Minimum-Segment Convex Drawings of 3-Connected Cubic Plane Graphs*

Debajyoti Mondal¹, Rahnuma Islam Nishat², Sudip Biswas¹, and Md. Saidur Rahman¹

¹ Graph Drawing and Information Visualization Laboratory, Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh. ² Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology (BUET), Bangladesh. debajyoti_mondal_cse@yahoo.com, nishat.buet@gmail.com, sudippp@yahoo.com, saidurrahman@cse.buet.ac.bd

Abstract. A convex drawing of a plane graph G is a plane drawing of G, where each vertex is drawn as a point, each edge is drawn as a straight line segment and each face is drawn as a convex polygon. A maximal segment is a drawing of a maximal set of edges that form a straight line segment. A minimum-segment convex drawing of G is a convex drawing of G where the number of maximal segments is the minimum among all possible convex drawings of G. In this paper, we present a linear-time algorithm to obtain a minimum-segment convex drawing Γ of a 3-connected cubic plane graph G of n vertices, where the drawing is not a grid drawing. We also give a linear-time algorithm to obtain a convex grid drawing of G on an $(\frac{n}{2} + 1) \times (\frac{n}{2} + 1)$ grid with at most $s_n + 1$ maximal segments, where $s_n = \frac{n}{2} + 3$ is the lower bound on the number of maximal segments in a convex drawing of G.

Keywords. Graph drawing, Convex drawing, Minimum-segment, Grid drawing, Cubic graph.

1 Introduction

From the advent of the field of graph drawing, various graph drawing styles have been studied and "convex drawing" is one of the most widely studied drawing styles. A convex drawing Γ of G is a "straight-line drawing" of G such that all the faces of G are drawn as convex polygons in Γ . A straight-line drawing Γ of a plane graph G is a plane drawing of G where each vertex of G is drawn as a point and each edge of G is drawn as a straight line segment. Any two clockwise

^{*} This is a draft of the paper "Minimum-Segment Convex Drawings of 3-Connected Cubic Plane Graphs". Some of these results appeared in preliminary form at the 16th Annual International Computing and Combinatorics Conference (CO-COON 2010). The journal version is published in Journal of Combinatorial Optimization. The original publication is available at www.springerlink.com. http://www.springerlink.com/content/d445012w47474262/

consecutive edges incident to a vertex v in Γ form an angle θ_v at the vertex v. For $\theta_v = 180^\circ$, we call θ_v a straight angle. We call a set of edges S a maximal segment in Γ if S is a maximal set of edges that form a straight line segment in Γ . A minimum-segment convex drawing of G is a convex drawing of G, where the number of maximal segments is the minimum among all possible convex drawing of G and a minimum-segment convex drawing of G, respectively. We call a straight line drawing of G a straight-line grid drawing where the vertices are drawn on integer grid points. Figure 2 (g) depicts a straight-line grid drawing of a plane graph on 8×8 grid.

Convex drawings of plane graphs is one of the classical and widely studied

Figure 1. (a) A plane graph G, (b) a convex drawing of G and (c) a minimum-segment convex drawing of G.

drawing styles for plane graphs. Although not every plane graph has a convex drawing, every 3-connected plane graph has such a drawing [13]. Several algorithms are known for finding convex drawings of plane graphs which improve various aesthetic qualities of the drawings [2,3,4]. Dujmović *et al.* first addressed the problem of obtaining a drawing of a planar graph with few segments [6]. They have also shown that any 3-connected cubic plane graph (i.e., a plane graph where every vertex of the graph has degree three) admits a drawing with at most n + 2 maximal segments. Recently, Samee *et al.* have given a lineartime algorithm for computing a minimum-segment drawing of a "series-parallel graph" with the maximum degree three [12]. These recent works motivated us to study the problem of finding minimum-segment convex drawings of plane graphs.

In this paper we give a linear-time algorithm to obtain a minimum-segment convex drawing Γ of a 3-connected cubic plane graph G with n vertices. We also give a linear-time algorithm to obtain a convex grid drawing of G on an $(\frac{n}{2}+1) \times (\frac{n}{2}+1)$ grid with at most $s_n + 1$ maximal segments, where $s_n = \frac{n}{2} + 3$ is the lower bound on the number of maximal segments in a convex drawing of G. Although several drawing styles are known for 3-connected cubic plane graphs [8,9,10], to the best of our knowledge this is the first work on near-optimal minimum-segment convex drawing where the drawing is a grid drawing.

We now present an outline of our algorithm for grid drawing. Let G be a 3-connected cubic plane graph with n vertices. We partition the input graph G into several vertex disjoint subsets by a "canonical decomposition" described

in [11]. We add each subset one after another to construct a drawing Γ of G incrementally. At each addition we ensure that each vertex of degree three in the resulting drawing gets a straight angle except two of the vertices at the initial subset. We add the last subset in such a way that, at the end of the construction, there are at least n - 4 straight angles which are associated with n - 4 different vertices of G. Using this property of Γ we prove that Γ has at most $s_n + 1$ maximal segments. Figure 2 depicts a "canonical decomposition" of a 3-connected cubic plane graph G. Figures 2(a)–(g) illustrate the incremental construction of a convex grid drawing Γ of G with at most $s_n + 1$ maximal segments. Note that G has 14 vertices and each of the vertices of G has one straight angle in Γ except the vertices 1, 5, 6 and 14. We derive a relation between the number of straight angles and the number of maximal segments in Γ , and use the relation to obtain the number of maximal segments in Γ .

Figure 2. Illustration of the algorithm for convex grid drawing.

The rest of this paper is organized as follows. Section 2 presents some definitions and preliminary results. Section 3 gives a linear-time algorithm for obtaining a convex grid drawing Γ of a 3-connected cubic plane graph G with at most $s_n + 1$ maximal segments. Section 4 gives a linear-time algorithm to obtain a minimum-segment convex drawing Γ of G where Γ is not a grid drawing. Section 5 concludes the paper suggesting some future works. An early version of this paper has been presented at [1].

2 Preliminaries

In this section we give some definitions that will be used throughout the paper and present some preliminary results.

Let G = (V, E) be a connected simple graph with vertex set V and edge set E. We denote by degree(v) the degree of a vertex v of G. G is a *cubic graph* if degree(v) is equal to three for every vertex v of G. An edge with the end vertices v_1 and v_2 is denoted by (v_1, v_2) . A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that $V' \subseteq V$ and $E' \subseteq E$. If G' contains all the edges of G that join vertices in V', then G' is called the *subgraph induced* by V'. A graph G is *connected* if there is a path between any two distinct vertices u and v in G. A graph which is not connected is called a *disconnected* graph. The *connectivity* $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph. We say that G is k-connected if $\kappa(G) \geq k$.

We call a graph *planar* if it can be embedded in the plane without any edge crossing. A *plane graph* is a planar graph with a fixed planar embedding. In a plane graph G, the plane is divided into some connected regions called the *faces*. The unbounded region is called the *outer face* and all the other faces are called the *inner faces*. A vertex on the outer face is called an *outer vertex* and an edge on the outer face is called an *outer edge*. All the vertices other than the outer vertices are called the *inner vertices*.

Let Γ be a straight-line grid drawing of G. The *area* of Γ is measured by the size of the smallest rectangle with sides parallel to the axes which encloses Γ . The *width* W of Γ is the number of vertical grid-lines and the *height* H of Γ is the number of horizontal grid-lines in such a rectangle. The grid size of Γ is usually described as $W \times H$. Note that, if the grid size of Γ is $W \times H$, then the area of Γ is $(W - 1) \times (H - 1)$.

