
where the difference in medians is statistically significant are
shaded with light-green or dark-blue depending on whether
diversity or coverage has the higher median. Note from the
table that the faults revealed by diversity over execution time
is up to 28% more (e.g., NanoXML V1-3, Math V102, Math
V104) than the percentage of faults detected by coverage. The
scenario is different for Derby and some versions of Math,
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Fig. 3. Mean percentage of faults detected over time, where time is shown in percentage of total execution time of all the test cases, in the test suite. The
error bars correspond to the 95% confidence interval.

where sometimes coverage detects up to 15% (Math V105-
106) more faults than diversity. And there are cases like JBoss
V3, where the performances of diversity and coverage do not
show any statistical significance.

In summary, our experimental findings show that though
diversity appears to be more effective in more cases, none
of the diversity and coverage-based approaches completely
dominates the other. Hence for the better understanding the
relation among the two sets of solutions, we examine, in RQ2,
whether they contain complementary information.

Discussion on RQ2. To examine whether solutions obtained
using diversity and coverage-based heuristics are complemen-
tary, we examined how many solutions are common among all
the solutions computed using diversity and coverage. Note that
by the solutions generated using the diversity and coverage-
based approach we refer to the solution points on the α-shape,
and on the Pareto front, respectively.

Figure 4(left) illustrates that only a few solutions (at
most 3% of all the solutions generated) are common to
both heuristics. Another interesting observation is that the
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TABLE III. MEDIAN PERCENTAGE OF FAULTS REVEALED OVER TIME (FOR 20 INDEPENDENT RUNS OF THE ALGORITHMS). THE CELLS WHERE THE
DIFFERENCE IN MEDIANS IS STATISTICALLY SIGNIFICANT ARE SHADED WITH LIGHT-GREEN OR DARK-BLUE DEPENDING ON WHETHER DIVERSITY OR

COVERAGE HAS THE HIGHER MEDIAN.

ti(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ant V7 di 33 50 50 50 50 50 50 50 50 50 50 50 50 67 67 67 67 67 67 67
ci 0 25 33 33 33 33 33 33 50 50 50 50 50 50 50 50 50 50 50 50

Derby V5 di 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 100
ci 0 35 35 35 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

JBoss V1 di 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
ci 30 30 30 30 30 30 30 30 30 30 30 35 35 35 35 35 35 40 40 40

JBoss V2 di 40 40 40 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49
ci 27 33 34 34 34 34 34 34 34 34 36 37 37 37 37 37 37 37 40 40

JBoss V3 di 56 56 56 56 56 56 56 67 67 67 67 67 67 67 67 67 67 67 67 67
ci 56 56 56 56 56 56 67 67 67 67 67 67 67 67 67 67 67 67 67 67

NanoXML V1 di 0 0 57 57 57 57 57 57 57 57 57 57 57 57 100 100 100 100 100 100
ci 0 0 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57

NanoXML V2 di 0 0 43 43 43 43 43 43 43 43 43 100 100 100 100 100 100 100 100 100
ci 0 0 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43

NanoXML V3 di 0 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
ci 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Math V99 di 0 20 20 20 20 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60
ci 0 10 20 20 20 20 20 20 20 20 30 30 30 30 40 40 40 40 40 40

Math V100 di 0 17 17 17 17 42 42 42 50 50 50 50 50 50 50 50 50 50 50 50
ci 17 17 17 17 17 17 17 17 17 17 25 25 25 25 33 33 33 33 33 33

Math V101 di 0 17 17 17 17 42 42 42 50 50 50 50 50 50 50 50 50 50 50 50
ci 17 17 17 17 17 17 17 17 17 17 25 25 25 25 33 33 33 33 33 33

Math V102 di 10 10 10 10 10 20 20 60 60 60 60 60 60 60 60 60 60 60 60 60
ci 0 0 0 0 0 5 5 20 20 20 20 20 20 20 20 20 20 20 30 30

Math V103 di 0 13 13 13 13 25 38 38 38 38 38 38 38 38 38 38 38 44 44 44
ci 0 13 13 13 19 19 19 19 25 25 25 25 25 25 25 25 25 25 25 25

Math V104 di 0 11 11 11 11 33 44 44 44 44 44 44 44 44 44 44 44 50 50 50
ci 0 11 11 11 17 17 17 17 22 22 22 22 22 22 22 22 22 22 22 22

Math V105 di 0 0 0 0 0 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14
ci 0 0 14 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

Math V106 di 0 0 0 0 0 0 13 13 13 13 13 13 13 13 13 13 13 13 13 13
ci 0 0 19 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38

number of solutions generated by diversity-based approach
is significantly smaller (p < 0.001) than that of coverage
for every system under test. In other words, the number of
solutions on the α-shape is much smaller than the number of
solutions on the Pareto front. Although this would not affect
our current analysis, it is interesting to be further explored
when comparing diversity and coverage heuristics.

