
Feature Transformation for Improved Software Bug
Detection Models

Shamse Tasnim Cynthia
University of Saskatchewan

Saskatoon, SK, Canada
shamse.cynthia@usask.ca

Banani Roy
University of Saskatchewan

Saskatoon, SK, Canada
banani.roy@usask.ca

Debajyoti Mondal
University of Saskatchewan

Saskatoon, SK, Canada
d.mondal@usask.ca

Abstract
Testing software is considered to be one of the most crucial
phases in software development life cycle. Software bug fix-
ing requires a significant amount of time and effort. A rich
body of recent research explored ways to predict bugs in
software artifacts using machine learning based techniques.
For a reliable and trustworthy prediction, it is crucial to also
consider the explainability aspects of such machine learning
models. In this paper, we show how the feature transfor-
mation techniques can significantly improve the prediction
accuracy and build confidence in building bug prediction
models. We propose a novel approach for improved bug pre-
diction that first extracts the features, then finds a weighted
transformation of these features using a genetic algorithm
that best separates bugs from non-bugs when plotted in a
low-dimensional space, and finally, trains the machine learn-
ing model using the transformed dataset. In our experiment
with real-life bug datasets, the random forest and k-nearest
neighbor classifier models that leveraged feature transfor-
mation showed 4.25% improvement in recall values on an
average of over 8 software systems when compared to the
models built on original data.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Maintaining software.

Keywords: software bug, machine learning, t-SNE, genetic
algorithm

ACM Reference Format:
Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal. 2022.
Feature Transformation for Improved Software Bug Detection Mod-
els. In 15th Innovations in Software Engineering Conference (ISEC
2022), February 24–26, 2022, Gandhinagar, India. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3511430.3511444

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISEC 2022, February 24–26, 2022, Gandhinagar, India
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9618-9/22/02. . . $15.00
https://doi.org/10.1145/3511430.3511444

1 Introduction
The increasing complexity of today’s software artifacts has
made the software development and maintenance more chal-
lenging than ever. To deliver a high quality software to the
end-users and maintain it, developers invest much of their
effort into various tasks such as feature upgrades, code refac-
toring, bug detection, bug fix, etc. In this paper, we investi-
gate the area of bug detection. In the case of a bug, a software
may deviate from its expected behavior in a way that may
result into significant cost to the end users. To test and fix a
bug, it can take up to 50-60% of the software development ef-
fort [37]. This indicates the significance of detecting bugs at
the earlier level of software development. For this purpose,
machine learning classifiers can come in handy to detect
bugs effectively. But with the detection of the bugs, it is also
important for the developers to visualize the bug data, learn
the reasons for bug occurrence and the features which influ-
enced the most in inducing any bugs in the software system.
Therefore, visualization techniques can be an efficient so-
lution for understanding the bug data and gather insights
into the explainability of the machine learning models that
predict such bugs.
Visualization is known to be an effective tool to under-

stand patterns in large amount of information. In the field
of software visualization, visualization algorithms and tech-
niques can provide meaningful graphical representations for
the code and data in a software artifact [16]. In particular,
for the code clones and bugs, a well-designed visualization
can provide more information regarding bug propagation,
features associated with the bugs, and confidence into why
some machine learning classifiers are working better than
the others. A rich body of previously proposed approaches
[29, 39, 40] for detecting bugs was based on applying dif-
ferent algorithms and classifiers to detect the bugs with a
high accuracy. However, the machine learning classifiers are
often treated as black box models, and model explainability
has recently been a crucial issue to gain confidence on these
models [36]. Thus with proper detection of bugs, we think,
it is also necessary to visualize the separation of the buggy
and non-buggy data so that we can gain confidence on the
working of the prediction models. A meaningful question
in this context is whether one can find a weighted transfor-
mation of the features that can well separate the bug and

https://doi.org/10.1145/3511430.3511444
https://doi.org/10.1145/3511430.3511444

ISEC 2022, February 24–26, 2022, Gandhinagar, India Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal

non-bug data when they are visualized in a low-dimensional
space (e.g., 2D scatter plot).
In software bug detection, machine learning classifiers

have gained much popularity for their ability to predict bugs
by learning from the code and features extracted from raw
data repositories. A number of benchmark datasets are now
available that include code blocks or commits, their features,
and a label indicating whether a bug is present or not [14].
Researchers have noticed that some features in a dataset may
be more distinguishing (than the rest) when predicting bugs.
Therefore, it is natural to transform the features byweighting
them with proper weights such that the bug data can be sep-
arated from the non-buggy ones in low-dimensional space.
The hope is that such a proper weighting would also make
the detection easier and increase the accuracy of the ma-
chine learning models. In this regard, we have used Genetic
Algorithm (GA) in selecting the best weights to put on the
feature values that will separate the bugs efficiently. Genetic
Algorithm is considered to be an optimization algorithm that
works by impersonating biological evolution [25]. It finds
the best-fitted survivors by selecting the best individuals and
performing crossover and mutations among them. Here we
defined an individual to have a high fitness when the corre-
sponding feature transformation is able to well-separate the
bugs from the non-bugs. In our study, with the help of GA
and low-dimensional embedding (t-SNE) based fitness, we
designed a set of weights, used them to transform the data
features, and applied machine learning classifiers thereafter
to obtain better results.