Let Γ be a straight-line drawing of G. Any two clockwise consecutive edges incident to a vertex v in Γ form an angle θ_v at the vertex v. We call θ_v a convex angle if $0^\circ < \theta_v < 180^\circ$. For $\theta_v = 180^\circ$ we call θ_v a straight angle. A convex polygon is a simple polygon such that every internal angle of the polygon is either a convex angle or a straight angle. An internally convex drawing of Gis a straight-line drawing of G where all the inner faces are drawn as convex polygons. We now present some properties of a convex drawing of a 3-connected cubic plane graph.

Lemma 1. Let G be a 3-connected cubic plane graph with n vertices and Γ be a convex drawing of G. Then the number of straight angles in Γ is at most n-3.

Proof. Since Γ is a convex drawing of a 3-connected cubic plane graph, the outer face of G must be a convex polygon. A convex polygon with the minimum number of angles is a triangle. Since a triangle has three convex angles, none of the angles at these vertices is a straight angle. Furthermore, at most one angle at a vertex in Γ can be a straight angle since G is cubic. Therefore, the number of straight angles in Γ is at most n-3. \Box

A path $v_1, v_2, \ldots, v_{k+1}$ in a graph G is an alternating sequence of distinct vertices of G, beginning and ending with v_1 and v_{k+1} , in which there is an edge (v_i, v_{i+1}) for $1 \le i \le k$. We denote by $\langle v_1, v_2, \ldots, v_{k+1} \rangle$ the maximal segment which corresponds to the drawing of the path $v_1, v_2, \ldots, v_{k+1}$.

We now explore a relation between the number of maximal segments and the number of straight angles in a convex drawing of a 3-connected cubic plane graph.

Lemma 2. Let G be a 3-connected cubic plane graph with n vertices and Γ be a convex drawing of G with x maximal segments. Then the number of straight angles in Γ is $\frac{3n}{2} - x$.

Proof. Let $S = \langle v_1, v_2, ..., v_{k+1} \rangle$ be a maximal segment in Γ and |S| be the number of edges in S. Since S is maximal, v_1 and v_{k+1} cannot have any other edge incident to them that extends S. Moreover, each v_i , $2 \leq i \leq k$ must have exactly one straight angle since G is cubic. Hence, there must be k - 1 = |S| - 1 straight angles in S as illustrated in Figure 3. Let l and x be the number of

Figure 3. A maximal segment S in Γ .

straight angles and the number of maximal segments in Γ , respectively. We denote those maximal segments by $S_1, S_2, ..., S_x$. Thus the number of straight angles for all of the x maximal segments is $l = |S_1| + |S_2| + ... + |S_x| - x$. Since no two maximal segments share edges, the number of edges in G is $|S_1| + |S_2| + ... + |S_x|$. By degree sum formula, $|S_1| + |S_2| + ... + |S_x| = \frac{3n}{2}$. Therefore, $l = \frac{3n}{2} - x$. \Box

We now compute the lower bound on the number of maximal segments in a convex drawing of a 3-connected cubic plane graph.

Lemma 3. Let G be a 3-connected cubic plane graph with n vertices and Γ be a convex drawing of G. Then the number of maximal segments in Γ is at least $\frac{n}{2} + 3$.

Proof. Let x be the number of maximal segments in Γ . Then, by Lemma 2, the number of straight angles in Γ is $\frac{3n}{2} - x$. On the other hand, the number of

straight angles in a convex drawing of G is at most n-3 by Lemma 1. Therefore, $\frac{3n}{2} - x \le n-3$ and hence $x \ge \frac{n}{2} + 3$. \Box

Lemma 3 implies that $\frac{n}{2} + 3$ is the lower bound on the number of maximal segments in a convex drawing of G. We denote the lower bound by S_n .

3 Convex Grid Drawings

In this section we give an algorithm to obtain a convex grid drawing of a 3connected cubic plane graph with $S_n + 1$ maximal segments. To present the algorithm we need some preparation.

Let G be a 3-connected plane graph. An internally convex drawing of G is a straight-line drawing of G where all the inner faces are drawn as convex polygons. Let (v_1, v_2) be an edge on the outer face of G and let $\pi = (V_1, V_2, ..., V_m)$ be an ordered partition of V, that is $V_1 \cup V_2 \cup ... \cup V_m = V$ and $(V_i \cap V_j) = \phi$ for $i \neq j$. We denote by G_k , $1 \leq k \leq m$, the subgraph of G induced by $V_1 \cup V_2 \cup ... \cup V_k$ and by C_k the outer cycle of G_k . Let $\{v_1, v_2, ..., v_p\}$, $p \geq 3$, be a set of outer vertices consecutive on C_k such that degree $(v_1) \geq 3$, degree (v_2) =degree $(v_3) = ... = degree(v_{p-1}) = 2$, and degree $(v_p) \geq 3$ in G_k . Then we call the set $\{v_2, ..., v_{p-1}\}$ an outer chain of G. We now describe the properties of a canonical decomposition π of G with the outer edge (v_1, v_2) in the following (a)-(b) [11].

- (a) V_1 is the set of all vertices on the inner face containing the edge (v_1, v_2) . V_m is a singleton set containing an outer vertex v such that v is a neighbor of v_1 and $v \notin (v_1, v_2)$.
- (b) For each index $k, 2 \le k \le m-1$, all vertices in V_k are outer vertices of G_k and the following conditions hold:
 - (1) if $|V_k| = 1$, then the vertex in V_k has two or more neighbors in G_{k-1} and has at least one neighbor in $G G_k$; and
 - (2) If $|V_k| > 1$, then V_k is an outer chain $\{z_1, z_2, ..., z_l\}$ of G_k .

Throughout the paper we assume that the vertices of an outer chain $\{z_1, z_2, ..., z_l\}$ are ordered clockwise. The vertex v_1 has two neighbors in G_1 , one neighbor is v_2 and we denote the other neighbor by v_4 . The vertex v_2 has two neighbors in G_1 , one neighbor is v_1 and we denote the other neighbor by v_3 . The following result on canonical decomposition is known [9].

Lemma 4. Every 3-connected plane graph G has a canonical decomposition π , and π can be found in linear time.

Let z be a vertex of G and P(z), x(z), y(z) be the (x, y)-coordinates of z, the x-coordinate of z and the y-coordinate of z, respectively. We will later associate a set with each vertex z of G, which we denote by L(z). By $\Gamma(G)$ we denote a drawing of G. We are now ready to describe Algorithm **Cubic Drawing** for finding a convex grid drawing of G.

Let $V_1 = (z_1 = v_1, z_2 = v_4, ..., z_{l-1} = v_3, z_l = v_2)$. We draw G_1 by a triangle as follows. Set $P(z_i) = (i-1, 0)$ for $1 \le i < l$, $P(z_l) = (l-1, -1)$ and $L(z_i) = \{z_i\}$

for $1 \leq i \leq l$. Figure 4 illustrates the drawing of G_1 . Let $\Gamma(G)$ be a straightline drawing of G. We now install $V_2, V_3, ..., V_m$ one after another to construct $\Gamma(G_2), \Gamma(G_3), \ldots, \Gamma(G_m) = \Gamma(G)$, respectively. V_k is either a singleton set or an outer chain of G_k , but in the algorithm we will treat both cases uniformly. We now explain how to install V_k to $\Gamma(G_{k-1})$. We denote by $C_{k-1} = (w_1 = v_1, w_2, ..., w_t = v_2)$ the outer cycle of G_{k-1} . Let w_p and w_q be the leftmost and rightmost neighbors of V_k on C_{k-1} where $1 < k \leq m$. For each $V_k =$ $\{z_1, z_2, \ldots, z_l\}, 1 < k < m$, we set $L(z_1) = \{z_1\} \cup (\bigcup_{x=p}^t L(w_x))$ and $L(z_i) =$ $(\bigcup_{x=i}^l \{z_x\}) \cup (\bigcup_{x=q}^t L(w_x))$, where $2 \leq i \leq l$.

v_l	v_4				v_3		
						\mathbf{i}	
						v_2	

Figure 4. Drawing of G_1 .

