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Abstract. A convex drawing of a plane graph G is a plane drawing of G,
where each vertex is drawn as a point, each edge is drawn as a straight
line segment and each face is drawn as a convex polygon. A maximal
segment is a drawing of a maximal set of edges that form a straight line
segment. A minimum-segment convex drawing of G is a convex drawing
of G where the number of maximal segments is the minimum among
all possible convex drawings of G. In this paper, we present a linear-
time algorithm to obtain a minimum-segment convex drawing Γ of a
3-connected cubic plane graph G of n vertices, where the drawing is not
a grid drawing. We also give a linear-time algorithm to obtain a convex
grid drawing of G on an (n

2
+ 1) × (n

2
+ 1) grid with at most sn + 1

maximal segments, where sn = n

2
+ 3 is the lower bound on the number

of maximal segments in a convex drawing of G.
Keywords. Graph drawing, Convex drawing, Minimum-segment, Grid
drawing, Cubic graph.

1 Introduction

From the advent of the field of graph drawing, various graph drawing styles have
been studied and “convex drawing” is one of the most widely studied drawing
styles. A convex drawing Γ of G is a “straight-line drawing” of G such that all
the faces of G are drawn as convex polygons in Γ . A straight-line drawing Γ of
a plane graph G is a plane drawing of G where each vertex of G is drawn as a
point and each edge of G is drawn as a straight line segment. Any two clockwise
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Cubic Plane Graphs”. Some of these results appeared in preliminary form at
the 16th Annual International Computing and Combinatorics Conference (CO-
COON 2010). The journal version is published in Journal of Combinatorial
Optimization. The original publication is available at www.springerlink.com.
http://www.springerlink.com/content/d445012w47474262/
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consecutive edges incident to a vertex v in Γ form an angle θv at the vertex v.
For θv = 180◦, we call θv a straight angle. We call a set of edges S a maximal

segment in Γ if S is a maximal set of edges that form a straight line segment in
Γ . A minimum-segment convex drawing of G is a convex drawing of G, where the
number of maximal segments is the minimum among all possible convex draw-
ings of G. Figures 1(a), (b) and (c) depict a plane graph G, a convex drawing of
G and a minimum-segment convex drawing of G, respectively. We call a straight
line drawing of G a straight-line grid drawing where the vertices are drawn on
integer grid points. Figure 2 (g) depicts a straight-line grid drawing of a plane
graph on 8× 8 grid.
Convex drawings of plane graphs is one of the classical and widely studied

(a) (b) (c)

Figure 1. (a) A plane graph G, (b) a convex drawing of G and (c) a minimum-
segment convex drawing of G.

drawing styles for plane graphs. Although not every plane graph has a convex
drawing, every 3-connected plane graph has such a drawing [13]. Several algo-
rithms are known for finding convex drawings of plane graphs which improve
various aesthetic qualities of the drawings [2,3,4]. Dujmović et al. first addressed
the problem of obtaining a drawing of a planar graph with few segments [6].
They have also shown that any 3-connected cubic plane graph (i.e., a plane
graph where every vertex of the graph has degree three) admits a drawing with
at most n + 2 maximal segments. Recently, Samee et al. have given a linear-
time algorithm for computing a minimum-segment drawing of a “series-parallel
graph” with the maximum degree three [12]. These recent works motivated us
to study the problem of finding minimum-segment convex drawings of plane
graphs.

In this paper we give a linear-time algorithm to obtain a minimum-segment
convex drawing Γ of a 3-connected cubic plane graph G with n vertices. We
also give a linear-time algorithm to obtain a convex grid drawing of G on an
(n2 +1)× (n2 +1) grid with at most sn +1 maximal segments, where sn = n

2 +3
is the lower bound on the number of maximal segments in a convex drawing
of G. Although several drawing styles are known for 3-connected cubic plane
graphs [8,9,10], to the best of our knowledge this is the first work on near-optimal
minimum-segment convex drawing where the drawing is a grid drawing.

We now present an outline of our algorithm for grid drawing. Let G be a
3-connected cubic plane graph with n vertices. We partition the input graph
G into several vertex disjoint subsets by a “canonical decomposition” described
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in [11]. We add each subset one after another to construct a drawing Γ of G
incrementally. At each addition we ensure that each vertex of degree three in
the resulting drawing gets a straight angle except two of the vertices at the
initial subset. We add the last subset in such a way that, at the end of the
construction, there are at least n − 4 straight angles which are associated with
n − 4 different vertices of G. Using this property of Γ we prove that Γ has at
most sn+1 maximal segments. Figure 2 depicts a “canonical decomposition” of
a 3-connected cubic plane graph G . Figures 2(a)–(g) illustrate the incremental
construction of a convex grid drawing Γ of G with at most sn + 1 maximal
segments. Note that G has 14 vertices and each of the vertices of G has one
straight angle in Γ except the vertices 1, 5, 6 and 14. We derive a relation
between the number of straight angles and the number of maximal segments in
Γ , and use the relation to obtain the number of maximal segments in Γ .
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Figure 2. Illustration of the algorithm for convex grid drawing.

The rest of this paper is organized as follows. Section 2 presents some defi-
nitions and preliminary results. Section 3 gives a linear-time algorithm for ob-
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taining a convex grid drawing Γ of a 3-connected cubic plane graph G with at
most sn + 1 maximal segments. Section 4 gives a linear-time algorithm to ob-
tain a minimum-segment convex drawing Γ of G where Γ is not a grid drawing.
Section 5 concludes the paper suggesting some future works. An early version of
this paper has been presented at [1].

2 Preliminaries

In this section we give some definitions that will be used throughout the paper
and present some preliminary results.

Let G = (V,E) be a connected simple graph with vertex set V and edge set
E. We denote by degree(v) the degree of a vertex v of G. G is a cubic graph if
degree(v) is equal to three for every vertex v of G. An edge with the end vertices
v1 and v2 is denoted by (v1, v2). A subgraph of a graph G = (V,E) is a graph
G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If G′ contains all the edges of G
that join vertices in V ′, then G′ is called the subgraph induced by V ′. A graph G

is connected if there is a path between any two distinct vertices u and v in G. A
graph which is not connected is called a disconnected graph. The connectivity

κ(G) of a graph G is the minimum number of vertices whose removal results in
a disconnected graph or a single-vertex graph. We say that G is k-connected if
κ(G) ≥ k.

We call a graph planar if it can be embedded in the plane without any edge
crossing. A plane graph is a planar graph with a fixed planar embedding. In a
plane graph G, the plane is divided into some connected regions called the faces.
The unbounded region is called the outer face and all the other faces are called
the inner faces. A vertex on the outer face is called an outer vertex and an edge
on the outer face is called an outer edge. All the vertices other than the outer
vertices are called the inner vertices.

Let Γ be a straight-line grid drawing of G. The area of Γ is measured by
the size of the smallest rectangle with sides parallel to the axes which encloses
Γ . The width W of Γ is the number of vertical grid-lines and the height H of
Γ is the number of horizontal grid-lines in such a rectangle. The grid size of Γ
is usually described as W ×H. Note that, if the grid size of Γ is W ×H, then
the area of Γ is (W − 1)× (H − 1).