1.1 Research Questions
In the light of the above discussion, in this paper we consider
the following research questions.

RQ1: Do there exist data transformations that visu-
ally cluster and separate bugs from non-bugs in low-
dimensional space? Does such data transformation
helpMachine Learningmodels to better detect the bugs
in software artifacts?

Our study focuses on applying machine learning models to
investigate whether the data transformation obtained from
GA search actually helps the models to perform better while
predicting bugs, and also serves the purpose of separating
bug and non-bugs when the transformed data is visualized
in a two-dimensional plot.

RQ2: Can a data transformation that visually cluster
and separate bugs from non-bugs in low-dimensional
space help build confidence in explaining model per-
formance?

Here, we have investigated whether our visualization tech-
nique can give insights into why a machine learning model
built one the transformed data would perform well over the
ones built using the original data.

Fig. 1. A flow diagram of the proposed approach.

1.2 Steps to Solution
In this paper, we have used the BugHunter [13] and Jenkins
[1] datasets for our study. Figure 1 illustrates the workflow
of our approach.

Given the features of the commits in a dataset, we used a
genetic algorithm to find a set of weights such that weight-
ing the features and then embedding the commits into a
low-dimensional space would separate the buggy commits
from the non-buggy ones. At each iteration of GA, we have
used a t-distributed stochastic neighbor embedding (t-SNE)
[44] to compute such a low-dimensional embedding, i.e., t-
SNE helps to visualize high dimensional data by giving each
data point a location in a two or three-dimensional map.
We computed the fitness of an individual (i.e., the quality
of a low-dimensional embedding) using a support vector
machine (SVM) classifier [47] that finds a hyper-plane that
best separates the buggy commits from the non-buggy ones
in the low-dimensional space.

The end result of the GA search is a set of weights that we
multiply to the features to transform the data. We use four
machine learning classifiers to evaluate whether the data
transformation helps achieve better bug detection accuracy.

1.3 Contributions
We observed that weights computed using the genetic al-
gorithm could transform data such that the buggy commits
get well separated from the others when visualized in a scat-
ter plot. Furthermore, the random forest and k-neighbors
classifiers built on the transformed data achieved better clas-
sification accuracy than the one built on the original data.
Specifically, the improvement in the recall value was some-
times upto 8% over 8 software systems (4.25% on an average).
But the rest of the two machine learning classifiers did not
show improvement on recall values when applied on the
transformed data. In some cases, the classification accuracy

Feature Transformation for Improved Software Bug Detection Models ISEC 2022, February 24–26, 2022, Gandhinagar, India

is lower than the original data. For this reason, we have fur-
ther changed the fitness value calculation for the genetic
algorithm. This time, we have used each of the classifiers
in the fitness function and evaluated them with the same
classifier. We found that here is also some of the classifiers
are performing better and others are not showing better pre-
diction results. The code and sample data can be found in
the shared github repository 1.

2 Related Research
In this section, we review the role of machine learning mod-
els in bug detection, the research related to software bug
visualization, and the literature on dimensionality reduction
and explainability of learning models.

2.1 Machine Learning Approaches to Software Bugs
Many machine learning based approaches have been de-
signed to detect software bugs over the past decades [19,
34, 35, 42]. A recent study by Awni Hammouri et al. [19]
presented a bug prediction model based on three supervised
machine learning algorithms (Naive Bayes, Decision Tree
and Artificial Neural Network), and observed a high accu-
racy rate in predicting the bugs. Miltiadis Allamanis et al.
[4] addressed a new approach called BugLab, which is a
self-supervised model for bug detection and fix. Their pro-
posed approach first learns to detect bugs and repair them in
code, and then it generates its own training data by creating
buggy code for the detector to use, and the implementation
showed an improvement of 30% than the baseline methods.
Researchers have also attempted to tune the parameters of
different machine learning algorithms. Aashish Gupta et al.
[2] showed that tuning and changing the parameters of the
existing XGBoost model can actually outperform state-of-
art models. They used Logistic Regression, Decision Tree,
Random Forest, Adaboost and XGBoost as their state-of-art
models and applied them on four datasets. Neysiani et al.
[38] conducted a comparative study between information
retrieval (IR) based and machine learning based model to
detect duplicate bug reports. Their study showed that ML
based approaches achieved 40% better result than IR based
approaches in validation performance.