At each step we prove that the resulting drawing $\Gamma(G_k)$, 1 < k < m, is internally convex. We also prove that the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$ where λ_1 and λ_2 are the slopes of (v_1, v_2) and (v_2, v_3) , respectively. Moreover, each vertex $z \notin \{v_1, v_2, v_3\}$ of degree three in $\Gamma(G_k)$ has exactly one straight angle and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$. For each V_k , $2 \le k \le m$, let $D_x = |x(w_q) - x(w_p)|$ and $D_y = |y(w_q) - y(w_p)|$.

We now have the following lemma.

Lemma 5. Let $G_k = V_1 \cup V_2 \cup ... \cup V_k$, $1 \leq k \leq m-1$. Then G_k admits a straight-line drawing $\Gamma(G_k)$ which is internally convex and the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$ where λ_1 and λ_2 are the slopes of (v_1, v_2) and (v_2, v_3) , respectively. Moreover, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three of G_k has a straight angle in $\Gamma(G_k)$ and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$.

Proof. We will prove the claim by induction on k.

The case for k = 1 is trivial since G_1 is drawn as a triangle, where v_1, v_2 and v_3 are the corner vertices of the triangle. The slopes of the maximal segments in $\Gamma(G_1)$ are in $\{0, \lambda_1, \lambda_2\}$. We may thus assume that k is greater than one and the claim holds for all $\Gamma(G_{k-i}), 0 < i < k$. Let $C_{k-1} = (w_1 = v_1, w_2, ..., w_t = v_2)$ be the outer cycle of G_{k-1} and we denote by w_p and w_q the leftmost and rightmost neighbors of V_k on $C_{k-1}, 1 < k < m$. Let f_k be the inner face of G_k containing v_k . We are now going to add $V_k = (z_1, z_2, ..., z_l)$ to $\Gamma(G_{k-1})$ to obtain $\Gamma(G_k)$.

We first assume that $w_p, w_q \notin \{v_1, v_2, v_3\}$. (We will consider the case where w_p or w_q is in $\{v_1, v_2, v_3\}$ at the end of this proof.) We now have the following four cases to consider.

Case 1: Both of w_p and w_q have straight angles in $\Gamma(G_{k-1})$.

Since each of the vertices w_{p+1}, \ldots, w_{q-1} must be of degree three, each of those vertices must have a straight angle by induction hypothesis. Therefore,

 $y(w_p) = y(w_q)$. Hence if $|V_k| = 1$, then we set $P(z_1) = (x(w_q), y(w_p) + D_x)$, as illustrated in Figure 5(a). Otherwise we shift $\bigcup_{i=q}^t L(w_i)$ by $|V_k| - D_x$ unit to the right when $|V_k| - D_x > 0$. Then we set $P(z_i) = (x(w_p) + i, y(w_p) + 1), 1 \le i < l$, and $P(z_l) = (x(w_q), y(w_p) + 1)$ as illustrated in Figure 5(b). We thus obtain a drawing of $\Gamma(G_k)$.

Figure 5. Both of w_p and w_q have straight angles. (a) $|V_k| = 1$ and (b) $|V_k| > 1$.

We now show that $\Gamma(G_k)$ satisfies the claim in Lemma 5.

We first prove that $\Gamma(G_k)$ is internally convex. By induction hypothesis, $\Gamma(G_{k-1})$ is internally convex. By Lemma 6, shifting of $\bigcup_{i=q}^{t} L(w_i)$ to the right keeps $\Gamma(G_{k-1})$ internally convex. Moreover, the vertices of f_k which are in $G_{k-1} - \{w_p, w_q\}$ are the vertices of degree three in $\Gamma(G_{k-1})$ and each of these vertices has a straight angle by the induction hypothesis. These straight angles remain the same after the shift by Lemma 6. According to the installation of V_k , each of w_p and w_q obtains a straight angle in $\Gamma(G_k)$ and the vertices of V_k do not obtain any concave angle inside f_k . Therefore, f_k is a convex polygon and $\Gamma(G_k)$ is internally convex.

We next prove that the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. By induction hypothesis, the slopes of the maximal segments in $\Gamma(G_{k-1})$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. By Lemma 6, shifting of $\bigcup_{i=q}^{t} L(w_i)$ to the right keeps the slopes of the maximal segments in $\Gamma(G_{k-1})$ in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In this case, the slopes of (w_p, z_1) and (w_q, z_l) are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$ and (z_1, z_2) , $(z_2, z_3), \dots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in G_k are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$.

We then prove that each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three of G_k has a straight angle in $\Gamma(G_k)$. By induction hypothesis, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_{k-1} has a straight angle in $\Gamma(G_{k-1})$. Moreover, w_p and w_q are the two new vertices which become vertices of degree three in G_k . Each of w_p and w_q obtains a straight angle according to our drawing method. Therefore, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three of G_k has a straight angle in $\Gamma(G_k)$.

We finally prove that no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$. According to the installation of V_k , the x-coordinates of the vertices z_1, \ldots, z_l are different. One can observe that any vertex $v \notin \{z_1, \ldots, z_l\}$ of degree two in G_k is contained in either on the path w_1, w_2, \ldots, w_p or on the path $w_{q+1}, w_q, \ldots, w_t$ where $x(v) < x(z_1)$ or $x(v) > x(z_l)$, respectively. These vertices of degree two are also in $\Gamma(G_{k-1})$ and have different x-coordinates by induction hypothesis. Therefore, no two vertices of degree two in G_k have the same x-coordinates in $\Gamma(G_k)$.

Case 2: Only w_q has a straight angle in $\Gamma(G_{k-1})$.

In this case, the slope of (w_{p-1}, w_p) is either 1 or 0.

Consider first the case where the slope of (w_{p-1}, w_p) is +1. Then $y(w_p) \ge y(w_q)$ since each vertex $v \in \{w_{p+1}, \ldots, w_{q-1}\}$ has degree three in G_{k-1} and has a straight corner in $\Gamma(G_{k-1})$ when $v \ne v_3$ by induction hypothesis. Therefore, if $|V_k| = 1$, we set $P(z_1) = (x(w_q), y(w_p) + D_x)$ as illustrated in Figure 6(a). Otherwise we shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$. Then we set $P(z_i) = (x(w_p) + i, y(w_p) + 1)$ for $1 \le i < l$ and $P(z_l) = (x(w_q), y(w_p) + 1)$ as illustrated in Figure 6(b).

The slopes of (w_p, z_1) and (w_q, z_l) are 1 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$.

We now Consider the case where the slope of (w_{p-1}, w_p) is 0. By a similar way as shown above it can be shown that $y(w_p) > y(w_q)$. We shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$. For $|V_k| = 1$, we set $P(z_1) = (x(w_q), y(w_p))$. Otherwise we set $P(z_i) = (x(w_p) + i, y(w_p)), 1 \le i < l$, and $P(z_l) = (x(w_q), y(w_p))$ as illustrated in Figure 6(c).

The slopes of (w_p, z_1) and (w_q, z_l) are 0 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$.

Figure 6. Only w_q has a straight angle. (a) $|V_k| = 1$, (b) $|V_k| > 1$ and the slope of $(w_{p-1}, w_p) = 1$, (c) $|V_k| > 1$ and the slope of $(w_{p-1}, w_p) = 0$.