Let Γ be a straight-line drawing of G. Any two clockwise consecutive edges
incident to a vertex v in Γ form an angle θv at the vertex v. We call θv a convex

angle if 0◦ < θv < 180◦. For θv = 180◦ we call θv a straight angle. A convex

polygon is a simple polygon such that every internal angle of the polygon is
either a convex angle or a straight angle. An internally convex drawing of G
is a straight-line drawing of G where all the inner faces are drawn as convex
polygons. We now present some properties of a convex drawing of a 3-connected
cubic plane graph.

Lemma 1. Let G be a 3-connected cubic plane graph with n vertices and Γ be a

convex drawing of G. Then the number of straight angles in Γ is at most n− 3.
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Proof. Since Γ is a convex drawing of a 3-connected cubic plane graph, the
outer face of G must be a convex polygon. A convex polygon with the minimum
number of angles is a triangle. Since a triangle has three convex angles, none of
the angles at these vertices is a straight angle. Furthermore, at most one angle
at a vertex in Γ can be a straight angle since G is cubic. Therefore, the number
of straight angles in Γ is at most n− 3. ⊓⊔

A path v1, v2, . . . , vk+1 in a graph G is an alternating sequence of distinct
vertices of G, beginning and ending with v1 and vk+1, in which there is an edge
(vi, vi+1) for 1 ≤ i ≤ k. We denote by < v1, v2, . . . , vk+1 > the maximal segment
which corresponds to the drawing of the path v1, v2, . . . , vk+1.

We now explore a relation between the number of maximal segments and
the number of straight angles in a convex drawing of a 3-connected cubic plane
graph.

Lemma 2. Let G be a 3-connected cubic plane graph with n vertices and Γ be

a convex drawing of G with x maximal segments. Then the number of straight

angles in Γ is 3n
2 − x.

Proof. Let S =< v1, v2, ..., vk+1 > be a maximal segment in Γ and |S| be the
number of edges in S. Since S is maximal, v1 and vk+1 cannot have any other
edge incident to them that extends S. Moreover, each vi, 2 ≤ i ≤ k must have
exactly one straight angle since G is cubic. Hence, there must be k− 1 = |S| − 1
straight angles in S as illustrated in Figure 3. Let l and x be the number of

v
k+1v

1
v
2

v
k

Figure 3. A maximal segment S in Γ .

straight angles and the number of maximal segments in Γ , respectively. We de-
note those maximal segments by S1,S2,...,Sx. Thus the number of straight angles
for all of the x maximal segments is l = |S1|+ |S2|+ ...+ |Sx| − x. Since no two
maximal segments share edges, the number of edges in G is |S1|+ |S2|+ ...+ |Sx|.
By degree sum formula, |S1|+ |S2|+ ...+ |Sx| =

3n
2 . Therefore, l = 3n

2 − x. ⊓⊔

We now compute the lower bound on the number of maximal segments in a
convex drawing of a 3-connected cubic plane graph.

Lemma 3. Let G be a 3-connected cubic plane graph with n vertices and Γ be

a convex drawing of G. Then the number of maximal segments in Γ is at least
n
2 + 3.

Proof. Let x be the number of maximal segments in Γ . Then, by Lemma 2,
the number of straight angles in Γ is 3n

2 − x. On the other hand, the number of
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straight angles in a convex drawing of G is at most n−3 by Lemma 1. Therefore,
3n
2 − x ≤ n− 3 and hence x ≥ n

2 + 3. ⊓⊔
Lemma 3 implies that n

2 + 3 is the lower bound on the number of maximal
segments in a convex drawing of G. We denote the lower bound by Sn.

3 Convex Grid Drawings

In this section we give an algorithm to obtain a convex grid drawing of a 3-
connected cubic plane graph with Sn + 1 maximal segments. To present the
algorithm we need some preparation.

Let G be a 3-connected plane graph. An internally convex drawing of G is a
straight-line drawing of G where all the inner faces are drawn as convex polygons.
Let (v1, v2) be an edge on the outer face of G and let π = (V1, V2, ..., Vm) be an
ordered partition of V , that is V1 ∪V2 ∪ ...∪Vm = V and (Vi ∩Vj) = φ for i 6= j.
We denote by Gk, 1 ≤ k ≤ m, the subgraph of G induced by V1∪V2∪ ...∪Vk and
by Ck the outer cycle of Gk. Let {v1, v2, . . . , vp}, p ≥ 3, be a set of outer vertices
consecutive on Ck such that degree(v1) ≥ 3, degree(v2) =degree(v3) = . . . =
degree(vp−1) = 2, and degree(vp) ≥ 3 in Gk. Then we call the set {v2, . . . , vp−1}
an outer chain ofG. We now describe the properties of a canonical decomposition
π of G with the outer edge (v1, v2) in the following (a)-(b) [11].

(a) V1 is the set of all vertices on the inner face containing the edge (v1, v2). Vm

is a singleton set containing an outer vertex v such that v is a neighbor of
v1 and v 6∈ (v1, v2).

(b) For each index k, 2 ≤ k ≤ m− 1, all vertices in Vk are outer vertices of Gk

and the following conditions hold:

(1) if |Vk| = 1, then the vertex in Vk has two or more neighbors in Gk−1

and has at least one neighbor in G−Gk; and
(2) If |Vk| > 1, then Vk is an outer chain {z1, z2, ..., zl} of Gk.

Throughout the paper we assume that the vertices of an outer chain {z1, z2, ...,
zl} are ordered clockwise. The vertex v1 has two neighbors in G1, one neighbor
is v2 and we denote the other neighbor by v4. The vertex v2 has two neighbors
in G1, one neighbor is v1 and we denote the other neighbor by v3. The following
result on canonical decomposition is known [9].

Lemma 4. Every 3-connected plane graph G has a canonical decomposition π,

and π can be found in linear time.

Let z be a vertex of G and P (z), x(z), y(z) be the (x, y)-coordinates of z, the
x-coordinate of z and the y-coordinate of z, respectively. We will later associate
a set with each vertex z of G, which we denote by L(z). By Γ (G) we denote
a drawing of G. We are now ready to describe Algorithm Cubic Drawing for
finding a convex grid drawing of G.

Let V1 = (z1 = v1, z2 = v4, ..., zl−1 = v3, zl = v2). We draw G1 by a triangle
as follows. Set P (zi) = (i−1, 0) for 1 ≤ i < l, P (zl) = (l−1,−1) and L(zi) = {zi}
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for 1 ≤ i ≤ l. Figure 4 illustrates the drawing of G1. Let Γ (G) be a straight-
line drawing of G. We now install V2, V3, ..., Vm one after another to construct
Γ (G2), Γ (G3), . . . , Γ (Gm) = Γ (G), respectively. Vk is either a singleton set or
an outer chain of Gk, but in the algorithm we will treat both cases uniformly.
We now explain how to install Vk to Γ (Gk−1). We denote by Ck−1 = (w1 =
v1, w2, ..., wt = v2) the outer cycle of Gk−1. Let wp and wq be the leftmost
and rightmost neighbors of Vk on Ck−1 where 1 < k ≤ m. For each Vk =
{z1, z2, . . . , zl}, 1 < k < m, we set L(z1) = {z1} ∪ (

⋃t

x=p L(wx)) and L(zi) =

(
⋃l

x=i{zx}) ∪ (
⋃t

x=q L(wx)), where 2 ≤ i ≤ l.

v1 v4

v2

v3

Figure 4. Drawing of G1.