2.2 Visual Analytics of Software Bugs
Visual analysis of software bugs is an active area of research
and researchers are striving to find more suitable ways to
relate the visualization techniques in understanding the bug
entities. D’Ambros et al. [11] described the importance of vi-
sualization in analyzing the sheer data in a software artifact.
Their paper focused on the bug life cycle, i.e., the informa-
tion of a bug’s history and its traversal states. Later, they

1https://github.com/cynthia247/Feature-Transformation-for-Improved-
Bug-Detection-Model.git

extracted data from Bugzilla and presented two visualiza-
tion techniques focused on understanding bugs based on
various granularity. Hora et al. [22] proposed a tool that can
be used to retrieve information about software bugs from
bug-tracking systems, link the extracted information to other
systems and also to help explore interactive visualizations
about bugs. They suggested that to tackle bug in legacy soft-
ware complications, more information is needed about the
software systems, and visual analysis can be of great help.
In another study, Hammad et al. [18] discussed the impor-
tance of understanding and monitoring bug report status
as it can change over time. Since the relationship between
the developers and bug reports is often problematic, they
were inspired to propose a visualization approach that can
reveal various bug status reports and their alliance with the
bug trackers or developers working on them. Yeasmin et al.
[46] in their paper, explained the importance of a project
manager’s struggle to be aware of all possible bug reports
for a software’s current version. Therefore, they presented a
new prototype that can help the developers to give feedback
on a project’s bug report with the help of interactive visual-
ization of the bug report’s important information by using
topic analysis.

2.3 Dimensionality Reduction Approaches
Existing benchmarks for bug related datasets are often high-
dimensional, i.e., a commit may contain about a hundred
features [1]. While analyzing high-dimensional data, a com-
mon approach to to reduce the dimensionality and visual-
ize it in a low-dimensional space for better interpretation.
The PCA, MDA, t-SNE are some commonly used techniques
for dimensionality reduction. Visualization of the data after
transforming them using these techniques can significantly
impact our understanding of the data, as well as they can of-
ten help build better machine learning models. Jonsson [23]
examined that t-SNE rendering of a bug database can reveal
meaningful structure in the dataset. Mondal et al. [33] used
dimensionality reduction technique to create a geospatial
map of the code clones that clusters related code fragments
in clusters revealing the communities of the code clones. The
use of t-SNE and PCA techniques are widespread also be-
yond software research, e.g., document analysis [12], image
processing [31], bioinformatics [27], etc. We have also seen
dimensionality reduction techniques to be combined with
metaheuristic search approaches such as genertic algorithms
in different areas of research. For example, Firoz Mahmud et
al. [28] proposed an approach to recognize a face by combin-
ing PCA with a Genetic Algorithm in the Computer Vision
area. PCA was applied to retrieve the features, and GA was
used to find an optimal solution from the ample search space.
Rahul Adhao et al. [3] combined PCA and GA in feature
engineering to assist machine learning algorithms in provid-
ing efficient results. Their study showed that applying PCA

ISEC 2022, February 24–26, 2022, Gandhinagar, India Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal

before GA improved the model to have better accuracy with
fewer features.
Although there exist several examples that combine di-

mensionality reduction and metaheuristic search to solve
various research problems, we are not aware of any approach
that augments genetic algorithm and t-SNE in the software
bug detection research area.

3 Technical Background
In this section we review various algorithmic tools and tech-
niques that we will use in our experiments.

3.1 t-SNE algorithms
One of the core components used in our approach is the
t-distributed Stochastic Neighbor Embedding (t-SNE) [44].
This algorithm is based on the stochastic neighbor embed-
ding (SNE) technique that embeds high-dimensional data
into a low-dimensional space (two or three dimensions for
visualization) by creating clusters putting similar datapoints
close together. The t-SNE has two main stages. The first one
consists of defining a probability distribution over pairs of
high-dimensional objects, which is constructed in such a
way that a higher probability is given to similar objects and
a lower probability is assigned to dissimilar points. In the
second part, a similar probability distribution is defined in
the low-dimensional map over the points. Then the Kullback-
Leibler divergence between the two distributions have been
minimized by computing the gradients.

Formally, given a set of𝑁 high-dimensional objects𝑥1, . . . , 𝑥𝑁 ,
t-SNE first calculates the probabilities 𝑝𝑖 | 𝑗 that is propor-
tional to the similarity of objects 𝑥𝑖 and 𝑥 𝑗 , as follows. For
𝑖 ≠ 𝑗 ,

𝑝𝑖 | 𝑗 =
𝑒𝑥𝑝 (−||𝑥𝑖 − 𝑥 𝑗 | |2/2𝜎2)∑
𝑘≠1 𝑒𝑥𝑝 (−||𝑥𝑖 − 𝑥𝑘 | |2/2𝜎2)

, where 𝑝𝑖 |𝑖 = 0 and
∑

𝑗 𝑝 𝑗 |𝑖 = 1 for all 𝑖 , 𝜎𝑖 denotes the
bandwidth of the Gaussian kernels which is set following
that the perplexity of the conditional distribution is equal to
a preset perplexity which uses the bisection method. So in
denser parts of data space, smaller values of 𝜎𝑖 are used.