Case 3: Only w_p has a straight angle in $\Gamma(G_{k-1})$.

In this case, the slope of (w_{q+1}, w_q) is either 0 or ∞ .

We first consider the case where the slope of (w_{q+1}, w_q) is 0. Then the slope of (w_{q-1}, w_q) is +1 and by a similar way as in Case 2 it can be shown that $y(w_p) < y(w_q)$. If $|V_k| = 1$, we set $P(z_1) = (x(w_p) + D_y, y(w_q))$. Otherwise we shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$. Then we set $P(z_i) = (x(w_p) + D_y + i - 1, y(w_q))$ for $1 \le i \le l$ as illustrated in Figure 7(a).

The slopes of (w_p, z_1) and (w_q, z_l) are 1 and 0, respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$.

We now consider the case where the slope of (w_{q+1}, w_q) is ∞ . If the slope of (w_{q-1}, w_q) is 0 then in a similar way as in Case 2 one can observe that $y(w_p) = y(w_q)$. Otherwise (w_{q-1}, w_q) belongs to a maximal segment with the slope +1 which implies that $y(w_p) < y(w_q)$ and $D_x > D_y$. Therefore, if $|V_k| = 1$, we set $P(z_1) = (x(w_q), y(w_p) + D_x)$ as illustrated in Figure 7(b). Otherwise we shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$ and set $P(z_i) = (x(w_p) + D_y + i, y(w_q) + 1), 1 \le i < l$, and $P(z_l) = (x(w_q), y(w_q) + 1)$, as illustrated in Figure 7(c).

The slopes of (w_p, z_1) and (w_q, z_l) are 1 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two have the same x-coordinate in $\Gamma(G_k)$.

Figure 7. Only w_p has a straight angle. (a) The slope of $(w_{q+1}, w_q) = 0$, (b) $|V_k| = 1$ and the slope of $(w_{q+1}, w_q) = \infty$, (c) $|V_k| > 1$ and the slope of $(w_{q+1}, w_q) = \infty$.

Case 4: None of w_p and w_q has a straight angle in $\Gamma(G_{k-1})$.

In this case one can observe that, the slope of (w_{p-1}, w_p) is either 1 or 0 and the slope of (w_{q+1}, w_q) is either ∞ or 0. Therefore, we have the following four subcases to consider. **Subcase 4a:** The slope of (w_{p-1}, w_p) is 1 and the slope of (w_{q+1}, w_q) is ∞ in $\Gamma(G_{k-1})$.

Consider first the case where $|V_k| = 1$. If, $y(w_p) < y(w_q)$ then (w_{q-1}, w_q) belongs to a maximal segment with the slope +1 and $D_x > D_y$. Otherwise $y(w_p) \ge y(w_q)$. Therefore we set $P(z_1) = (x(w_q), y(w_p) + D_x)$ as illustrated in Figure 8(a).

One can easily observe that, the slopes of (w_p, z_1) and (w_q, z_l) are +1 and ∞ , respectively. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

We next consider the case where $|V_k| > 1$ and $y(w_p) \ge y(w_q)$. We shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$ and set $P(z_i) = (x(w_p) + i, y(w_p) + 1), 1 \le i < l$ and $P(z_l) = (x(w_q), y(w_p) + 1)$ as illustrated in Figure 8(b).

Here, (z_1, z_2) , (z_2, z_3) ,..., (z_{l-1}, z_l) form one maximal segment of slope 0 and the slopes of (w_p, z_1) and (w_q, z_l) are +1 and ∞ , respectively. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

Otherwise $|V_k| > 1$ and $y(w_p) < y(w_q)$ and we shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$. Then we set $P(z_i) = (x(w_p) + D_y + i, y(w_q) + 1)$, $1 \le i < l$, and $P(z_l) = (x(w_q), y(w_q) + 1)$ as illustrated in Figure 8(c).

The slopes of (w_p, z_1) and (w_q, z_l) are +1 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \dots, (z_{l-1}, z_l)$ form one maximal segment of slope 0. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

Subcase 4b: The slope of (w_{p-1}, w_p) is 1 and the slope of (w_{q+1}, w_q) is 0 in $\Gamma(G_{k-1})$.

We first consider the case where $y(w_p) \ge y(w_q)$. Then we choose a vertex w_{q-i} for the smallest i, p < q - i < q, where w_{q-i} has one edge with slope ∞ or two edges with slope 0. Clearly, there exists such a w_{q-i} . We set $P(w_j) = (x(w_{q-i}), y(w_j))$ where $q-i < j \le q$. For $|V_k| = 1$, we set $P(z_1) = (x(w_q), y(w_p) + D_x)$ as illustrated in Figure 9(a). After this modification, every $w_j, q-i \le j < q$, which had a straight angle in $\Gamma(G_{k-1})$ still has a straight angle. Otherwise we shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$. Then we set $P(z_i) = (x(w_p) + i, y(w_p) + 1)$, for $1 \le i < l$ and $P(z_l) = (x(w_q), y(w_p) + 1)$ as illustrated in Figure 9(b).

The slopes of (w_p, z_1) and (w_q, z_l) are +1 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \dots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. There-

Figure 8. None of w_p , w_q has straight angle, the slope of (w_{p-1}, w_p) is 1, the slope of (w_{q+1}, w_q) is ∞ . (a) $|V_k| = 1$, (b) $|V_k| > 1$ and $y(w_p) \ge y(w_q)$, (c) $|V_k| > 1$ and $y(w_p) < y(w_q)$.

fore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

We next consider the case where $y(w_p) < y(w_q)$. Then we shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$ and set $P(z_i) = (x(w_p) + D_y + i - 1, y(w_q)), 1 \le i \le l$, as illustrated in Figure 9(c).

The slopes of (w_p, z_1) and (w_q, z_l) are +1 and 0, respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

Subcase 4c: The slope of (w_{p-1}, w_p) is 0 and the slope of (w_{q+1}, w_q) is ∞ in $\Gamma(G_{k-1})$.

We consider first the case where $y(w_p) > y(w_q)$. Let $|V_k| = 1$, then we set $P(z_1) = (x(w_q), y(w_p))$. Otherwise $|V_k| > 1$ and we shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$ and set $P(z_i) = (x(w_p) + i, y(w_p))$, $1 \le i < l$, and $P(z_l) = (x(w_q), y(w_p))$ as illustrated in Figure 10(a).

The slopes of (w_p, z_1) and (w_q, z_l) are 0 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \dots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

We next consider the case where $y(w_p) \leq y(w_q)$. Then we choose a vertex w_{p+i} for the smallest $i, p , where <math>w_{p+i}$ has one edge with slope 1

Figure 9. None of w_p , w_q has straight angle, the slope of (w_{p-1}, w_p) is 1, the slope of (w_{q+1}, w_q) is 0. (a) $|V_k| = 1$ and $y(w_p) \ge y(w_q)$, (b) $|V_k| > 1$ and $y(w_p) \ge y(w_q)$, (c) $y(w_p) < y(w_q)$.

or two edges with slope 0. Clearly, there exists such a w_{p+i} . We set $P(w_j) = (x(w_j) + y(w_j) - y(w_{p+i}), y(w_j))$ where $p \leq j . After this modification, every <math>w_j$, $p < j \leq p + i$, which had a straight angle in $\Gamma(G_{k-1})$ still has a straight angle. We now shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$. Let $|V_k| = 1$, then we set $P(z_1) = (x(w_q), y(w_p) + D_x)$. Otherwise $|V_k| > 1$ and we set $P(z_i) = (x(w_p) + D_y + i, y(w_q) + 1)$, $1 \leq i < l$, and $P(z_l) = (x(w_q), y(w_q) + 1)$ as illustrated in Figure 10(b).

