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Abstract

A straight-line grid drawing of a plane graph G is a pla-
nar drawing of G, where each vertex is drawn at a grid
point of an integer grid and each edge is drawn as a
straight-line segment. The area of such a drawing is the
area of the smallest axis-aligned rectangle on the grid
which encloses the drawing. A minimum-area drawing
of a plane graph G is a straight-line grid drawing of
G where the area of the drawing is the minimum. Al-
though it is NP-hard to find minimum-area drawings for
general plane graphs, in this paper we obtain minimum-
area drawings for plane 3-trees in polynomial time. Fur-
thermore, we show a ⌊ 2n

3 − 1⌋ × 2⌈n
3 ⌉ lower bound for

the area of a straight-line grid drawing of a plane 3-
tree with n ≥ 6 vertices, which improves the previously

known lower bound ⌊ 2(n−1)
3 ⌋×⌊ 2(n−1)

3 ⌋ for plane graphs.

1 Introduction

Straight-line drawing of plane graphs is a classical area
of investigation of Graph Drawing. Schnyder [9] and
de Fraysseix et al. [4] independently showed that ev-
ery plane graph with n vertices has a straight-line grid
drawing on area (n−2)× (n−2) and (2n−4)× (n−2),
respectively. Krug and Wagner proved that the prob-
lem of finding minimum-area drawings for plane graphs
is NP-hard [7]. A variant of straight-line drawing style
is layered drawing of plane graphs where the vertices are
drawn on a set of horizontal lines called layers and the
edges are drawn as straight line segments. A minimum-
layer drawing of a plane graph G is a layered drawing
of G where the number of layers is the minimum.

In this paper, we give an O(n9 log n) time algorithm
to obtain minimum-area drawings of “plane 3-trees”.
We also show that, there exists a plane 3-tree with n ≥ 6
vertices for which ⌊ 2n

3 − 1⌋ × 2⌈n
3 ⌉ area is necessary

for any planar straight-line grid drawing. As a side re-
sult, we give an O(nh4

m) time algorithm to compute a
minimum-layer drawing of a plane 3 tree G, where hm

is the minimum number of layers required for any lay-
ered drawing of G. Note that, Dujmović et al. gave
an algorithm to decide whether a plane graph G admits
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a planar drawing in h layers using a “path decomposi-
tion” of G [5]. But the algorithm currently known to
obtain a path decomposition of a plane 3-tree takes at
least Ω(n15) time [2].

A plane 3-tree G with n ≥ 3 vertices is a plane graph
for which the following (a) and (b) hold: (a) G is a tri-
angulated plane graph; (b) if n > 3, then G has a vertex
x whose deletion gives a plane 3-tree G′ of n−1 vertices.
Note that, vertex x may be an inner vertex or an outer
vertex of G. We use “dynamic programming” to test
whether G has a drawing on a given area or on a set
of layers. We show that the testing problem can be di-
vided into three subproblems. More precisely, we prove
that G can be divided into three subgraphs which can
be used as the input of the subproblems of the testing
problem. We solve those subproblems recursively and
combine their results to obtain the result of the testing
problem.

2 Preliminaries

For graph theoretic terminologies see [8]. In the rest of
this section we present some preliminary results. The
following results are known on plane 3-trees [1].

Lemma 1 Let Gn be a plane 3-tree with n vertices
where n > 3. Then the following (a) and (b) hold. (a)
Gn has an inner vertex x of degree three such that the
removal of x gives the plane 3-tree Gn−1. (b) Gn has
exactly one inner vertex p such that p is the neighbor of
all the three outer vertices of Gn.

We call vertex p mentioned in Lemma 1(b) the repre-
sentative vertex of Gn. For a cycle C in Gn, we denote
by Gn(C) the plane subgraph of Gn inside C (including
C). We now have the following lemma.

Lemma 2 Let Gn be a plane 3-tree and C be any trian-
gle of Gn. Then the subgraph Gn(C) is a plane 3-tree.

Let p be the representative vertex and a, b and c be
the outer vertices of Gn. We call the triangles abp, bcp
and cap the three nested triangles around p.

We now define a representative tree of Gn as an or-
dered rooted tree Tn−3 satisfying the following (a) and
(b). (a) If n = 3, Tn−3 consists of a single vertex. (b) If
n > 3, then the root p of Tn−3 is the representative ver-
tex of Gn and the subtrees rooted at the three counter-
clockwise ordered children q1, q2 and q3 of p in Tn−3 are
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the representative trees of Gn(C1), Gn(C2) and Gn(C3),
respectively, where C1, C2 and C3 are the three nested
triangles around p in counter-clockwise order.

Figure 1 depicts an example of a representative tree.
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Figure 1: Representative tree Tn−3 of Gn.