The t-SNE focuses on learning a𝑑-dimensionalmap𝑦1, . . . , 𝑥𝑁
that considers the similarities 𝑞𝑖 | 𝑗 , which is modeled by the
similarities between two points in the low-dimensional map.
For 𝑖 ≠ 𝑗 ,

𝑞𝑖 | 𝑗 =
(1 + ||𝑦𝑖 − 𝑦 𝑗 | |2)−1∑

𝑘

∑
𝑙≠𝑘 (1 + ||𝑦𝑘 − 𝑦𝑙 | |2)−1

.
The point locations 𝑦𝑖 are set by minimizing the Kullback-

Leibler divergence of the distribution 𝑃 from the distribution
𝑄 , which is:

𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑖≠𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
.

This minimization is done using gradient descent which re-
sults in reflecting the similarities between the high-dimensional
points in the low-dimensional map.

The t-SNE has been used in various applications over the
years, such as computer security research, cancer research,
genomics, bioinformatics etc. The plots generated by t-SNE
often display clusters, and the clusters are influenced by the
parameters of t-SNE that the users choose. Hence under-
standing the parameters properly is necessary [5], where
an interactive exploration can help choosing appropriate
parameters.

3.2 Genetic Algorithms
Genetic algorithms [21] are considered as a type of optimiza-
tion algorithm which is inspired by the theory of natural evo-
lution introduced by Charles Darwin [30]. They are mainly
used to produce better solutions to optimizations and search
problems by mutation, crossover and selection techniques.
Genetic algorithm focuses on the process of selecting the
best-fitted individuals through natural selection. This aims
to reproduce better offspring of the next generation. Natural
selection starts with selecting the fittest individuals collected
from a population. The main idea is to generate offspring
that take the characteristics of the parents and add them to
the next generation. The quality of the offspring gets better if
the parents have better fitness. By repeating this process, in
the end, a new generation can be found that has the fittest in-
dividuals. There are five stages in a genetic algorithm. Those
are described below:

Initial population is a set of individuals which is identified
by a set of parameters called genes. These genes are united
together into a string to make a solution or chromosome. In
our approach, each individual of the population is a set of
weights. The fitness function aims to determine the fitness
of an individual which shows the capability of an individual
to complete compared to other individuals. Each individual
receives a fitness score, and thus, this score is used in select-
ing the best individual for reproduction. Then, the selection
phase consists of selecting the best-fitted individual and al-
lows them to pass their genes to the next generation. Best on
the fitness score, two pairs of parents are selected. After that,
crossover plays an important role in genetic algorithms by
creating offspring until a random crossover point is reached
within the genes. The genes of the parents are exchanged,
and the population gets new offspring. Lastly in Mutation,
as the new offspring are formed, in some cases, the genes
may require a mutation because of the low random prob-
ability. This is how diversity within the population can be
maintained, and premature convergences can be prevented.
At last, when the algorithm reaches a point where the popu-
lation has converged by getting the best-fitted offspring.

Feature Transformation for Improved Software Bug Detection Models ISEC 2022, February 24–26, 2022, Gandhinagar, India

3.3 Support Vector Machine (SVM)
Support vector machine [10] is one of the widely used ma-
chine learning tools for classification, regression, detection
and feature reduction tasks. It mainly focuses on finding a hy-
perplane that separates two classes (or a set of hyperplanes
for more classes). The plane is chosen such that it separates
the two classes of data points by maximizing the distance
from the two data clusters. The reason to maximize such a
distance measure is that it provides some confidence that
the future data can be classified more accurately. The data
points which fall close to the hyperplane are called support
vectors. Based on the position of the support vectors, the
hyperplane position is changed so that it can maintain the
highest possible distance between the data points of both
classes.

3.4 Random Forest
Random forest [8] is a supervised learning algorithm, which
depicts the idea of combining learning models so that it can
perform better than a single model’s result. In particular, it
combines multiple Decision Trees to achieve a more accu-
rate prediction. This algorithm adds randomness in creating
multiple decision trees from the dataset and combines them
to make a final decision. But the depth of the tree can be
controlled using max_depth variable, and the number of deci-
sion trees can be controlled by n_estimators. One advantage
of using random forest is that this can be used to compute an
importance score for each feature, and thus provides us with
some insights into the features that are relevant to obtain an
accurate prediction.

3.5 K Nearest Neighbors
In k-nearest neighbor [15], the main deciding factor is the
number of neighbors that is k. This classifier is used in both
regression and classification problem and for both of the
cases, k closest training examples are considered as input
and the output is dependant on the application of k-NN in
classification or regression model. The algorithm takes the
assumption of the similarity between the new data and the
available data. When a new case or data comes, then the
algorithm put the new data into that category which is the
most similar one to the available categories.