At each step we prove that the resulting drawing Γ (Gk), 1 < k < m, is
internally convex. We also prove that the slopes of the maximal segments in
Γ (Gk) are in {0, 1,∞, λ1, λ2} where λ1 and λ2 are the slopes of (v1, v2) and
(v2, v3), respectively. Moreover, each vertex z 6∈ {v1, v2, v3} of degree three in
Γ (Gk) has exactly one straight angle and no two vertices of degree two have the
same x-coordinate in Γ (Gk). For each Vk, 2 ≤ k ≤ m, let Dx = |x(wq)− x(wp)|
and Dy = |y(wq)− y(wp)|.

We now have the following lemma.

Lemma 5. Let Gk = V1 ∪ V2 ∪ ... ∪ Vk, 1 ≤ k ≤ m − 1. Then Gk admits

a straight-line drawing Γ (Gk) which is internally convex and the slopes of the

maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2} where λ1 and λ2 are the

slopes of (v1, v2) and (v2, v3), respectively. Moreover, each vertex v 6∈ {v1, v2, v3}
of degree three of Gk has a straight angle in Γ (Gk) and no two vertices of degree

two have the same x-coordinate in Γ (Gk).

Proof. We will prove the claim by induction on k.
The case for k = 1 is trivial since G1 is drawn as a triangle, where v1, v2 and

v3 are the corner vertices of the triangle. The slopes of the maximal segments in
Γ (G1) are in {0, λ1, λ2}. We may thus assume that k is greater than one and the
claim holds for all Γ (Gk−i), 0 < i < k. Let Ck−1 = (w1 = v1, w2, ..., wt = v2) be
the outer cycle of Gk−1 and we denote by wp and wq the leftmost and rightmost
neighbors of Vk on Ck−1, 1 < k < m. Let fk be the inner face of Gk containing
vk. We are now going to add Vk = (z1, z2, ..., zl) to Γ (Gk−1) to obtain Γ (Gk).

We first assume that wp, wq 6∈ {v1, v2, v3}. (We will consider the case where
wp or wq is in {v1, v2, v3} at the end of this proof.) We now have the following
four cases to consider.
Case 1: Both of wp and wq have straight angles in Γ (Gk−1).

Since each of the vertices wp+1, . . . , wq−1 must be of degree three, each of
those vertices must have a straight angle by induction hypothesis. Therefore,
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y(wp) = y(wq). Hence if |Vk| = 1, then we set P (z1)=(x(wq), y(wp) + Dx), as

illustrated in Figure 5(a). Otherwise we shift
⋃t

i=q L(wi) by |Vk|−Dx unit to the
right when |Vk| −Dx > 0. Then we set P (zi) = (x(wp)+ i, y(wp)+ 1), 1 ≤ i < l,
and P (zl) = (x(wq), y(wp) + 1) as illustrated in Figure 5(b). We thus obtain a
drawing of Γ (Gk).

wp wq

zl

wp wq

z1

z1

(a) (b)

Figure 5. Both of wp and wq have straight angles. (a) |Vk| = 1 and (b) |Vk| > 1.

We now show that Γ (Gk) satisfies the claim in Lemma 5.

We first prove that Γ (Gk) is internally convex. By induction hypothesis,
Γ (Gk−1) is internally convex. By Lemma 6, shifting of

⋃t

i=q L(wi) to the right
keeps Γ (Gk−1) internally convex. Moreover, the vertices of fk which are in
Gk−1 − {wp, wq} are the vertices of degree three in Γ (Gk−1) and each of these
vertices has a straight angle by the induction hypothesis. These straight angles
remain the same after the shift by Lemma 6. According to the installation of Vk,
each of wp and wq obtains a straight angle in Γ (Gk) and the vertices of Vk do
not obtain any concave angle inside fk. Therefore, fk is a convex polygon and
Γ (Gk) is internally convex.

We next prove that the slopes of the maximal segments in Γ (Gk) are in
{0, 1,∞, λ1, λ2}. By induction hypothesis, the slopes of the maximal segments
in Γ (Gk−1) are in {0, 1,∞, λ1, λ2}. By Lemma 6, shifting of

⋃t

i=q L(wi) to the
right keeps the slopes of the maximal segments in Γ (Gk−1) in {0, 1,∞, λ1, λ2}.
In this case, the slopes of (wp, z1) and (wq, zl) are in {0, 1,∞, λ1, λ2} and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Gk are in {0, 1,∞, λ1, λ2}.

We then prove that each vertex v 6∈ {v1, v2, v3} of degree three of Gk has a
straight angle in Γ (Gk). By induction hypothesis, each vertex v 6∈ {v1, v2, v3} of
degree three in Gk−1 has a straight angle in Γ (Gk−1). Moreover, wp and wq are
the two new vertices which become vertices of degree three in Gk. Each of wp

and wq obtains a straight angle according to our drawing method. Therefore,
each vertex v 6∈ {v1, v2, v3} of degree three of Gk has a straight angle in Γ (Gk).

We finally prove that no two vertices of degree two have the same x-coordinate
in Γ (Gk). According to the installation of Vk, the x-coordinates of the vertices
z1, . . . , zl are different. One can observe that any vertex v 6∈ {z1, . . . , zl} of de-
gree two in Gk is contained in either on the path w1, w2, . . . , wp or on the path
wq+1, wq, . . . , wt where x(v) < x(z1) or x(v) > x(zl), respectively. These vertices
of degree two are also in Γ (Gk−1) and have different x-coordinates by induc-
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tion hypothesis. Therefore, no two vertices of degree two in Gk have the same
x-coordinates in Γ (Gk).

Case 2: Only wq has a straight angle in Γ (Gk−1).

In this case, the slope of (wp−1, wp) is either 1 or 0.

Consider first the case where the slope of (wp−1, wp) is +1. Then y(wp) ≥
y(wq) since each vertex v ∈ {wp+1, . . . , wq−1} has degree three in Gk−1 and has
a straight corner in Γ (Gk−1) when v 6= v3 by induction hypothesis. Therefore,
if |Vk| = 1, we set P (z1) = (x(wq), y(wp) + Dx) as illustrated in Figure 6(a).

Otherwise we shift
⋃t

i=q L(wi) to the right by |Vk| − Dx units when |Vk| −
Dx > 0. Then we set P (zi)=(x(wp) + i, y(wp) + 1) for 1 ≤ i < l and P (zl) =
(x(wq), y(wp) + 1) as illustrated in Figure 6(b).

The slopes of (wp, z1) and (wq, zl) are 1 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two have the same x-coordinate in Γ (Gk).