The slopes of (w_p, z_1) and (w_q, z_l) are +1 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \dots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

Subcase 4d: The slope of (w_{p-1}, w_p) is 0 and the slope of (w_{q+1}, w_q) is 0 in $\Gamma(G_{k-1})$.

Consider the case where $y(w_p) > y(w_q)$. Then we choose a vertex w_{q-i} for the smallest i, p < q-i < q, where w_{q-i} has one edge with slope ∞ or two edges with slope 0. Clearly, there exists such a w_{q-i} . We set $P(w_j) = (x(w_{q-i}), y(w_j))$ for $q-i < j \leq q$. After this modification, every $w_j, q-i \leq j < q$, which had a straight angle in $\Gamma(G_{k-1})$ still has a straight angle. Let $|V_k| = 1$, then we set $P(z_1) = (x(w_q), y(w_p))$. Otherwise $|V_k| > 1$ and we shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| - D_x$ units when $|V_k| - D_x > 0$ and set $P(z_i) = (x(w_p) + i, y(w_p))$, $1 \leq i < l$ and $P(z_l) = (x(w_q), y(w_p))$ as illustrated in Figure 10(c).

The slopes of (w_p, z_1) and (w_q, z_l) are 0 and ∞ , respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$. Consider next the case where $y(w_p) < y(w_q)$. Then we choose a vertex w_{p+i} for the smallest $i, p , where <math>w_{p+i}$ has one edge with slope 1 or two edges with slope 0. Clearly, there exists such a w_{p+i} . We set $P(w_j) = (x(w_j) + y(w_j) - y(w_{p+i}), y(w_j))$ where $p \leq j . After this modification, every <math>w_j, p < j \leq p + i$, which had a straight angle in $\Gamma(G_{k-1})$ still has a straight angle. We now shift $\bigcup_{i=q}^{t} L(w_i)$ to the right by $|V_k| + D_y - D_x$ units when $|V_k| + D_y - D_x > 0$. We set $P(z_i) = (x(w_p) + D_y + i - 1, y(w_q)), 1 \leq i \leq l$, as illustrated in Figure 10(d).

The slopes of (w_p, z_1) and (w_q, z_l) are +1 and 0, respectively and (z_1, z_2) , $(z_2, z_3), \ldots, (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

Figure 10. None of w_p , w_q has straight angle, the slope of (w_{p-1}, w_p) is 0. (a) $y(w_p) > y(w_q)$ and the slope of $(w_{q+1}, w_q) = \infty$, (b) $y(w_p) \le y(w_q)$ and the slope of $(w_{q+1}, w_q) = \infty$, (c) $y(w_p) > y(w_q)$ and the slope of $(w_{q+1}, w_q) = 0$, (d) $y(w_p) < y(w_q)$ and the slope of $(w_{q+1}, w_q) = 0$.

Finally, if $y(w_p) = y(w_q)$ we shift $\bigcup_{i=q}^t L(w_i)$ to the right by $|V_k| - D_x + 1$ units when $|V_k| - D_x + 1 > 0$. We set $P(z_i) = (x(w_p) + i, y(w_p)), 1 \le i \le l$.

The slopes of (w_p, z_1) and (w_q, z_l) are both 0 and $(z_1, z_2), (z_2, z_3), ..., (z_{l-1}, z_l)$ form one maximal segment of slope 0 when $|V_k| > 1$. Therefore, the slopes of the maximal segments in $\Gamma(G_k)$ are in $\{0, 1, \infty, \lambda_1, \lambda_2\}$. In a way similar to the proof of Case 1 we can prove that $\Gamma(G_k)$ is internally convex, each vertex $v \notin \{v_1, v_2, v_3\}$ of degree three in G_k has a straight angle and no two vertices of degree two has the same x-coordinate in $\Gamma(G_k)$.

It is now remained to show the case where w_p or w_q is in $\{v_1, v_2, v_3\}$. If $w_p, w_q \in \{v_1, v_2, v_3\}$, the proof is similar to the proof in Case 1. If $w_p \notin \{v_1, v_2, v_3\}$, $w_q \in \{v_1, v_2, v_3\}$ and w_p has straight angle, the proof is similar to

the proof in Case 1. If $w_p \notin \{v_1, v_2, v_3\}$, $w_q \in \{v_1, v_2, v_3\}$ and w_p does not have straight angle, the proof is similar to the proof in Case 2. If $w_p \in \{v_1, v_2, v_3\}$, $w_q \notin \{v_1, v_2, v_3\}$ and w_q has straight angle, the proof is similar to the proof in Case 1. If $w_p \in \{v_1, v_2, v_3\}$, $w_q \notin \{v_1, v_2, v_3\}$ and w_q does not have straight angle, the proof is similar to the proof in Case 3. Note that, in the proof of Case 1, $y(w_p) = y(w_q)$. In the case when w_p or w_q is in $\{v_1, v_2, v_3\}$, $y(w_p) \ge y(w_q)$ and the reasoning used in the proof of Case 1 also holds for this case. \Box

The proof of Lemma 5 gives a method of obtaining $\Gamma(G_{m-1})$. Let $w_p(=v_1)$, v_4 and w_q be the three neighbors of V_m where $x(w_p) < x(v_4) < x(w_q)$. We now set $P(V_m) = (x(v_2), y(v_4) + x(v_2) - x(v_4))$ and add V_m to $\Gamma(G_{m-1})$ to complete the drawing $\Gamma(G_m) = \Gamma(G)$, as illustrated in Figure 11. It is obvious that the addition of V_m does not create any edge crossing. Let λ_3 be the slope of (v_1, V_m) . Then clearly all the slopes of $\Gamma(G)$ is in $\{0, 1, \infty, \lambda_1, \lambda_2, \lambda_3\}$. Thus we have an algorithm for obtaining a convex grid drawing of a 3-connected cubic graph which we call Algorithm **Cubic Drawing**. We now have Lemma 6 which has been used in the proof of Lemma 5.

Lemma 6. Let $G_k = V_1 \cup V_2 \cup ... \cup V_k$, $1 \le k \le m-1$, where $\Gamma(G_k)$ is a drawing of G_k obtained by Algorithm **Cubic Drawing**. Let $C_k = (w_1 = v_1, w_2, ..., w_t = v_2)$ be the outer cycle of $\Gamma(G_k)$ and let δ be any integer. Assume that the slope of (w_{i-1}, w_i) , $2 \le i \le t$, is not ∞ and $\Gamma'(G_k)$ is the drawing obtained from $\Gamma(G_k)$ after shifting $L_k = \bigcup_{i=1}^{t} L(w_i)$ by δ units to the right. Then $\Gamma'(G_k)$ is internally convex, the number of slopes in $\Gamma'(G_k)$ is the same as the number of slopes in $\Gamma(G_k)$ and the slopes of all the maximal segments except (v_1, v_2) and (v_2, v_3) in $\Gamma'(G_k)$ remain the same as the slopes in $\Gamma(G_k)$. Moreover, no two vertices of degree two of G_k have the same x-coordinate in $\Gamma'(G_k)$.

Proof. We prove the claim by induction on k. For the case when k = 1, $\Gamma(G_1)$ is drawn as a triangle and the claim trivially holds. We may thus assume that k is greater than one and the claim holds for all $\Gamma(G_x)$, x < k. Note that, we obtain G_k by adding V_k to G_{k-1} . Let $V_k = (z_1, z_2, \ldots, z_l)$ and $C_k = (w_1 = v_1, w_2, \ldots, w_p, w_{p+1} = z_1, w_{p+2} = z_2, \ldots, w_{q-1} = z_l, w_q, \ldots, w_t = v_2)$. Let w_i , $1 \le i \le t$, be a vertex on C_k . We now have the following four cases to consider. **Case 1:** $w_i \in \{w_2, \ldots, w_p\}$.