3.6 Logistic Regression
Logistic Regression [6] is used for categorical dependant
variable. The parameters of logistic regression mostly de-
pends on the number of input features and the output is
the categorical prediction. Like the linear regression, logistic
regression does not fit a straight line to the data. Rather, it
fits a S shaped curve which is called Sigmoid. The output is
based on the estimated probability and it is used to indicate
the confidence of the prediction value being the actual value
when an input X is given. A threshold is set to predict the

class of the data and this decision boundary can be linear or
non-linear.

3.7 Naive Bayes
Naive Bayes [45] is a classification technique and it is based
on the Bayes’ Theorem which assumes that a particular fea-
ture in a class is unrelated to any other features present in
the data. Naive Bayes works fast in predicting the class of a
dataset and it also performs well in multi class prediction. In
our study, we have used the Gaussian Naive Bayes. This is
an extension of the naive Bayes and the Gaussian or Normal
distribution is used here to estimate the distribution of the
data. The mean and the standard deviation are calculated
to estimate from the training data. The main problem with
naive Bayes is that the algorithm depends on the assumption
that the features of the data would be independent but in
real life, independent features can be hardly found.

4 Our Approach (GA+t-SNE)
Our approach aims at finding the best-fitted weights for
the features that can distinguish between bug and non-bug
data when the transformed data (with weighted features)
is plotted using t-SNE. The pseudocode of our approach is
illustrated in Algorithm 2.

Note that the genetic algorithm finds the best-fitted solu-
tion by computing a fitness value to each individual in the
population. The individual which gets the highest fitness is
considered to be a better offspring for the next generation.
In our approach, the fitness of an individual is computed
with respect to a sample dataset. We choose a sample of the
dataset (ranging between 5%-10% in random). To compute
the fitness of an individual we first transformed the sam-
ple data using the weight vector of the individual. We then
evaluated how well the transformed data separates the bugs
from the non-bugs when plotted on a low-dimensional space
as follows.
We used t-SNE to plot the transformed dataset into two

dimensions. In fact, this gives us a two-dimensional scatter-
plot. To calculate the fitness value, we used SVM to find a
hyper-plane that best separates the bug and non-bug data.
After applying the model, we computed the performance
metric recall value, which is set to be the fitness value for
the individual. Note that the SVM has been applied only to
two-dimensional embedding obtained from the t-SNE plot.
The population with high recall values were considered to
take part in parents selection.

5 Experimental Design
In this section, we discuss the dataset and experimental setup.

5.1 Dataset Description
For our experiments, we have used Jenkins dataset (an open-
source project [1]), and 7 other datasets (software systems)

ISEC 2022, February 24–26, 2022, Gandhinagar, India Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal

Algorithm 1: Fitness_Calculation
Input :A population with𝑚 individuals and a

random sample 𝑆
Output :A set of parents with high fitness
highest_fitness← 0
temporary_fitness← Φ
for 𝑖 = 1, 2, . . . ,𝑚 do

𝑆𝑖 ← transform 𝑆 using the 𝑖th individual or
weight vector
tsne_plot𝑖 ← run TSNE on 𝑆𝑖
run SVM on tsne_plot𝑖
set the fitness of 𝑖th individual to be the SVM
recall value and append this recall value to
temporary_fitness

end
if highest_fitness ≤ max(temporary_fitness) then

highest_fitness← temporary_fitness
end
parents← random selection from best-fitted
individuals

Algorithm 2: Genetic Algorithm
Input :A 𝑛-dimensional dataset 𝐷
Output :A set of 𝑛 weights
Initialize a population 𝑃 with𝑚 individuals, each
representing a random weight vector of length 𝑛
𝑆 ← A 5-10% random sample of 𝐷
for 𝑖 = 1, 2, . . . , max_Iteration do

parents← Fitness_Calculation(𝑃 , 𝑆)
offspring← crossover(parents)
offspring← mutation(offspring)
population← parents ∪ offspring

end
return best fitted individual

selected from a collective dataset called BugHunter dataset
[13]. Table 1 summarizes the data that we have used in our
study.

5.1.1 BugHunter Dataset. This is an automatically cre-
ated dataset containing code elements (files, classes, meth-
ods) and a wide variety of code metrics and bug information.
This dataset includes buggy and fixed states of similar source
code elements, which can be identified from the limited time-
frame nevertheless the release version.
The dataset is comprised of 15 Java projects which are

individually different. The dataset was created by connecting
commits to bugs, analyzing the log, and identifying the bugs
with the help of clues. To check the suitability of the dataset,
authors have performed several filtering experiments on the
raw dataset, and they are - Removal, Subtract, Single andGCF.
Removal keeps the entries which are located in the class with
larger cardinality, subtract reduces the entry number in the

class which has larger cardinality, single filtering removes the
entries of the class which has smaller cardinality and holding
only one entry from the larger one and lastly, GCF divides
the entry numbers of both classes by their greatest common
factors [14]. It was found among the four filtering methods,
Subtract filtering performed the best. Therefore, we decided
to use the dataset obtained from Subtract filtering. We chose
seven datasets with the highest number of Class entries. All
of these datasets are high-dimensional, i.e, containing 98
features per data point.