We obtain the following result using Lemma 1 and
Lemma 2 .

Lemma 3 Let Gn be a plane 3-tree with n ≥ 3 ver-
tices. Then Gn has a unique representative tree Tn−3

with exactly n − 3 internal vertices and 2n − 5 leaves.
Moreover, Tn−3 can be found in time O(n).

Let T be a tree. We denote by T (i) the subtree of T
rooted at vertex i. We now have the following lemma
which is immediate from the definition of the represen-
tative tree and from Lemma 3.

Lemma 4 Let T be the representative tree of a plane
3-tree G and let i be a vertex of T . Then there exists a
unique triangle C in G such that T (i) is the represen-
tative tree of G(C).

By Lemma 4, for any vertex u of Tn−3, there is a
unique triangle in Gn which we denote as Cu. For the
rest of this article, we shall often use an internal ver-
tex u of Tn−3 and the representative vertex of Gn(Cu)
interchangeably.

3 Minimum-Layer Drawings

Let y(l) be the y-coordinate of a layer l. Let {l1,
l2, ..., ln} be a set of n layers where y(l1) < y(l2) <
... < y(ln), then y(li) = i, 1 ≤ i ≤ n.

Let G be a plane 3-tree. Since G admits a drawing on
⌊ 2n−1

3 ⌋ layers [3], we give an algorithm Min-Layer to
generate all the feasible y-coordinate assignments of the
vertices of G iterating height h from 1 to ⌊ 2n−1

3 ⌋. Then
we give an algorithm Feasibility-Check to check, in
each iteration, whether G admits a layered drawing on
h layers for a particular y-coordinate assignment of its
outer vertices. We now formally define the decision
problem Feasibility Checking.

Input: A plane 3-tree G and y-coordinate assign-
ments of the three outer vertices a, b and c of G.

Output: If G admits a layered drawing with the
given y-coordinates of a, b and c, the output is True,
and False otherwise.

We use a dynamic programming approach to solve
the Feasibility Checking problem. To obtain a recursive
solution of the problem, we need the following lemmas.

Lemma 5 Let G be a plane 3-tree with representative
vertex u. Let Γu be a layered drawing of G and let Γ(Cu)
be the layered drawing of Cu in Γu. Let Γ′(Cu) be an-
other layered drawing of Cu where a, b and c have the
same y-coordinates as in Γ(Cu). Then G has a layered
drawing Γ′

u having Γ′(Cu) as the drawing of Cu.

Proof. The case for n = 3 is trivial since for this
case Γ′

u coincides with Γ′(Cu). We may thus assume
that n > 3 and the claim holds for any plane 3-tree
of less than n vertices. Let uy = y(l), where uy is the
y-coordinate of u in Γu. The layer l intersects Γ′(Cu)
at two points (x1, uy) and (x2, uy), x1 6= x2. We place
u on l in between x1 and x2 to obtain Γ′(Cq1

), Γ′(Cq2
)

and Γ′(Cq3
) where Cq1

, Cq2
and Cq3

are the nested
triangles around u. By induction hypothesis G(Cq1

),
G(Cq2

) and G(Cq3
) admit layered drawings Γ′

q1
, Γ′

q2

and Γ′
q3

which contain the drawings Γ′(Cq1
), Γ′(Cq2

)
and Γ′(Cq3

), respectively. Clearly, one can obtain Γ′
u

by patching Γ′
q1

, Γ′
q2

and Γ′
q3

inside Γ′(Cq1
), Γ′(Cq2

)
and Γ′(Cq3

), respectively. ⊓⊔

Lemma 6 Let G be a plane 3-tree with the representa-
tive tree T . Let u be any internal vertex of T with the
three children q1, q2, q3 in T and let a, b, c be the three
outer vertices of G(Cu). Then G(Cu) admits a layered
drawing Γu for the assignment (ay, by, cy) if and only if
Γq1

, Γq2
and Γq3

admit layered drawings for the assign-
ments (ay, by, uy), (by, cy, uy) and (cy, ay, uy), respec-
tively, where min(ay, by, cy) < uy < max(ay, by, cy).

Proof. The necessity is trivial, and proof of the suf-
ficiency can be obtained in a similar technique as de-
scribed in the proof of Lemma 5. ⊓⊔

We now give the recursive solution of the Feasibility
Checking problem as in the following theorem.