Although there are only a few shared solutions, the two
sets of solutions may still be similar. Hence we examined
the similarity between solutions generated by diversity and
coverage heuristics as follows: we first create all solution
pairs where one solution is generated by the diversity based
approach (on the α-shape of the diversity-time plot) and one
generated by the coverage-based approach (on the Pareto front
of the coverage-time plot). Then we look at their similarity
in terms of their relative Hamming distances. The higher
Hamming distance between two solutions in such a pair
suggests that the corresponding solutions are more dissimilar,
and thus combining the two heuristics may be beneficial.

Figure 4(right) shows a bar plot of the Hamming distances
for all solution pairs (combined over all 16 systems under
study). Each bar summarizes the percentages of total pairs,
where their Hamming distance is in the given range (e.g.,
bar 10 is for pairs with 0 ≤ Hamming distance ≤ 10). A
cumulative sum of these percentages are also depicted in the
figure. As the figure shows, a very small portion of solution
pairs are similar. For instance, only around 5% of the pairs
are 90% similar (with Hamming distance ≤ 10). In fact, for
the majority of the cases (solution pairs), the difference in
Hamming distance is around 30% to 50%. Such a dissimilarity
between the solutions obtained using diversity and coverage
motivated us to study the three-objective formulation that

optimizes diversity, coverage and execution time, together.

Discussion on RQ3. RQ3 studies whether the three-objective
optimization can improve the fault detection rate of the two
bi-objective formulations.

We examine the faults detected by the points on the Pareto
front of coverage-diversity-time plot, and then compare their
fault detection rate with the bi-objective formulations. Similar
to the analysis in RQ1, we look into the data over the initial
20% of the total execution time. Table IV shows the results for
the systems under test. Each cell corresponds to the median
of percentage of faults revealed, while using three-objective
formulation, within the time interval [0, ti]. We conducted
Mann-Whitney U test on this data as well. The cells where
the medians for three-objective formulation are significantly
different and smaller than the corresponding medians for bi-
objective formulation are shaded. The light-green shading on
the bottom region of the cells means diversity performs signifi-
cantly better than the three-objective formulation and the dark-
blue on the top region of the cell means coverage performs
significantly better than the three-objective formulation.

Since only a few cells of Table IV are shaded, in most
of the cases the three-objective formulation is more effective
in revealing faults than the two bi-objective formulations.
The improvement over diversity-time formulation may reach
around 16% for Ant (V7), 10% for JBoss (V1) and 6% for
Math (V104-106). Similarly, the improvement over coverage-
time formulation may reach around 50% for Ant (V7), 10%
for JBoss (V1-2) and 11% for Math versions.

Furthermore, since none of the cells are fully shaded, there
does not exist any case where the three-objective formulation is

7



Fig. 4. (left) Mean number of solutions that are generated by diversity and coverage heuristics (classified as solutions that are generated only by each heuristics
and the common solutions), for different systems under test (for 20 independent runs of the algorithms). The error bars correspond to the 95% confidence
interval. (right) Percentage of the total solution pairs over the pairs’ Hamming distance, depicted as both actual (bar plot) and cumulative (line plot).

TABLE IV. MEDIAN PERCENTAGE OF FAULTS REVEALED OVER TIME USING THREE-OBJECTIVE FORMULATION (FOR 20 INDEPENDENT RUNS OF THE
ALGORITHMS). THE CELLS WHERE THE MEDIANS FOR THREE-OBJECTIVE FORMULATION ARE SIGNIFICANTLY DIFFERENT AND SMALLER THAN THE
CORRESPONDING MEDIANS FOR BI-OBJECTIVE FORMULATION ARE SHADED. LIGHT-GREEN (ON BOTTOM REGION OF THE CELL), IF THE DIVERSITY

PERFORMS BETTER THAN THE THREE-OBJECTIVE FORMULATION AND DARK-BLUE (ON TOP REGION OF THE CELL), IF COVERAGE PERFORMS BETTER
THAN THE THREE-OBJECTIVE FORMULATION.

ti (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ant V7 33 33 33 33 33 42 50 50 50 58 58 67 67 67 67 67 67 67 83 83