5.1.2 Jenkins Dataset. Jenkins dataset was created from
a project, named Jenkins which is a Java-based open-source
project. Borg et al. [7] first extracted fixed bugs by imple-
menting SSZ Algorithm [43] and connected those bugs to
the respective bug fixing commit in the GitHub repository
of Jenkins. The SSZ Algorithm used in the process found out
the commits that have more impact in inducing the bugs.
This dataset is a highly imbalanced one and this dataset has
44 features in total.

Table 1. Dataset Overview

Software Systems Size % of Bugs

BoardleafCommerce 2957 48%
elasticsearch 21657 50%
neo4j 3701 43%
netty 5677 38%
orientdb 4134 44%
ceylon-ide-eclipse 1275 33%
MapDB 899 48%
Jenkins dataset 28923 16%

5.2 Dataset Preparation
There were three parts in dataset preparation. At first, the
dataset contains both categorical and numerical attributes.
So to implement our algorithm, we have mapped the categor-
ical attributes into numerical ones by using Label Encoder
[17]. For the datasets obtained from BugHunter, the categor-
ical attributes are ‘Hash’ and ‘LongName’, whereas, for the
Jenkins dataset, the categorical attributes are ‘commit’ and
‘classification’. Next, the feature containing the bug numbers
has values starting from 0, where 0 indicates that the commit
has no bug and any other integers indicate that the commit
has bugs. So for our convenience, we have transformed all
the other values except 0 to be 1, indicating the commit has
bugs. This way, we present the bug and non-bug data into
two groups of the dataset. Finally, we normalized the dataset
to present the values into a standard scale ranging from 0 to
1.

5.3 Execution of Algorithms
The main algorithm used in our study is the Genetic Al-
gorithm. This algorithm follows an iterative process that

Feature Transformation for Improved Software Bug Detection Models ISEC 2022, February 24–26, 2022, Gandhinagar, India

starts from a randomly generated population, and at each
generation, a set of candidate solutions are generated and
passed to the next generation. In our study, we selected 100
generations to execute. We also examined larger number of
generations (i.e., 150) but did not find any noticeable differ-
ence in the resulting solution. We have taken a population of
100 to be considered in each generation. We did not notice
any significant difference in the resulting solution by vary-
ing this parameter. Each individual is assigned 𝑛 random
weights ranging between 0 and 1, where 𝑛 corresponds to
the number of dimensions (features) of the input dataset. We
have considered the single point type for crossover and bit
flip type for mutation.
Next, we have used t-SNE for mapping the dataset from

high-dimensional to low-dimensional space. t-SNE has been
implemented in the fitness function of GA to help in calcu-
lating the fitness value of each population. We have used
the Scikit-Learn implementation of the algorithm by tuning
different parameters. The n_components was selected to 2 as
we want our high-dimensional dataset to be converted to a
two-dimensional dataset. The random_state was set to 0 and
the perplexity value was tuned based on the dataset density.
The perplexity value of the t-SNE algorithm is considered
to be one of the most confusing parameters which require
manual selection [9]. The perplexity value typically ranges
from 5 to 50, and the denser dataset needs a larger perplexity.
Therefore, based on our dataset density, we have chosen a
perplexity range between 7 to 15. We did some implemen-
tations using different perplexity values, and observed this
perplexity range to be better suited for our datasets to sepa-
rate the cluster of bugs from the non-bugs. For calculating
the fitness value, we have used the SVM algorithm on the t-
SNE plot, and the recall value obtained from each population
is considered to be an individual’s fitness value.

The BugHunter dataset has been created considering the
imbalanced ratio of bug and non-bug data. The authors [13]
have implemented the random under sampling method to
balance the ratio because without sampling, the classification
algorithm showed high values for precision, recall and F-
measure. But in the Jenkins dataset, the proportion of bug
to non-bug data is significantly noticeable. Therefore, we
have tried to find an optimal separating hyperplane for the
imbalanced data and thus used SGDClassifier where the
max_iter is set to 1000 and the stopping criterion, tol, is set
to 1𝑒−5.
Finally, to evaluate the performance of the transformed

data, we have applied random forest, k nearest neighbors,
logistic regression and naive bayes classifiers to investigate
whether the transformed data performs better in detecting
bugs than the original data. We have used the default param-
eter settings while implementing the algorithm. A 10-fold
Cross Validation has been implemented to split the training
and testing data. Random Forest also provided us with the
most relevant feature values, and based on the feature scores,

we have selected top 30 features. The details of the features
are available in [13].