In this case $\Gamma'(G_k)$, which is obtained from $\Gamma(G_k)$ by shifting the vertices of L_k by δ units to the right, can also be obtained as follows.

Let $C_{k-1} = (w_1 = v_1, \ldots, w_i, \ldots, w_t = v_2)$ be the outerface of G_{k-1} . One can observe that both C_k and C_{k-1} contain the vertex w_i . Since L_{k-1} includes all the vertices of L_k except z_1, \ldots, z_l , we first remove the drawing of V_k from $\Gamma(G_k)$ to obtain $\Gamma(G_{k-1})$. We then shift the vertices of L_{k-1} by δ units to the right. We finally add the drawing of V_k , as in $\Gamma'(G_k)$, to $\Gamma'(G_{k-1})$ to obtain $\Gamma'(G_k)$.

We first prove that $\Gamma'(G_k)$ is internally convex. Let f_k be the inner face in G_k that contains V_k . By induction hypothesis, $\Gamma'(G_{k-1})$ is internally convex. The drawings of the inner faces in $\Gamma'(G_k)$, other than f_k , are internally convex since they are also contained in $\Gamma'(G_{k-1})$. We are only left with the drawing of f_k in $\Gamma'(G_k)$. Since the vertices w_i, \ldots, w_t as well as the vertices in V_k are

shifted δ units to the right, the internal angles of f_k in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$. Since f_k is drawn as a convex polygon in $\Gamma(G_k)$, f_k is drawn as a convex polygon in $\Gamma'(G_k)$.

We next prove that the number of slopes in $\Gamma'(G_k)$ is the same as the number of slopes in $\Gamma(G_k)$. Moreover, the slopes of all the maximal segments except (v_1, v_2) and (v_2, v_3) remain the same as the slopes in $\Gamma(G_k)$. By induction hypothesis, the number of slopes in $\Gamma'(G_{k-1})$ is the same as the number of slopes in $\Gamma(G_{k-1})$. Moreover, the slopes of all the maximal segments except (v_1, v_2) and (v_2, v_3) remain the same as the slopes in $\Gamma(G_{k-1})$. Since all the edges of $\Gamma'(G_{k-1})$ are also in $\Gamma'(G_k)$, we are only left with the edges $(w_p, z_1), (z_1, z_2), \ldots, (z_l, w_q)$. Since the vertices w_i, \ldots, w_t as well as the vertices in V_k are shifted δ units to the right, the maximal segments and the slopes of the edges $(w_p, z_1), (z_1, z_2), \ldots, (z_l, w_q)$ in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$.

We finally prove that no two vertices of degree two of G_k have the same x-coordinate in $\Gamma'(G_k)$. By the property of canonical ordering, all the vertices of degree two in G_k are on the outerface. By induction hypothesis no two vertices of degree two of G_{k-1} have the same x-coordinate in $\Gamma'(G_{k-1})$. Since $\Gamma'(G_{k-1})$ is contained in $\Gamma'(G_k)$, we are only left with vertices z_1, \ldots, z_l . Since the vertices w_i, \ldots, w_t as well as the vertices in V_k are shifted δ units to the right, the relative distances of the vertices $w_i, \ldots, w_{p+1} = z_1, w_{p+2} = z_2, \ldots, w_t$ in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$. Since no two vertices of degree two of G_k have the same x-coordinate in $\Gamma(G_k)$, no two vertices of degree two of G_k have the same x-coordinate in $\Gamma'(G_k)$.

Case 2: $w_i = z_1$.

In this case, L_k includes w_p by definition of set L. Therefore $\Gamma'(G_k)$, which is obtained from $\Gamma(G_k)$ by shifting the vertices of L_k by δ units to the right, can also be obtained by shifting $\bigcup_p^t L(w_i)$. One can observe that, the shift of $\bigcup_p^t L(w_i)$ is actually the shift of L_k when $w_i = w_p$. Therefore, the proof for this case can be obtained in a similar technique as described in Case 1.

Case 3: $w_i \in \{z_2, ..., z_l\}$.

In this case $\Gamma'(G_k)$, which is obtained from $\Gamma(G_k)$ by shifting the vertices of L_k by δ units to the right, can also be obtained as follows.

Let $C_{k-1} = (w_1 = v_1, \ldots, w_q, \ldots, w_t = v_2)$ be the outerface of G_{k-1} . One can observe that both C_k and C_{k-1} contain the vertex w_q . We first remove the drawing of V_k from $\Gamma(G_k)$ to obtain $\Gamma(G_{k-1})$. We then shift the vertices of $\bigcup_q^t L(w_i)$ by δ units to the right. We finally add the drawing of V_k , as in $\Gamma'(G_k)$, to $\Gamma'(G_{k-1})$ to obtain $\Gamma'(G_k)$.

We first prove that $\Gamma'(G_k)$ is internally convex. Let f_k be the inner face in G_k that contains V_k . By induction hypothesis, $\Gamma'(G_{k-1})$ is internally convex. The drawings of the inner faces in $\Gamma'(G_k)$, other than f_k , are internally convex since they are also contained in $\Gamma'(G_{k-1})$. We are only left with the drawing of f_k in $\Gamma'(G_k)$. Since the vertices w_q, \ldots, w_t as well as the vertices w_i, \ldots, z_l are shifted δ units to the right, the horizontal distance between w_{i-1} and w_i increases. But this increase in distance between w_{i-1} and w_i does not change the slope of the segment $(z_1, z_2), \ldots, (z_{l-1}, z_l)$. Therefore, the internal angles of

 f_k in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$. Since f_k is drawn as a convex polygon in $\Gamma(G_k)$, f_k is drawn as a convex polygon in $\Gamma'(G_k)$.

We next prove that the number of slopes in $\Gamma'(G_k)$ is the same as the number of slopes in $\Gamma(G_k)$. Moreover, the slopes of all the maximal segments except (v_1, v_2) and (v_2, v_3) remain the same as the slopes in $\Gamma(G_k)$. By induction hypothesis, the number of slopes in $\Gamma'(G_{k-1})$ is the same as the number of slopes in $\Gamma(G_{k-1})$. Moreover, the slopes of all the maximal segments except (v_1, v_2) and (v_2, v_3) remain the same as the slopes in $\Gamma(G_{k-1})$. Since all the edges of $\Gamma'(G_{k-1})$ are also in $\Gamma'(G_k)$, we are only left with the edges $(w_p, z_1), (z_1, z_2), \ldots, (z_l, w_q)$. Since the vertices w_q, \ldots, w_t as well as the vertices w_i, \ldots, z_l are shifted δ units to the right, the horizontal distance between w_{i-1} and w_i increases. But this increase in distance between w_{i-1} and w_i does not change the slope of the segment $(z_1, z_2), \ldots, (z_{l-1}, z_l)$. Therefore, the maximal segments and the slopes of the edges $(w_p, z_1), (z_1, z_2), \ldots, (z_l, w_q)$ in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$.