Derby V5 0 35 35 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

JBoss V1 30 30 30 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 50 50

JBoss V2 36 39 40 46 47 49 49 49 49 49 49 49 49 50 50 51 51 51 51 51

JBoss V3 56 56 56 61 61 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67

NanoXML V1 0 0 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57

NanoXML V2 0 0 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43

NanoXML V3 0 0 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86

Math V99 20 20 20 40 40 40 40 40 40 40 50 60 60 60 60 60 60 60 60 60

Math V100 17 17 17 33 33 33 33 33 33 33 42 50 50 50 50 50 50 50 50 50

Math V101 17 17 17 33 33 33 33 33 33 33 42 50 50 50 50 50 50 50 50 50

Math V102 0 0 0 15 15 20 20 30 30 40 40 40 40 40 40 40 40 40 50 50

Math V103 13 13 13 13 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38

Math V104 11 11 11 17 22 22 22 22 28 33 33 33 33 39 39 39 39 39 39 44

Math V105 0 0 0 7 14 21 21 29 29 29 29 29 29 29 36 43 43 43 43 43

Math V106 0 0 13 13 13 25 25 25 25 25 38 38 38 38 38 38 38 50 50 50

worse than both bi-objective formulations. In other words, the
three-objective formulation is a safer approach (never being
outperformed by both of the two bi-objective formulations).

The cases where three-objective formulation has higher
median faults than both bi-objective formulations are partic-
ularly interesting (Ant V7, JBoss V1-2, Math V10-106). For
example, looking at Table III one would observe that diversity
performs better for Ant V7, coverage performs better for Math
V105-106, and both performs similarly for JBoss V1. Table IV
reveals that for all of these systems, the median faults for three-
objective formulation is at least 10% larger than the median
faults detected by each bi-objective formulation.

Note that sometimes three-objective formulation performs
poorly compared to diversity-based bi-objective formulation
for ti larger than 10% (e.g., NanoXML V1-2, Math V102).

One plausible explanation is that the Pareto-front in the
diversity-coverage-time plot favours the points having high
coverage. Since we did not conduct an α-shape analysis on
the solutions obtained by three-objective approach, the three-
objective formulation did not get the full benefit of choosing
points that have large diversity but not Pareto optimal.

In summary, three-objective formulation is a safer approach
than both diversity and coverage, which in some cases may
outperform both as well.

A. Threats to Validity

While measuring the execution time of the test cases, we
estimated the execution time of a test case as the percentage of
functions that appeared in the test case. Instead, one could use
the CPU time taken to run the test cases. Since CPU time may
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not be very precise because of internal optimization performed
by CPU cache, Yoo and Harman [3] used the Valgrind profiling
tool to make such computation more precise.

Another threat to our work is the optimization techniques
that we used in our heuristics. Although we tried to choose
the ones that are known to be the more effective ones in the
literature, there is no guarantee that these algorithms are the
best for our optimization. Similar argument also applies to
the dissimilarity function that we used to measure diversity.
Although we have examined sixteen versions of five real-
world SUTs, confirming our observations requires further
experiments on a larger set of programs with rich fault sets.

Finally, the effectiveness of a coverage-based approach may
benefit from dynamic execution profile from history, if the
coverage information is available. In this paper we did not
assume availability of such information and only applied a
static analysis to calculate the coverage.

V. RELATED WORK

Over the last decade, several test case selection techniques
have been developed in the literature. Let P be a program
with a test suite T associated with it and let P ′ a modified
version of P . Rothermel et al. [21] introduced the concept
of selecting modification traversing test cases (also known as
safe selection [22]), i.e., those test cases of T that executed the
code deleted from P , or execute the new or modified code of
P ′. A rich body of literature focuses on selecting modification
traversing test cases using different techniques such as integer
programming [15], data-flow analysis [23], walking in control-
flow graphs [24], and so on. In some recent surveys, Yoo
and Harman [25], and Biswas et al. [26] compile elaborate
discussions on these techniques.