We now Consider the case where the slope of (wp−1, wp) is 0. By a similar

way as shown above it can be shown that y(wp) > y(wq). We shift
⋃t

i=q L(wi)
to the right by |Vk| − Dx units when |Vk| − Dx > 0. For |Vk| = 1, we set
P (z1) = (x(wq), y(wp)). Otherwise we set P (zi) = (x(wp) + i, y(wp)), 1 ≤ i < l,
and P (zl) = (x(wq), y(wp)) as illustrated in Figure 6(c).

The slopes of (wp, z1) and (wq, zl) are 0 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two have the same x-coordinate in Γ (Gk).

wq

z
lz1

wp
wq

z
l

z1
wp

wq

z
l

z1
wp

wq

z1 z1

wq

wpwp

(b) (c)

(a)

1

p−

1

1

wp−

w wp−1p−

1wp−
w

Figure 6. Only wq has a straight angle. (a) |Vk| = 1, (b) |Vk| > 1 and the slope
of (wp−1, wp) = 1, (c) |Vk| > 1 and the slope of (wp−1, wp) = 0.
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Case 3: Only wp has a straight angle in Γ (Gk−1).

In this case, the slope of (wq+1, wq) is either 0 or ∞.

We first consider the case where the slope of (wq+1, wq) is 0. Then the slope
of (wq−1, wq) is +1 and by a similar way as in Case 2 it can be shown that
y(wp) < y(wq). If |Vk| = 1, we set P (z1) = (x(wp) + Dy, y(wq)). Otherwise we

shift
⋃t

i=q L(wi) to the right by |Vk|+Dy −Dx units when |Vk|+Dy −Dx > 0.
Then we set P (zi)=(x(wp) + Dy + i − 1, y(wq)) for 1 ≤ i ≤ l as illustrated in
Figure 7(a).

The slopes of (wp, z1) and (wq, zl) are 1 and 0, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two have the same x-coordinate in Γ (Gk).

We now consider the case where the slope of (wq+1, wq) is ∞. If the slope
of (wq−1, wq) is 0 then in a similar way as in Case 2 one can observe that
y(wp) = y(wq). Otherwise (wq−1, wq) belongs to a maximal segment with the
slope +1 which implies that y(wp) < y(wq) and Dx > Dy. Therefore, if |Vk| = 1,
we set P (z1) = (x(wq), y(wp) +Dx) as illustrated in Figure 7(b). Otherwise we

shift
⋃t

i=q L(wi) to the right by |Vk|+Dy−Dx units when |Vk|+Dy−Dx > 0 and
set P (zi)=(x(wp) +Dy + i, y(wq) + 1), 1 ≤ i < l, and P (zl)=(x(wq), y(wq) + 1),
as illustrated in Figure 7(c).

The slopes of (wp, z1) and (wq, zl) are 1 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two have the same x-coordinate in Γ (Gk).

wp

z
l

z1 z1

wq wq
wp

wq wq+1

wp wq+1

z1

wq+1

z
l

(a) (b) (c)

Figure 7. Only wp has a straight angle. (a) The slope of (wq+1, wq) = 0, (b)
|Vk| = 1 and the slope of (wq+1, wq) = ∞, (c) |Vk| > 1 and the slope of
(wq+1, wq) = ∞.

Case 4: None of wp and wq has a straight angle in Γ (Gk−1).

In this case one can observe that, the slope of (wp−1, wp) is either 1 or 0 and
the slope of (wq+1, wq) is either ∞ or 0. Therefore, we have the following four
subcases to consider.
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Subcase 4a: The slope of (wp−1, wp) is 1 and the slope of (wq+1, wq) is ∞ in
Γ (Gk−1).

Consider first the case where |Vk| = 1. If, y(wp) < y(wq) then (wq−1, wq)
belongs to a maximal segment with the slope +1 and Dx > Dy. Otherwise
y(wp) ≥ y(wq). Therefore we set P (z1) = (x(wq), y(wp) +Dx) as illustrated in
Figure 8(a).

One can easily observe that, the slopes of (wp, z1) and (wq, zl) are +1 and
∞, respectively. Therefore, the slopes of the maximal segments in Γ (Gk) are
in {0, 1,∞, λ1, λ2}. In a way similar to the proof of Case 1 we can prove that
Γ (Gk) is internally convex, each vertex v 6∈ {v1, v2, v3} of degree three in Gk has
a straight angle and no two vertices of degree two has the same x-coordinate in
Γ (Gk).

We next consider the case where |Vk| > 1 and y(wp) ≥ y(wq). We shift
⋃t

i=q L(wi) to the right by |Vk| −Dx units when |Vk| −Dx > 0 and set P (zi) =
(x(wp) + i, y(wp) + 1), 1 ≤ i < l and P (zl) = (x(wq), y(wp) + 1) as illustrated in
Figure 8(b).

Here, (z1, z2), (z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 and
the slopes of (wp, z1) and (wq, zl) are +1 and ∞, respectively. Therefore, the
slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a way similar
to the proof of Case 1 we can prove that Γ (Gk) is internally convex, each vertex
v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no two vertices of
degree two has the same x-coordinate in Γ (Gk).

Otherwise |Vk| > 1 and y(wp) < y(wq) and we shift
⋃t

i=q L(wi) to the right
by |Vk|+Dy −Dx units when |Vk|+Dy −Dx > 0. Then we set P (zi)=(x(wp)+
Dy + i, y(wq) + 1), 1 ≤ i < l, and P (zl) = (x(wq), y(wq) + 1) as illustrated in
Figure 8(c).

The slopes of (wp, z1) and (wq, zl) are +1 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0. Therefore, the slopes
of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a way similar to
the proof of Case 1 we can prove that Γ (Gk) is internally convex, each vertex
v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no two vertices of
degree two has the same x-coordinate in Γ (Gk).

Subcase 4b: The slope of (wp−1, wp) is 1 and the slope of (wq+1, wq) is 0 in
Γ (Gk−1).

We first consider the case where y(wp) ≥ y(wq). Then we choose a vertex
wq−i for the smallest i, p < q − i < q, where wq−i has one edge with slope ∞
or two edges with slope 0. Clearly, there exists such a wq−i. We set P (wj) =
(x(wq−i), y(wj)) where q−i < j ≤ q. For |Vk| = 1, we set P (z1) = (x(wq), y(wp)+
Dx) as illustrated in Figure 9(a). After this modification, every wj , q−i ≤ j < q,
which had a straight angle in Γ (Gk−1) still has a straight angle. Otherwise we
shift

⋃t

i=q L(wi) to the right by |Vk| −Dx units when |Vk| −Dx > 0. Then we
set P (zi) = (x(wp) + i, y(wp) + 1), for 1 ≤ i < l and P (zl) = (x(wq), y(wp) + 1)
as illustrated in Figure 9(b).

The slopes of (wp, z1) and (wq, zl) are +1 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
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wq

z1 z
l

wq

z1 z
l

z
lz1

wq
wp

wp

wp

wp wp

wp−1
wp−1

wp−1 wp−1 wp−1

wq

z1 z1

wq

wq+1 wq+1

wq+1 wq+1

(b) (c)

(a)

Figure 8. None of wp, wq has straight angle, the slope of (wp−1, wp) is 1, the
slope of (wq+1, wq) is ∞. (a) |Vk| = 1, (b) |Vk| > 1 and y(wp) ≥ y(wq), (c)
|Vk| > 1 and y(wp) < y(wq).

fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).