Theorem 1 Let G be a plane 3-tree with the represen-
tative tree T and u be any vertex of T . Let a, b, c be
the three outer vertices of G(Cu) and q1, q2, q3 be the
three children of u if u is an internal vertex of T . Let
Fu(ay, by, cy) denote the Feasibility Checking problem
of u where ay, by, cy are the y-coordinates of a, b, c.
Then Fu(ay, by, cy) has the following recursive formula.
Fu(ay, by, cy) =














































False if max{ay, by, cy} − min{ay, by, cy} = 0;
True if max{ay, by, cy} − min{ay, by, cy} ≥ 1,

where u is a leaf;
False if max{ay, by, cy} − min{ay, by, cy} ≤ 1,

where u is an internal vertex;
∨

uy
{Fq1

(ay, by, uy) ∧ Fq2
(by, cy, uy) ∧ Fq3

(cy, ay, uy)}

where min{ay, by, cy} < uy < max{ay, by, cy},
otherwise.
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Proof. Consider the case when max{ay, by, cy} −
min{ay, by, cy} = 0. Then we assign Fu(ay, by, cy) =
False, since a triangle cannot be drawn on a single layer.
The next case is max{ay, by, cy} − min{ay, by, cy} ≥ 1
when u is a leaf. Then we assign Fu(ay, by, cy) = True
since two layers are sufficient to draw a triangle. The
next case is max{ay, by, cy}−min{ay, by, cy} ≤ 1 when
u is an internal vertex. Then we assign Fu(ay, by, cy)
= False for this case since the outer face needs two
layers to be drawn and the inner vertex u cannot
be placed on any of them. The remaining case is
max{ay, by, cy} − min{ay, by, cy} > 1 when u is an in-
ternal vertex. Then we define Fu(ay , by, cy) recursively
by Lemma 6. ⊓⊔

For each vertex i of T we associate a table
FCi[1:⌊ 2n+2

3 ⌋,1:⌊ 2n+2
3 ⌋,1:⌊ 2n+2

3 ⌋], where the solution of
Fi(ay, by, cy) is stored. To store the computed y-
coordinates of the vertices of G, we maintain another
table Yi[1:⌊ 2n+2

3 ⌋,1:⌊ 2n+2
3 ⌋, 1:⌊ 2n+2

3 ⌋] for each vertex i
of T . Here, Yi(ay, by, cy) =






False if FCi[ay, by, cy] = False;
True if i is a leaf and FCi[ay, by, cy] = True;
iy if i is an internal vertex and FCi[ay, by, cy] = True.

Let a, b, c be the outer vertices and u be the repre-
sentative vertex of G. If Yu[ay, by, cy] is False, then G
has no layered drawing for the given y-coordinate as-
signment ay, by, cy. If the entry is True, then G has
no inner vertex and G has a layered drawing for the
given y-coordinate assignment. Otherwise, G has a lay-
ered drawing for the given y-coordinate assignment and
the entry Yu(ay, by, cy) contains the y-coordinate of the
representative vertex u.

One can obtain the y-coordinate assignment of each
internal vertex of G, using Yu by a preorder traversal of
the representative tree. Since, by Lemma 3 T has n− 3
internal vertices, this process takes O(n) time.

We now describe Algorithm Min-Layer which com-
putes the minimum number of layers required to draw G
using Algorithm Feasibility-Check. We assume that
G admits a layered drawing on h layers and iterate h
from 1 to ⌊ 2n−1

3 ⌋. At each iteration we traverse T in
preorder and for each vertex i of T , Algorithm Min-

Layer generates all possible y-coordinate assignments
for the outer vertices a, b and c of G(Ci) within h lay-
ers. For each such assignment ay, by and cy, Algorithm
Feasibility-Check is called to check whether G(Ci) is
drawable. The first h within which G is drawable is the
minimum number of layers hm required to draw G. We
now have the following theorem.

Theorem 2 Given a plane 3-tree G with n vertices,
Algorithm Min-Layer computes the minimum number
of layers hm required to draw G on layers in O(nh4

m)
time.

Outline of the Proof. By Lemma 3 the representative
tree T of G can be constructed in O(n) time. We then
assume a height h and iterate h from 2 to ⌊ 2n−1

3 ⌋+1. At
each iteration, for each internal vertex i of T , we check
the drawability of G(Ci) for only the new combinations
of y-coordinates of the outer vertices a, b, c of G(Ci).
More precisely, for each vertex v ∈ {a, b, c} we put v
on the h-th layer and check the drawability assigning
different y-coordinates to the other two outer vertices.
One can observe that the new combinations possible at
each iteration is O(h2). Hence, after all the iterations of
h, for all the internal vertices of T , we have to check the
drawability for h×n×O(h2) = O(nh3

m) times. If, for the
different y-coordinate assignments of the representative
vertex i, we use the stored results of the subproblems
to obtain the solution, we can check the drawability
in O(h) time at each iteration. Thus Algorithm Min-

Layer takes O(h) × O(nh3
m) = O(nh4

m) time in total.
⊓⊔

4 Minimum-Area Drawings

Like the Feasibility Checking problem for minimum-
layer drawings, one can formulate a problem Area
Checking for minimum-area drawings. We denote the
x-coordinate and y-coordinate of a vertex v by vx and
vy, respectively. We now have the following theorem.