6 Results
In this section, we discuss the experimental results in the
light of the research questions RQ1-RQ2.

6.1 Discussion on RQ1.
RQ1 asks about the possibility of data transformation that
can visually cluster and separate bugs from non-bugs in low-
dimensional space. If such a data transformations exist, then
it also asks whether they can help machine learning models
to better detect the bugs in software artifacts.

6.1.1 Analysis of Visual Plots. To answer this question,
we transformed the original data by multiplying the features
with the weights computed and showed the t-SNE plots for
the transformed datasets. Fig. 2 illustrates for every dataset,
the t-SNE plot of the original data and the t-SNE plot of the
transformed data (i.e., the data obtained after multiplying the
weight values to features). From Fig. 2 we can observe that
the bug and non-bug data points are often better separated
in the t-SNE plot of the transformed data compared to the
original data. Such cases are indicated using oval shapes.
There are also cases when the t-SNE plot of the transformed
data appears to cluster the bugs and non-bugs better than
plot for the original data (e.g., MapDB and Jenkins dataset).

6.1.2 Analysis of Model Performances. To investigate
whether our data transformation approach can help the ma-
chine learning models to perform better in detecting bugs,
we multiplied the features of the original dataset with the
best weights computed using the genetic algorithm. We then
trained four machine learning models on the original data
and also on the transformed data.
The results are shown in Table 2, where we can observe

that the random forest model and k-nearest neighbors model
built on transformed dataset have a higher mean recall val-
ues than the recall value obtained from the model on original
dataset (4.25% on average over all datasets). However, the
same trend was not seen for the other two classifiers - logistic
regression and naive Bayes. The recall values obtained were
similar for both the original and transformed data across all
subject systems. One potential reason for the logistic regres-
sion and naive Bayes not being benefited from the feature
transformation may be that these model relies on properties
that are not inherently geometric. Thus our approach that
finds the weight based on the geometric separation between
the bug and non-bug data at a low-dimensional embedding
are expected to be less useful for these models.

Table 2 shows that k-nearest neighbors performed best for
most datasets. For some datasets, random forest performed
better than logistic regression and the for some other, we see

ISEC 2022, February 24–26, 2022, Gandhinagar, India Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal

Fig. 2. The t-SNE plots of the datasets before and after transformation. The transformed dataset often shows better separation
between the two classes as illustrated using oval shapes. For MapDB and Jenkins datasets, the transformed dataset show better
clustering of the data points.

Table 2. Recall values before and after transforming the datasets (Here, Org=Original and Trans=Transformed)

Software Systems Random Forest K Nearest Neighbors Logistic Regression Naive Bayes
Org Trans % Improved Org Trans % Improved Org Trans % Improved Org Trans % Improved

Boardleaf 0.36 0.43 7% 0.55 0.58 3% 0.52 0.50 0% 0.50 0.50 0%
Elastisearch 0.27 0.30 3% 0.45 0.47 2% 0.50 0.51 1% 0.29 0.29 0%

Neo4j 0.20 0.25 5% 0.35 0.36 1% 0.18 0.18 0% 0.23 0.23 0%
Netty 0.21 0.24 3% 0.33 0.36 3% 0.14 0.15 1% 0.25 0.24 0%

Orientdb 0.22 0.25 3% 0.35 0.40 5% 0.17 0.16 0% 0.23 0.23 0%
MapDB 0.36 0.41 5% 0.48 0.56 8% 0.55 0.59 4% 0.34 0.34 0%
Ceylon 0.14 0.19 5% 0.18 0.24 6% 0.09 0.12 4% 0.22 0.22 0%
Jenkins 0.22 0.25 3% 0.25 0.29 4% 0.30 0.30 0% 0.49 0.50 1%

the opposite trend. This is consistent also with the known lit-
erature. Random forest has been used widely for bug predic-
tion in the literature [7] and k-nearest neighbors are known
to work better when the number of features is large and

the class values are skewed [32]. Naive Bayes assumes the
features of a dataset as independent predictor but in real
life data, it is not possible that all the features are mutually
independent [24]. Prior studies show that logistic regression

Feature Transformation for Improved Software Bug Detection Models ISEC 2022, February 24–26, 2022, Gandhinagar, India

does not perform well when the number of noisy data is
greater than number of explanatory variables, whereas ran-
dom forest shows better performance as it better handles the
noisy data [26].

Note that we have shown only the recall values to evaluate
the model’s performance following prior research. However,
we checked the precision and F-measure values, which also
appeared to be higher for the model built with transformed
data. The reason for using primarily the recall values is that
in software bug detection, the recall corresponds to the bugs
which are correctly identified as bugs. A high recall value
represents that the model is successful in finding most bugs.
Recall is significant when we want to emphasize that we
want to capture the positive cases only [20], i.e. which in
our context are the software bugs. Precision indicates a pow-
erful plausibility that the predicted bugs are actually bugs,
but recall is directly related to the proportion of correctly
predicted bugs from all the non-bug data. So increase in re-
call provides us with better detection of the data which are
initially predicted as non-bugs [41].