We next consider the case where y(wp) < y(wq). Then we shift
⋃t

i=q L(wi)
to the right by |Vk|+Dy −Dx units when |Vk|+Dy −Dx > 0 and set P (zi) =
(x(wp) +Dy + i− 1, y(wq)), 1 ≤ i ≤ l, as illustrated in Figure 9(c).

The slopes of (wp, z1) and (wq, zl) are +1 and 0, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).

Subcase 4c: The slope of (wp−1, wp) is 0 and the slope of (wq+1, wq) is ∞ in
Γ (Gk−1).

We consider first the case where y(wp) > y(wq). Let |Vk| = 1, then we set

P (z1) = (x(wq), y(wp)). Otherwise |Vk| > 1 and we shift
⋃t

i=q L(wi) to the right
by |Vk| − Dx units when |Vk| − Dx > 0 and set P (zi) = (x(wp) + i, y(wp)),
1 ≤ i < l, and P (zl) = (x(wq), y(wp)) as illustrated in Figure 10(a).

The slopes of (wp, z1) and (wq, zl) are 0 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).

We next consider the case where y(wp) ≤ y(wq). Then we choose a vertex
wp+i for the smallest i, p < p + i < q, where wp+i has one edge with slope 1
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Figure 9. None of wp, wq has straight angle, the slope of (wp−1, wp) is 1, the
slope of (wq+1, wq) is 0. (a) |Vk| = 1 and y(wp) ≥ y(wq), (b) |Vk| > 1 and
y(wp) ≥ y(wq), (c) y(wp) < y(wq).

or two edges with slope 0. Clearly, there exists such a wp+i. We set P (wj) =
(x(wj) + y(wj) − y(wp+i), y(wj)) where p ≤ j < p + i. After this modification,
every wj , p < j ≤ p + i, which had a straight angle in Γ (Gk−1) still has a

straight angle. We now shift
⋃t

i=q L(wi) to the right by |Vk| + Dy − Dx units
when |Vk|+Dy−Dx > 0. Let |Vk| = 1, then we set P (z1) = (x(wq), y(wp)+Dx).
Otherwise |Vk| > 1 and we set P (zi) = (x(wp) +Dy + i, y(wq) + 1), 1 ≤ i < l,
and P (zl) = (x(wq), y(wq) + 1) as illustrated in Figure 10(b).

The slopes of (wp, z1) and (wq, zl) are +1 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).

Subcase 4d: The slope of (wp−1, wp) is 0 and the slope of (wq+1, wq) is 0 in
Γ (Gk−1).

Consider the case where y(wp) > y(wq). Then we choose a vertex wq−i for
the smallest i, p < q− i < q, where wq−i has one edge with slope ∞ or two edges
with slope 0. Clearly, there exists such a wq−i. We set P (wj) = (x(wq−i), y(wj))
for q − i < j ≤ q. After this modification, every wj , q − i ≤ j < q, which had
a straight angle in Γ (Gk−1) still has a straight angle. Let |Vk| = 1, then we
set P (z1) = (x(wq), y(wp)). Otherwise |Vk| > 1 and we shift

⋃t

i=q L(wi) to the
right by |Vk| −Dx units when |Vk| −Dx > 0 and set P (zi) = (x(wp) + i, y(wp)),
1 ≤ i < l and P (zl) = (x(wq), y(wp)) as illustrated in Figure 10(c).

The slopes of (wp, z1) and (wq, zl) are 0 and ∞, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).
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Consider next the case where y(wp) < y(wq). Then we choose a vertex wp+i

for the smallest i, p < p + i < q, where wp+i has one edge with slope 1 or
two edges with slope 0. Clearly, there exists such a wp+i. We set P (wj) =
(x(wj) + y(wj) − y(wp+i), y(wj)) where p ≤ j < p + i. After this modification,
every wj , p < j ≤ p + i, which had a straight angle in Γ (Gk−1) still has a

straight angle. We now shift
⋃t

i=q L(wi) to the right by |Vk| + Dy − Dx units
when |Vk|+Dy −Dx > 0. We set P (zi) = (x(wp)+Dy + i− 1, y(wq)), 1 ≤ i ≤ l,
as illustrated in Figure 10(d).

The slopes of (wp, z1) and (wq, zl) are +1 and 0, respectively and (z1, z2),
(z2, z3),..., (zl−1, zl) form one maximal segment of slope 0 when |Vk| > 1. There-
fore, the slopes of the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a
way similar to the proof of Case 1 we can prove that Γ (Gk) is internally convex,
each vertex v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no
two vertices of degree two has the same x-coordinate in Γ (Gk).
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z
lz1

wq

z1 z
l

wq
wq−i wq−i

wq

wqz1
z

l

wp−1
wp−1

wp−1 wp−1

wp−1

wq+1

wq+1

wp

wp wp z1
z

l
wp

wq
wpwp−1 wp

wq+1

wq wq+1

(b)(a)

(d)(c)

p+iw

p+iw p+iw

p+iw

Figure 10. None of wp, wq has straight angle, the slope of (wp−1, wp) is 0.
(a)y(wp) > y(wq) and the slope of (wq+1, wq) = ∞, (b) y(wp) ≤ y(wq) and the
slope of (wq+1, wq) = ∞, (c) y(wp) > y(wq) and the slope of (wq+1, wq) = 0, (d)
y(wp) < y(wq) and the slope of (wq+1, wq) = 0.

Finally, if y(wp) = y(wq) we shift
⋃t

i=q L(wi) to the right by |Vk| −Dx + 1
units when |Vk| −Dx + 1 > 0. We set P (zi) = (x(wp) + i, y(wp)), 1 ≤ i ≤ l.

The slopes of (wp, z1) and (wq, zl) are both 0 and (z1, z2), (z2, z3),..., (zl−1, zl)
form one maximal segment of slope 0 when |Vk| > 1. Therefore, the slopes of
the maximal segments in Γ (Gk) are in {0, 1,∞, λ1, λ2}. In a way similar to
the proof of Case 1 we can prove that Γ (Gk) is internally convex, each vertex
v 6∈ {v1, v2, v3} of degree three in Gk has a straight angle and no two vertices of
degree two has the same x-coordinate in Γ (Gk).