Theorem 3 Let G be a plane 3-tree with the represen-
tative tree T and u be any vertex of T . Let a, b, c be
the three outer vertices of G(Cu) and q1, q2, q3 be the
three children of u when u is an internal vertex of T . Let
Au(ax, ay, bx, by, cx, cy) be the Area Checking problem of
u where a, b and c have distinct (x, y)-coordinates. Then
Au(ax, ay, bx, by, cx, cy) has the following recursive for-
mula. Au(ax, ay, bx, by, cx, cy) =























































































False if (max{ax, bx, cx} − min{ax, bx, cx} = 0)
∨ (max{ay, by, cy} − min{ay, by, cy} = 0);

True if (max{ax, bx, cx} − min{ax, bx, cx} ≥ 1)
∧ (max{ay, by, cy} − min{ay, by, cy} ≥ 1)
∧ u is a leaf;

False if ((max{ax, bx, cx} − min{ax, bx, cx} ≤ 1)
∨ (max{ay, by, cy} − min{ay, by, cy} ≤ 1))
∧ u is an internal vertex;

∨

ux,uy
{Aq1

(ax, ay, bx, by, ux, uy)∧

Aq2
(bx, by, cx, cy, ux, uy)∧

Aq3
(cx, cy, ax, ay, ux, uy)}

where (ux, uy) is inside the triangle with the
vertices a, b, c, otherwise.

To store the solution of Au(ax, ay, bx, by, cx, cy) and
the (x, y)-coordinates of the vertices of G, we use the
same technique as used for computing y-coordinates
in Section 3. We now describe Algorithm Min-Area

to obtain minimum-area drawings. Since the upper
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bound of the area of straight-line grid drawings of planar
graphs is O(n2) [9], this bound also holds for any plane
3-tree G with n vertices. Since the minimum number of
layers required for any straight-line grid drawing of G
is hm, the upper bound for width is ⌈n2/hm⌉. There-
fore, we assume a width w and a height h for G. We
iterate h from 1 to n and for each h, we iterate w from

1 to min(⌈n2

h
⌉, ⌈ n2

hm

⌉). At each iteration we traverse T
in preorder. For each internal vertex i of T , Min-Area

generates all possible (x, y)-coordinate assignments for
the outer vertices a, b and c of G(Ci) within area w×h.
For each such (x, y)-coordinate assignment of a, b and
c, we check whether G(Ci) is drawable. Each time a
drawing of G with smaller area is found, the stored area
is replaced by the smaller area and at the end of the al-
gorithm, the stored area is the minimum. We now have
the following theorem.

Theorem 4 Given a plane 3-tree G with n ≥ 3
vertices, Algorithm Min-Area gives a minimum-area
drawing of G in O(n9 log n) time.

5 Lower Bound

It is known that there exists a plane graph with n ver-
tices for which any straight-line grid drawing requires
at least (2n

3 − 1) × (2n
3 ) area where n is a multiple of

three [6]. For general n, the lower bound on area is

known to be ⌊ 2(n−1)
3 ⌋ × ⌊ 2(n−1)

3 ⌋ area [3] which we im-
prove to ⌊ 2n

3 − 1⌋ × 2⌈n
3 ⌉ area for n ≥ 6.

Theorem 5 For each n ≥ 6, there is a plane graph G
with n vertices such that the area required to obtain a
straight-line grid drawing of G is at least ⌊ 2n

3 −1⌋×2⌈n
3 ⌉.

Proof. The lower bound on area can be obtained in a
similar technique as shown in [6] by nesting the graphs
of Figure 2 inside the “nested triangles graphs”. ⊓⊔

(a) (b) (c)

Figure 2: Illustration of Theorem 5 when (a) n = 6, (b)
n = 7 and (c) n = 8.

6 Conclusion

We have shown that for a fixed planar embedding of
a plane 3-tree G, a minimum-area drawing can be

obtained in polynomial time. Since a plane 3-tree G
has only linear number of planar embeddings, we can
compute the area requirements of all the embeddings of
G and determine the planar embedding which gives the
best area bound; and thus we can obtain a minimum-
area drawing of G in polynomial time when the
embedding of G is not fixed. It is left as a future work
to find a simpler algorithm for obtaining minimum-area
drawings of plane 3-trees. It is also a challenge to
find other classes of planar graphs for which the area
minimization problem can be solved in polynomial time.
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