We finally prove that no two vertices of degree two of G_k have the same x-coordinate in $\Gamma'(G_k)$. By the property of canonical ordering, all the vertices of degree two in G_k are on the outerface. By induction hypothesis no two vertices of degree two of G_{k-1} have the same x-coordinate in $\Gamma'(G_{k-1})$. Since $\Gamma'(G_{k-1})$ is contained in $\Gamma'(G_k)$, we are only left with vertices z_1, \ldots, z_l . Since the vertices w_q, \ldots, w_t as well as the vertices w_i, \ldots, z_l are shifted δ units to the right, the relative distances of the vertices w_i, \ldots, w_t in $\Gamma'(G_k)$ remain the same as in $\Gamma(G_k)$. Moreover, the increase in the horizontal distance between w_{i-1} and w_i does not create any overlap among the x-coordinates of the vertices in V_k . Therefore, no two vertices of degree two of G_k have the same x-coordinate in $\Gamma'(G_k)$.

Case 4: $w_i \in \{w_q, \ldots, w_t\}$.

In this case $\Gamma'(G_k)$, which is obtained from $\Gamma(G_k)$ by shifting the vertices of L_k by δ units to the right, can also be obtained as follows.

Let $C_{k-1} = (w_1 = v_1, \ldots, w_i, \ldots, w_t = v_2)$ be the outerface of G_{k-1} . One can observe that both C_k and C_{k-1} contain the vertex w_i . We first remove the drawing of V_k from $\Gamma(G_k)$ to obtain $\Gamma(G_{k-1})$. We then shift the vertices of L_{k-1} by δ units to the right. We finally add the drawing of V_k , as in $\Gamma'(G_k)$, to $\Gamma'(G_{k-1})$ to obtain $\Gamma'(G_k)$.

The claim holds for G_{k-1} by induction hypothesis. Since L_{k-1} includes all the vertices of L_k , the proof follows form the inductive assumption. \Box

We now have the following lemma on area requirement of the drawing produced by Algorithm **Cubic Drawing**.

Lemma 7. Let G be a 3-connected cubic plane graph with n vertices. Then Algorithm **Cubic Drawing** produces a convex drawing $\Gamma(G)$ of G on at most $(\frac{n}{2}+1) \times (\frac{n}{2}+1)$ grid.

Proof. Let $W_{\Gamma(G)}$ and $H_{\Gamma(G)}$ be the width and height of $\Gamma(G)$, respectively. Then one can easily observe that $H_{\Gamma(G)} \leq W_{\Gamma(G)}$. We now calculate $W_{\Gamma(G)}$.

According to the reasoning presented in Cases 1–4 of the proof of Lemma 5, if the shift is δ units to the right then $W_{\Gamma(G_k)} = W_{\Gamma(G_{k-1})} + \delta$. If $\delta = |V_k| + D_y - D_x$

Figure 11. Installation of V_m .

then $\delta < |V_k|$ since $D_x \ge D_y + 1$. If $\delta = |V_k| - D_x$ then $\delta < |V_k|$ since $D_x \ge 1$. If $\delta = |V_k| - D_x + 1$ then $\delta < |V_k|$ since $D_x \ge 2$. Finally, if there is no shift then $W_{\Gamma(G_k)} = W_{\Gamma(G_{k-1})}$. Therefore, the width in each step increases by at most $|V_k| - 1$. The installation of V_m creates two inner faces and the installation of each V_i , $1 \le i \le m - 1$, creates one inner face. Let the number of inner faces of G be F. Then the number of partitions is $F - 1 = \frac{n}{2}$ by Euler's formula. For the installation of each V_i , 1 < i < m, the width of the drawing increases by at most $|V_k| - 1$. Moreover, the installation of V_m does not require any shift. Therefore, $W_{\Gamma(G)}$ can be at most $|V_1| + \sum_{i=2}^{\frac{n}{2}} (|V_i| - 1) = n - \sum_{i=2}^{\frac{n}{2}} 1 = n - (\frac{n}{2} - 1) = \frac{n}{2} + 1$. Thus the drawing requires at most $(\frac{n}{2} + 1) \times (\frac{n}{2} + 1)$ grid. \Box

Theorem 1. Let G be a 3-connected cubic plane graph. Then Algorithm Cubic Drawing gives a convex drawing of G in O(n) time with at most $s_n + 1$ maximal segments where s_n is the lower bound on the number of maximal segments in a convex drawing of G.

Proof. The case for n = 4 is trivial and hence we may assume that n is greater than four. We construct $\Gamma(G_{m-1})$ by installing $V_1, V_2, ..., V_{m-1}$ one after another. Then we install V_m to obtain $\Gamma(G_m) = \Gamma(G)$. Let w_p , v_4 and w_q be the three neighbors of V_m where $x(w_p) < x(w_m) < x(w_q)$. Since all the vertices other than $v_1(=w_p), v_4$ and w_q are of degree three in G_{m-1} , each of those vertices of degree three except v_2 and v_3 has exactly one straight angle by Lemma 5. Therefore, there are n-1 vertices and at least n-6 straight angles in $\Gamma(G_{m-1})$ when $w_q \neq v_2$. One can easily observe that, Algorithm **Cubic Drawing** installs V_m in such a way that each of v_4 and w_q obtains a straight angle. Thus the number of straight angles in $\Gamma(G)$ is at least n-6+2=n-4, in total. Similarly, if $w_q = v_2$ then there are n-5 straight angles in $\Gamma(G_{m-1})$ and V_m is installed in such a way that the number of straight angles in $\Gamma(G)$ becomes n-4, in total. Let x be the number of maximal segments in $\Gamma(G)$. Then by Lemma 2, $\Gamma(G)$ has at least $\frac{3n}{2} - x = n - 4$ straight angles and at most $x = \frac{n}{2} + 4$ maximal segments. By Lemma 3 the lower bound on the number of maximal segments s_n in a convex drawing of G is $\frac{n}{2} + 3$. Thus the number of maximal segments in $\Gamma(G)$ is at most $s_n + 1$. To obtain a linear-time implementation of the Algorithm

Cubic Drawing, we use a method similar to the implementation as used in [4]. \Box

4 Minimum-Segment Drawings

In this section we give an algorithm, which we call **Draw-Min-Segment**, to obtain a minimum-segment convex drawing $\Gamma(G)$ of a 3-connected cubic plane graph G with $n \ge 6$ vertices in linear time, where $\Gamma(G)$ is not a grid drawing.

We now describe Algorithm **Draw-Min-Segment**. We use canonical decomposition to obtain V_1, \ldots, V_m using the same technique as the one in Section 3. We now draw G_1 by a triangle as follows. Set $P(v_i) = (i-1,0)$ where $1 \le i < l$, $P(v_l) = (l-1,-1)$. Each $V_k, 2 \le k \le m$, is either a singleton set or an outer chain of G_k , but in the algorithm we will treat both cases uniformly. We add V_1, \ldots, V_m one after another to obtain $\Gamma(G_1), \ldots, \Gamma(G_m) = \Gamma(G)$. Let w_p and w_q be the leftmost and the rightmost neighbors of V_k on $C(G_{k-1})$ where $1 < k \le m$. We install $V_k = (z_1, \ldots, z_l)$ in such a way that $(z_1, z_2), \ldots, (z_{l-1}, z_l)$ form a segment of slope 0 and the following Conditions (a) and (b) hold for each index k, $2 \le k < m$.

- (a) If w_p has a straight angle in $\Gamma(G_{k-1})$, then slope of (w_p, z_1) is +1. Otherwise w_p has no straight angle in $\Gamma(G_{k-1})$, then slope of (w_p, z_1) is the same as the slope of (w_{p-1}, w_p) .
- (b) If x(w_q) is the maximum among all the x-coordinates of the vertices of Γ(G_{k-1}), then slope of (z_l, w_q) is ∞; otherwise if w_q has a straight angle in Γ(G_{k-1}), then slope of (z_l, w_q) is −1 and if w_q has no straight angle in G_{k-1}, then slope of (z_l, w_q) is the same as the slope of (w_q, w_{q+1}).