It is now remained to show the case where wp or wq is in {v1, v2, v3}. If
wp, wq ∈ {v1, v2, v3}, the proof is similar to the proof in Case 1. If wp 6∈
{v1, v2, v3}, wq ∈ {v1, v2, v3} and wp has straight angle, the proof is similar to
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the proof in Case 1. If wp 6∈ {v1, v2, v3}, wq ∈ {v1, v2, v3} and wp does not have
straight angle, the proof is similar to the proof in Case 2. If wp ∈ {v1, v2, v3},
wq 6∈ {v1, v2, v3} and wq has straight angle, the proof is similar to the proof
in Case 1. If wp ∈ {v1, v2, v3}, wq 6∈ {v1, v2, v3} and wq does not have straight
angle, the proof is similar to the proof in Case 3. Note that, in the proof of Case
1, y(wp) = y(wq). In the case when wp or wq is in {v1, v2, v3}, y(wp) ≥ y(wq)
and the reasoning used in the proof of Case 1 also holds for this case. ⊓⊔

The proof of Lemma 5 gives a method of obtaining Γ (Gm−1). Let wp(= v1),
v4 and wq be the three neighbors of Vm where x(wp) < x(v4) < x(wq). We
now set P (Vm) = (x(v2), y(v4) + x(v2) − x(v4)) and add Vm to Γ (Gm−1) to
complete the drawing Γ (Gm) = Γ (G), as illustrated in Figure 11. It is obvious
that the addition of Vm does not create any edge crossing. Let λ3 be the slope of
(v1, Vm). Then clearly all the slopes of Γ (G) is in {0, 1,∞, λ1, λ2, λ3}. Thus we
have an algorithm for obtaining a convex grid drawing of a 3-connected cubic
graph which we call Algorithm Cubic Drawing. We now have Lemma 6 which
has been used in the proof of Lemma 5.

Lemma 6. Let Gk = V1∪V2∪...∪Vk, 1 ≤ k ≤ m−1, where Γ (Gk) is a drawing of

Gk obtained by Algorithm Cubic Drawing. Let Ck = (w1 = v1, w2, . . . , wt = v2)
be the outer cycle of Γ (Gk) and let δ be any integer. Assume that the slope of

(wi−1, wi), 2 ≤ i ≤ t, is not ∞ and Γ ′(Gk) is the drawing obtained from Γ (Gk)
after shifting Lk =

⋃t

i L(wi) by δ units to the right. Then Γ ′(Gk) is internally

convex, the number of slopes in Γ ′(Gk) is the same as the number of slopes in

Γ (Gk) and the slopes of all the maximal segments except (v1, v2) and (v2, v3) in
Γ ′(Gk) remain the same as the slopes in Γ (Gk). Moreover, no two vertices of

degree two of Gk have the same x-coordinate in Γ ′(Gk).

Proof. We prove the claim by induction on k. For the case when k = 1, Γ (G1)
is drawn as a triangle and the claim trivially holds. We may thus assume that
k is greater than one and the claim holds for all Γ (Gx), x < k. Note that, we
obtain Gk by adding Vk to Gk−1. Let Vk = (z1, z2, . . . , zl) and Ck = (w1 =
v1, w2, . . . , wp, wp+1 = z1, wp+2 = z2, . . . , wq−1 = zl, wq, . . . , wt = v2). Let wi,
1 ≤ i ≤ t, be a vertex on Ck. We now have the following four cases to consider.
Case 1: wi ∈ {w2, . . . , wp}.

In this case Γ ′(Gk), which is obtained from Γ (Gk) by shifting the vertices of
Lk by δ units to the right, can also be obtained as follows.

Let Ck−1 = (w1 = v1, . . . , wi, . . . , wt = v2) be the outerface of Gk−1. One
can observe that both Ck and Ck−1 contain the vertex wi. Since Lk−1 includes
all the vertices of Lk except z1, . . . , zl, we first remove the drawing of Vk from
Γ (Gk) to obtain Γ (Gk−1). We then shift the vertices of Lk−1 by δ units to the
right. We finally add the drawing of Vk, as in Γ ′(Gk), to Γ ′(Gk−1) to obtain
Γ ′(Gk).

We first prove that Γ ′(Gk) is internally convex. Let fk be the inner face in
Gk that contains Vk. By induction hypothesis, Γ ′(Gk−1) is internally convex.
The drawings of the inner faces in Γ ′(Gk), other than fk, are internally convex
since they are also contained in Γ ′(Gk−1). We are only left with the drawing
of fk in Γ ′(Gk). Since the vertices wi, . . . , wt as well as the vertices in Vk are
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shifted δ units to the right, the internal angles of fk in Γ ′(Gk) remain the same
as in Γ (Gk). Since fk is drawn as a convex polygon in Γ (Gk), fk is drawn as a
convex polygon in Γ ′(Gk).

We next prove that the number of slopes in Γ ′(Gk) is the same as the num-
ber of slopes in Γ (Gk). Moreover, the slopes of all the maximal segments ex-
cept (v1, v2) and (v2, v3) remain the same as the slopes in Γ (Gk). By induc-
tion hypothesis, the number of slopes in Γ ′(Gk−1) is the same as the num-
ber of slopes in Γ (Gk−1). Moreover, the slopes of all the maximal segments
except (v1, v2) and (v2, v3) remain the same as the slopes in Γ (Gk−1). Since
all the edges of Γ ′(Gk−1) are also in Γ ′(Gk), we are only left with the edges
(wp, z1), (z1, z2), . . . , (zl, wq). Since the vertices wi, . . . , wt as well as the vertices
in Vk are shifted δ units to the right, the maximal segments and the slopes of
the edges (wp, z1), (z1, z2), . . . , (zl, wq) in Γ ′(Gk) remain the same as in Γ (Gk).

We finally prove that no two vertices of degree two of Gk have the same
x-coordinate in Γ ′(Gk). By the property of canonical ordering, all the vertices of
degree two in Gk are on the outerface. By induction hypothesis no two vertices
of degree two of Gk−1 have the same x-coordinate in Γ ′(Gk−1). Since Γ ′(Gk−1)
is contained in Γ ′(Gk), we are only left with vertices z1, . . . , zl. Since the vertices
wi, . . . , wt as well as the vertices in Vk are shifted δ units to the right, the relative
distances of the vertices wi, . . . , wp+1 = z1, wp+2 = z2, . . . , wt in Γ ′(Gk) remain
the same as in Γ (Gk). Since no two vertices of degree two of Gk have the same
x-coordinate in Γ (Gk), no two vertices of degree two of Gk have the same x-
coordinate in Γ ′(Gk).

Case 2: wi = z1.

In this case, Lk includes wp by definition of set L. Therefore Γ ′(Gk), which
is obtained from Γ (Gk) by shifting the vertices of Lk by δ units to the right,
can also be obtained by shifting

⋃t

p L(wi). One can observe that, the shift of
⋃t

p L(wi) is actually the shift of Lk when wi = wp. Therefore, the proof for this
case can be obtained in a similar technique as described in Case 1.

Case 3: wi ∈ {z2, . . . , zl}.

In this case Γ ′(Gk), which is obtained from Γ (Gk) by shifting the vertices of
Lk by δ units to the right, can also be obtained as follows.

Let Ck−1 = (w1 = v1, . . . , wq, . . . , wt = v2) be the outerface of Gk−1. One
can observe that both Ck and Ck−1 contain the vertex wq. We first remove the
drawing of Vk from Γ (Gk) to obtain Γ (Gk−1). We then shift the vertices of⋃t

q L(wi) by δ units to the right. We finally add the drawing of Vk, as in Γ ′(Gk),
to Γ ′(Gk−1) to obtain Γ ′(Gk).