Besides safe selection of test cases, researchers have ex-
amined many other objectives and constraints for test case
selection, e.g., maximizing code coverage, test case diversity,
and past fault coverage, while minimizing test execution time.
The most widely examined objective is code coverage [5],
[6]. Leon and Podgurski [27] compared coverage-based se-
lection with techniques using distribution of test execution
profiles, where the distribution based selection was more
efficient for revealing faults. Kim and Porter [28] utilized
the execution history of the test cases, and suggested that
historical information may be cost-effective for long-running
regression testing processes. Yoo and Harman [3] proposed a
multi-objective test case selection using the notion of Pareto
optimality. Although they considered several objectives such
as code coverage, past fault coverage and execution time, the
main objective of their study was not to compare their fault
detection capability, but to justify the effectiveness of Pareto-
efficient analysis in optimization for multi-objective test case
selection. Recently, Mei et al. [20] examined JUnit test case
prioritization techniques that analyze static call graphs of the
test cases and the program under test to estimate the ability of
each test case to achieve code coverage.

Test case diversity is a more recently used objective func-
tion for test case selection. Tsai et al. [8] proposed a test
selection technique by eliminating test cases that have similar
coverage. Vega et al. [29] assessed test quality by measuring
the variance of test data based on different distance metrics.

Through an empirical evaluation, Hemmati et al. [4] showed
that a diverse test suite is more effective in detecting faults
in model based testing. In a subsequent paper, Hemmati et
al. [2] examined combination of eight similarity functions (e.g.,
Hamming distance, Gower-Legendre, Levenshtein, and so on)
and ten optimization algorithms (e.g., greedy based, clustering
based, hill climbing, evolutionary algorithms and so on), where
the Gower-Legendre measure for diversity and evolutionary al-
gorithm based selection were proved to be the most successful
combination. Similar to the model-based test case selection,
many diversity-based selection and prioritization techniques
have been proposed that do not use coverage information. For
example, Ledru et al. [10] suggested a prioritization method
based on the string distances between the texts of test cases.
Thomas et al. [7] considered black-box test case prioritization,
while modelling test cases using linguistic data (e.g., identifier
names, comments, and string literals). Recently, Rogstad et
al. [9] have found diversity-based test case selection to be
successful to support black box regression testing of database
applications.

Integer programming, greedy-based and evolutionary al-
gorithms are some common techniques for test case selec-
tion [2], [15], [25]. Hemmati et al. [2] found (1+1)Evolu-
tionary algorithm (with Gower-Legendre distance measure) to
be the most successful test case selection technique among
greedy, clustering-based or hill climbing algorithms in terms
of fault detection rate. Rogstad et al. [9] also reported the
success of (1+1)Evolutionary algorithm (with Mahalanobis
distance measure) over greedy selection. For Pareto-efficient
test case selection, Yoo and Harman [25] compared Additional-
Greedy algorithm with NSGA-II [17], which is a popular
multi-objective optimization algorithm. They found different
scenarios where these two algorithms outperform each other.

To the best of our knowledge, optimizing diversity and
coverage together, for test case selection has not been studied
in the literature. The only work that considers both factors
together is the work by Fraser and Wotawa [30] on test case
generation. They formulated test case generation as a model
checking problem that ensures that the test cases satisfying the
same test requirement are actually satisfying the requirements
in different ways. Unlike their work, in this paper we focus on
test selection problem and define diversity on the code-level.
So we do not depend on formally specified requirements.

VI. CONCLUSION

Identifying the most effective set of test cases among a
large test suite is one of the main challenges in software
testing. In many situations, e.g., overnight regression testing,
the testing time and resources are limited, which makes the
execution of the entire test suite almost impossible. Several
heuristics have been suggested, in the literature, for identifying
the effective test cases. Among them code coverage of the
test cases is the state of practice. In recent years, researchers
have proposed other heuristics such as diversification as an
alternative to test coverage. In this paper, we have empirically
analyzed both coverage-based and diversity-based test case
selection approaches in a bi-objective optimization scenario,
where the first objective is maximizing diversity/coverage and
the second objective is minimizing test execution time. The
ultimate goal is finding the most fault revealing test cases
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with minimum execution time (cost measure). Our study shows
that diversity-based approach is slightly more effective than
the coverage-based approach. More importantly, the study
reveals that the two solution sets are barely overlapping.
This motivates a three-objective approach that maximizes both
diversity and coverage, while minimizing the execution time.
The results show that the combined approach is significantly
more effective, e.g., sometimes up to 16%(Ant V7), 10%(JBoss
V1), and 14%(Math V105).

Test diversification research field is still very young and
requires more theoretical and empirical studies. In the future,
we plan to extend this study by analyzing additional distance
functions and encodings. We are also interested in applying
the historical knowledge about fault locations in the source
code into the diversity function, so that the historically more
fault-prone areas are assigned greater weights during test case
selection. In addition, the differences between seeded and real
faults are interesting to study, we leave these experiments for
future work.
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