We shift the vertices $w_q, w_{q+1}, ..., w_t$ together with some inner vertices to the right or up, to install V_k satisfying Conditions (a) and (b), as illustrated in Figure 12(a)-(f) for the input 3-connected cubic graph in Figure 2. In a similar way as in Section 3, one can maintain a set with each vertex to determine which vertices are to shift.

We now have the following lemma.

Lemma 8. Let G be a 3-connected cubic plane graph with $n \ge 6$ vertices and $\pi = (V_1, V_2, ..., V_m)$ be a canonical decomposition of the vertices of G with outer edge (v_1, v_2) . Let $G_k = V_1 \cup V_2 \cup ... \cup V_k$ and $\Gamma(G_k)$ be a drawing of G_k obtained by Algorithm **Draw-Min-Segment**, where $1 \le k < m$. Then each vertex of degree three in G_k , except the vertices v_1 and v_2 , has a straight angle in $\Gamma(G_k)$.

Proof. The case for $\Gamma(G_1)$ is trivial and we may thus assume that k is greater than one. By the induction hypothesis, each vertex of degree three in G_{k-1} , except the vertices v_1 and v_2 , has a straight angle in $\Gamma(G_{k-1})$. Let w_p and w_q be the leftmost and the rightmost neighbors of V_k on C_{k-1} . By a case analysis similar to the one in Lemma 5, one can observe that, addition of V_k with $\Gamma(G_{k-1})$ to obtain $\Gamma(G_k)$ creates two new vertices of degree three, which are w_p and w_q . Each of w_p and w_q has a straight angle by Conditions (a) and (b) when

Figure 12. Installation of V_k when $1 \le k < m$.

 $w_p \notin \{v_1, v_2\}$ and $w_q \notin \{v_1, v_2\}$. Therefore, each vertex of degree three in G_k , except v_1 and v_2 , has a straight angle in $\Gamma(G_k)$. \Box

We now describe the installation of V_m . Let w_p , v_4 and w_q be the three neighbors of V_m , where $x(w_p = v_1) < x(v_4) < x(w_q)$. We place V_m in such a way that (v_4, V_m) and (w_q, V_m) obtain the slopes +1 and ∞ , respectively. Then we simply draw the edge (v_1, V_m) .

Theorem 2. Let G_m be a 3-connected cubic graph with $n \ge 6$ and $\Gamma(G)$ be a drawing of G obtained by Algorithm **Draw-Min-Segment**. Then $\Gamma(G)$ is a minimum-segment convex drawing of G.

Proof. Let $(V_1, V_2, ..., V_m)$ be an ordered partition of the vertices of G obtained by a canonical decomposition of G. Let $G_k = V_1 \cup V_2 \cup ... \cup V_k$ where $1 \leq k \leq m$. We construct $\Gamma(G_{m-1})$ by installing $V_1, V_2, ..., V_{m-1}$ one after another. Then we install V_m to obtain $\Gamma(G_m)$. Let w_p , v_4 and w_q be the three neighbors of V_m where $x(w_p) < x(v_4) < x(w_q)$. Since all the vertices other than $w_p = v_1, v_4$ and w_q are of degree three in G_{m-1} , each of those vertices of degree three except v_1 and v_2 has exactly one straight corner by Lemma 8. Therefore, there are n-1vertices and at least n-5 straight corners in $\Gamma(G_{m-1})$. One can easily observe that, Algorithm **Draw-Min-Segment** installs V_m in such a way that each of v_4 and w_q obtains a straight corner. Thus the number of straight corners in $\Gamma(G)$. Then by Lemma 2, G has $\frac{3n}{2} - x = n - 3$ straight corners and therefore, $x = \frac{n}{2} + 3$ segments. Since by Lemma 3 this is the lower bound on the number of maximal segments in a convex drawing of G, $\Gamma(G)$ is a minimum-segment convex drawing of G. \Box

5 Conclusions

In this paper, we have given a linear time algorithm to obtain a convex grid drawing of a 3-connected cubic plane graph G with $s_n + 1$ maximal segments and on $(\frac{n}{2} + 1) \times (\frac{n}{2} + 1)$ grid, where s_n is the lower bound on the number of maximal segments in a convex drawing of G. We have also proved that any 3connected cubic plane graph G with $n \ge 6$ vertices admits a convex drawing with $\frac{n}{2} + 3$ maximal segments which is the minimum number of maximal segments required for any convex drawing of G. Keszegh *et al.* showed that every graph with the maximum degree three has a straight-line drawing in the plane, where the edges have at most five different slopes [10]. It is interesting to observe that the drawing produced by our algorithm uses only six different slopes. It is left as a future work to obtain minimum-segment convex drawings of other classes of planar graphs. It seems that the problem of finding minimum-segment convex drawings of general planar graphs is non-trivial and remains as an open problem.

Di Battista *et al.* [5] and Felsner [7] independently proved that any 3-connected plane graph admits a convex grid drawing on $(f-1) \times (f-1)$ area or $f \times f$ grid, where f is the number of faces in the graph. By Euler's formula, the number of faces in a 3-connected cubic plane graph is $\frac{n}{2} + 2$. Therefore, the drawings of G produced by their algorithms take $(\frac{n}{2} + 2) \times (\frac{n}{2} + 2)$ grid, which is close to the grid size obtained by our algorithm, but the number of line segments produced by their algorithm is far from optimal. Since the algorithm in [5,7] deals with convex drawings of 3-connected plane graphs, it will be interesting to investigate whether the method in [5,7] can be applied to find minimum-segment convex drawings of 3-connected plane graphs.

Acknowledgment

This work is done in Graph Drawing & Information Visualization Laboratory of the Department of CSE, BUET, established under the project "Facility Upgradation for Sustainable Research on Graph Drawing & Information Visualization" supported by the Ministry of Science and Information & Communication Technology, Government of Bangladesh.

References

- S. Biswas, D. Mondal, R. I. Nishat, and M. S. Rahman. Minimum-segment convex drawings of 3-connected cubic plane graphs. In 16th Annual International Computing and Combinatorics Conference (COCOON 2010), volume 6196 of Lecture Notes in Computer Science, pages 182–191. Springer, 2010.
- N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing plane graphs nicely. Acta Informatica, 22(2):187–201, 1985.
- N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings of planar graphs. In *Progress in Graph Theory*, pages 153–173. 1984.
- M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. International Journal of Computational Geometry and Applications, 7(3):211–223, 1997.
- G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of disjoint paths. Algorithmica, 23(4):302–340, 1999.

- V. Dujmović, D. Eppstein, M. Suderman, and D. R. Wood. Drawings of planar graphs with few slopes and segments. *Computational Geometry: Theory and Applications*, 38(3):194–212, 2007.
- S. Felsner. Convex drawings of planar graphs and the order dimension of 3polytopes. Order, 18(1):19–37, 2001.
- G. Kant. Hexagonal grid drawings. In WG '92, volume 657 of Lecture Notes in Computer Science, pages 263–276. Springer, 1992.
- G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.
- B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth. Drawing cubic graphs with at most five slopes. *Computational Geometry*, 40(2):138–147, 2008.
- 11. T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific, 2004.
- Md. A. H. Samee, Md. J. Alam, M. A. Adnan, and Md. S. Rahman. Minimum segment drawings of series-parallel graphs with the maximum degree three. In 16th International Symposium on Graph Drawing, volume 5417 of Lecture Notes in Computer Science, pages 408–419. Springer, 2009.
- W. T. Tutte. Convex representations of graphs. In London Mathematical Society, volume 10, pages 304–320, 1960.