We first prove that Γ ′(Gk) is internally convex. Let fk be the inner face in
Gk that contains Vk. By induction hypothesis, Γ ′(Gk−1) is internally convex.
The drawings of the inner faces in Γ ′(Gk), other than fk, are internally convex
since they are also contained in Γ ′(Gk−1). We are only left with the drawing
of fk in Γ ′(Gk). Since the vertices wq, . . . , wt as well as the vertices wi, . . . , zl
are shifted δ units to the right, the horizontal distance between wi−1 and wi

increases. But this increase in distance between wi−1 and wi does not change
the slope of the segment (z1, z2), . . . , (zl−1, zl). Therefore, the internal angles of
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fk in Γ ′(Gk) remain the same as in Γ (Gk). Since fk is drawn as a convex polygon
in Γ (Gk), fk is drawn as a convex polygon in Γ ′(Gk).

We next prove that the number of slopes in Γ ′(Gk) is the same as the num-
ber of slopes in Γ (Gk). Moreover, the slopes of all the maximal segments except
(v1, v2) and (v2, v3) remain the same as the slopes in Γ (Gk). By induction hy-
pothesis, the number of slopes in Γ ′(Gk−1) is the same as the number of slopes in
Γ (Gk−1). Moreover, the slopes of all the maximal segments except (v1, v2) and
(v2, v3) remain the same as the slopes in Γ (Gk−1). Since all the edges of Γ

′(Gk−1)
are also in Γ ′(Gk), we are only left with the edges (wp, z1), (z1, z2), . . . , (zl, wq).
Since the vertices wq, . . . , wt as well as the vertices wi, . . . , zl are shifted δ units
to the right, the horizontal distance between wi−1 and wi increases. But this
increase in distance between wi−1 and wi does not change the slope of the seg-
ment (z1, z2), . . . , (zl−1, zl). Therefore, the maximal segments and the slopes of
the edges (wp, z1), (z1, z2), . . . , (zl, wq) in Γ ′(Gk) remain the same as in Γ (Gk).

We finally prove that no two vertices of degree two of Gk have the same
x-coordinate in Γ ′(Gk). By the property of canonical ordering, all the vertices of
degree two in Gk are on the outerface. By induction hypothesis no two vertices
of degree two of Gk−1 have the same x-coordinate in Γ ′(Gk−1). Since Γ ′(Gk−1)
is contained in Γ ′(Gk), we are only left with vertices z1, . . . , zl. Since the ver-
tices wq, . . . , wt as well as the vertices wi, . . . , zl are shifted δ units to the right,
the relative distances of the vertices wi, . . . , wt in Γ ′(Gk) remain the same as
in Γ (Gk). Moreover, the increase in the horizontal distance between wi−1 and
wi does not create any overlap among the x-coordinates of the vertices in Vk.
Therefore, no two vertices of degree two of Gk have the same x-coordinate in
Γ ′(Gk).
Case 4: wi ∈ {wq, . . . , wt}.

In this case Γ ′(Gk), which is obtained from Γ (Gk) by shifting the vertices of
Lk by δ units to the right, can also be obtained as follows.

Let Ck−1 = (w1 = v1, . . . , wi, . . . , wt = v2) be the outerface of Gk−1. One
can observe that both Ck and Ck−1 contain the vertex wi. We first remove the
drawing of Vk from Γ (Gk) to obtain Γ (Gk−1). We then shift the vertices of
Lk−1 by δ units to the right. We finally add the drawing of Vk, as in Γ ′(Gk), to
Γ ′(Gk−1) to obtain Γ ′(Gk).

The claim holds for Gk−1 by induction hypothesis. Since Lk−1 includes all
the vertices of Lk, the proof follows form the inductive assumption. ⊓⊔

We now have the following lemma on area requirement of the drawing pro-
duced by Algorithm Cubic Drawing.

Lemma 7. Let G be a 3-connected cubic plane graph with n vertices. Then

Algorithm Cubic Drawing produces a convex drawing Γ (G) of G on at most

(n2 + 1)× (n2 + 1) grid.

Proof. Let WΓ (G) and HΓ (G) be the width and height of Γ (G), respectively.
Then one can easily observe that HΓ (G) ≤ WΓ (G). We now calculate WΓ (G).

According to the reasoning presented in Cases 1–4 of the proof of Lemma 5, if
the shift is δ units to the right then WΓ (Gk) = WΓ (Gk−1)+δ. If δ = |Vk|+Dy−Dx
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Figure 11. Installation of Vm.

then δ < |Vk| since Dx ≥ Dy + 1. If δ = |Vk| −Dx then δ < |Vk| since Dx ≥ 1.
If δ = |Vk| −Dx + 1 then δ < |Vk| since Dx ≥ 2. Finally, if there is no shift then
WΓ (Gk) = WΓ (Gk−1). Therefore, the width in each step increases by at most
|Vk| − 1. The installation of Vm creates two inner faces and the installation of
each Vi, 1 ≤ i ≤ m− 1, creates one inner face. Let the number of inner faces of
G be F . Then the number of partitions is F − 1 = n

2 by Euler’s formula. For the
installation of each Vi, 1 < i < m, the width of the drawing increases by at most
|Vk| − 1. Moreover, the installation of Vm does not require any shift. Therefore,

WΓ (G) can be at most |V1|+
∑n

2

i=2(|Vi|−1) = n−
∑n

2

i=2 1 = n− (n2 −1) = n
2 +1.

Thus the drawing requires at most (n2 + 1)× (n2 + 1) grid. ⊓⊔

Theorem 1. Let G be a 3-connected cubic plane graph. Then Algorithm Cubic

Drawing gives a convex drawing of G in O(n) time with at most sn+1 maximal

segments where sn is the lower bound on the number of maximal segments in a

convex drawing of G.

Proof. The case for n = 4 is trivial and hence we may assume that n is greater
than four. We construct Γ (Gm−1) by installing V1, V2,...,Vm−1 one after another.
Then we install Vm to obtain Γ (Gm) = Γ (G). Let wp, v4 and wq be the three
neighbors of Vm where x(wp) < x(wm) < x(wq). Since all the vertices other than
v1(= wp), v4 and wq are of degree three in Gm−1, each of those vertices of degree
three except v2 and v3 has exactly one straight angle by Lemma 5. Therefore,
there are n − 1 vertices and at least n − 6 straight angles in Γ (Gm−1) when
wq 6= v2. One can easily observe that, Algorithm Cubic Drawing installs Vm

in such a way that each of v4 and wq obtains a straight angle. Thus the number
of straight angles in Γ (G) is at least n − 6 + 2 = n − 4, in total. Similarly, if
wq = v2 then there are n− 5 straight angles in Γ (Gm−1) and Vm is installed in
such a way that the number of straight angles in Γ (G) becomes n− 4, in total.
Let x be the number of maximal segments in Γ (G). Then by Lemma 2, Γ (G)
has at least 3n

2 − x = n − 4 straight angles and at most x = n
2 + 4 maximal

segments. By Lemma 3 the lower bound on the number of maximal segments
sn in a convex drawing of G is n

2 + 3. Thus the number of maximal segments in
Γ (G) is at most sn+1. To obtain a linear-time implementation of the Algorithm
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Cubic Drawing, we use a method similar to the implementation as used in [4].
⊓⊔

4 Minimum-Segment Drawings

In this section we give an algorithm, which we call Draw-Min-Segment, to
obtain a minimum-segment convex drawing Γ (G) of a 3-connected cubic plane
graph G with n ≥ 6 vertices in linear time, where Γ (G) is not a grid drawing.

We now describe Algorithm Draw-Min-Segment. We use canonical decom-
position to obtain V1, . . . , Vm using the same technique as the one in Section 3.
We now draw G1 by a triangle as follows. Set P (vi) = (i− 1, 0) where 1 ≤ i < l,
P (vl) = (l−1,−1). Each Vk, 2 ≤ k ≤ m, is either a singleton set or an outer chain
of Gk, but in the algorithm we will treat both cases uniformly. We add V1, . . . , Vm

one after another to obtain Γ (G1), . . . , Γ (Gm) = Γ (G). Let wp and wq be the
leftmost and the rightmost neighbors of Vk on C(Gk−1) where 1 < k ≤ m. We
install Vk = (z1, . . . , zl) in such a way that (z1, z2), . . . , (zl−1, zl) form a seg-
ment of slope 0 and the following Conditions (a) and (b) hold for each index k,
2 ≤ k < m.

(a) If wp has a straight angle in Γ (Gk−1), then slope of (wp, z1) is +1. Otherwise
wp has no straight angle in Γ (Gk−1), then slope of (wp, z1) is the same as
the slope of (wp−1, wp).

(b) If x(wq) is the maximum among all the x-coordinates of the vertices of
Γ (Gk−1), then slope of (zl, wq) is ∞; otherwise if wq has a straight angle
in Γ (Gk−1), then slope of (zl, wq) is −1 and if wq has no straight angle in
Gk−1, then slope of (zl, wq) is the same as the slope of (wq, wq+1).

We shift the vertices wq, wq+1, ..., wt together with some inner vertices to
the right or up, to install Vk satisfying Conditions (a) and (b), as illustrated in
Figure 12(a)-(f) for the input 3-connected cubic graph in Figure 2. In a similar
way as in Section 3, one can maintain a set with each vertex to determine which
vertices are to shift.

We now have the following lemma.

Lemma 8. Let G be a 3-connected cubic plane graph with n ≥ 6 vertices and

π = (V1, V2, ..., Vm) be a canonical decomposition of the vertices of G with outer

edge (v1, v2). Let Gk = V1 ∪V2 ∪ ...∪Vk and Γ (Gk) be a drawing of Gk obtained

by Algorithm Draw-Min-Segment, where 1 ≤ k < m. Then each vertex of

degree three in Gk, except the vertices v1 and v2, has a straight angle in Γ (Gk).

Proof. The case for Γ (G1) is trivial and we may thus assume that k is greater
than one. By the induction hypothesis, each vertex of degree three in Gk−1,
except the vertices v1 and v2, has a straight angle in Γ (Gk−1). Let wp and wq

be the leftmost and the rightmost neighbors of Vk on Ck−1. By a case analysis
similar to the one in Lemma 5, one can observe that, addition of Vk with Γ (Gk−1)
to obtain Γ (Gk) creates two new vertices of degree three, which are wp and
wq. Each of wp and wq has a straight angle by Conditions (a) and (b) when
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Figure 12. Installation of Vk when 1 ≤ k < m.

wp 6∈ {v1, v2} and wq 6∈ {v1, v2}. Therefore, each vertex of degree three in Gk,
except v1 and v2, has a straight angle in Γ (Gk). ⊓⊔

We now describe the installation of Vm. Let wp, v4 and wq be the three
neighbors of Vm, where x(wp = v1) < x(v4) < x(wq). We place Vm in such a
way that (v4, Vm) and (wq, Vm) obtain the slopes +1 and ∞, respectively. Then
we simply draw the edge (v1, Vm).

Theorem 2. Let Gm be a 3-connected cubic graph with n ≥ 6 and Γ (G) be

a drawing of G obtained by Algorithm Draw-Min-Segment. Then Γ (G) is a

minimum-segment convex drawing of G.

Proof. Let (V1, V2, ..., Vm) be an ordered partition of the vertices of G obtained
by a canonical decomposition of G. Let Gk = V1∪V2∪ ...∪Vk where 1 ≤ k ≤ m.
We construct Γ (Gm−1) by installing V1, V2,...,Vm−1 one after another. Then we
install Vm to obtain Γ (Gm). Let wp, v4 and wq be the three neighbors of Vm

where x(wp) < x(v4) < x(wq). Since all the vertices other than wp = v1, v4 and
wq are of degree three in Gm−1, each of those vertices of degree three except v1
and v2 has exactly one straight corner by Lemma 8. Therefore, there are n − 1
vertices and at least n− 5 straight corners in Γ (Gm−1). One can easily observe
that, Algorithm Draw-Min-Segment installs Vm in such a way that each of
v4 and wq obtains a straight corner. Thus the number of straight corners in
Γ (Gm) = Γ (G) is n− 3, in total. Let x be the number of maximal segments in
Γ (G). Then by Lemma 2, G has 3n

2 − x = n− 3 straight corners and therefore,
x = n

2 + 3 segments. Since by Lemma 3 this is the lower bound on the number
of maximal segments in a convex drawing of G, Γ (G) is a minimum-segment
convex drawing of G. ⊓⊔

5 Conclusions

In this paper, we have given a linear time algorithm to obtain a convex grid
drawing of a 3-connected cubic plane graph G with sn + 1 maximal segments

20



and on (n2 + 1) × (n2 + 1) grid, where sn is the lower bound on the number of
maximal segments in a convex drawing of G. We have also proved that any 3-
connected cubic plane graph G with n ≥ 6 vertices admits a convex drawing with
n
2 + 3 maximal segments which is the minimum number of maximal segments
required for any convex drawing of G. Keszegh et al. showed that every graph
with the maximum degree three has a straight-line drawing in the plane, where
the edges have at most five different slopes [10]. It is interesting to observe that
the drawing produced by our algorithm uses only six different slopes. It is left
as a future work to obtain minimum-segment convex drawings of other classes
of planar graphs. It seems that the problem of finding minimum-segment convex
drawings of general planar graphs is non-trivial and remains as an open problem.

Di Battista et al. [5] and Felsner [7] independently proved that any 3-connected
plane graph admits a convex grid drawing on (f −1)× (f −1) area or f ×f grid,
where f is the number of faces in the graph. By Euler’s formula, the number
of faces in a 3-connected cubic plane graph is n

2 + 2. Therefore, the drawings
of G produced by their algorithms take (n2 + 2) × (n2 + 2) grid, which is close
to the grid size obtained by our algorithm, but the number of line segments
produced by their algorithm is far from optimal. Since the algorithm in [5,7]
deals with convex drawings of 3-connected plane graphs, it will be interesting to
investigate whether the method in [5,7] can be applied to find minimum-segment
convex drawings of 3-connected plane graphs.
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