Answering RQ1: Our results reveal that genetic algorithm
based search are able to find data transformations that can
better cluster and separate bug data from non-bug data when
embedded in a low-dimensional plot using t-SNE. Further-
more, the k-nearest neighbors and random forest model for
the transformed data may provide better recall values when
compared with the models built on the non-transformed data.
Given that we have secured a mean 4.25% higher recall value
over eight datasets, it appears that the data transformation
does help machine learning techniques to detect the bugs
more accurately.

6.2 Discussion on RQ2.
RQ2 asks whether data transformation can help build con-
fidence in explaining the model performance. Although a
machine learning model’s performance can be evaluated us-
ing quantitative evaluation metrics such as recall, precision,
accuracy and F-measure, users may raise questions on why
they should trust the model as it may learn from unrelated
features or make decision based on parameters that are not
well understood. Although in the previous section, we have
seen machine learning models built on transformed data to
have a better recall value, such quantitative measure alone
cannot explain why these models are performing better than
the others. However, we can again rely on the genetic algo-
rithm, where each individual (i.e., weight vector) corresponds
to a data transformation and the fitness of an individual rep-
resents how well the data transform separates the bug and
non-bug data in a t-SNE plot. Since the fitness score is com-
puted based on a SVM classifier’s performance on the t-SNE
plot, it provides us with some confidence that the data trans-
formation separates the bug and non-bug classes in a visual
plot which is human interpretable.

Fig. 3. Average fitness vs generation plot of Jenkins datatset

We have also found that the visual plot improves with the
number of generations of the genetic algorithms. Fig. 3 illus-
trates the average fitness vs generation plot of the Jenkins
dataset. From the figure, we see that as the generation num-
ber increases, the average fitness values are also improving.
From this, we can obtain some confidence that the machine
learning models on the transformed data may perform better
in a low-dimensional space.

Answering RQ2: Our approach do not provide a clear path-
way to explain the behaviour of machine learning models.
However, in light of answering this question, we can state
that the working of the models follows a transparent work-
ing mechanism that we can observe from the t-SNE plots.
Furthermore, the improved performance of some models on
transformed data strongly aligns with our intuition of visual
separation of the bug and non-bug data in low-dimensions.
Thus our feature transformation based approach to build-
ing a bug prediction model certainly helps to build some
confidence in explaining the model’s performance.

7 Limitations and Avenue for Future
Research

Only two of our four machine learning classifiers showed
improved performances with our feature transformation ap-
proach. Designing model specific feature transformation for
bug datasets would be an interesting approach for future
research. Moreover, we have normalized the data before
applying our proposed algorithm. It is possible that data nor-
malization can impact the result. Examining our approach
withmoremodels, state-of-the-art techniques and on a larger
number of datasets can further strengthen our research. We
might get some meaningful and interesting result if we can
implement our proposed techniques with millions of data
points. As our dataset amount was limited, that is why we
could not apply deep neural networks (DNN) for learning
feature transformation that could improve the accuracy. Fu-
ture research can be conducted in this aspect for increasing
the separability between the buggy and non-buggy commits.
Moreover, the transformation approach could have been ap-
plied to different bug dataset to test the generalisability and
that would certainly provide us significant insights about the

ISEC 2022, February 24–26, 2022, Gandhinagar, India Shamse Tasnim Cynthia, Banani Roy, and Debajyoti Mondal

features’ natures.We did not investigate whether there is a re-
lation between the weights and features, i.e., whether higher
weights indicate importance. The reason is that intuitively,
the weights in our approach only relate to better separation
between bugs and non-bugs at the low-dimensional plot.
However, it would be interesting to further examine why
and how the features are being weighted.

Our genetic algorithm based approach selects the weight
vector that correspond to highest fitness value (i.e., provides
best separation in the t-SNE plot). The algorithm has been
used in combination with support vector machine. Therefore,
our model can impact the results when tuning the parame-
ters. However, at the end of the algorithm, there are often
many goodweight vectors to choose from. Such an automatic
selection based on fitness score ignores the rich structural
information that can be seen in a t-SNE plot. It is thus natu-
ral to ask whether one can visually inspect a few candidate
t-SNE plots and choose the best weight vector to be used. To
investigate user’s opinion, we conducted a pilot user study
with 12 users who had experience in software development
area. The result of the user study showed slight improvement
of the accuracy result when humans are selecting the plots
based on whether the clusters appear to be more separated
when inspected visually. We believe a formal user study may
be valuable to understand the scope of bringing humans in
the loop to create better bug detection models.

8 Conclusion
We proposed a new approach for data transformation that
helps to construct machine learning models with better bug
prediction performances and with improved interpretability.
Our approach runs a genetic algorithm to find the set of
weights such that transforming the features based on these
weights allows separating the bug data from the non-bug
data in a t-SNE plot. We applied four machine learning clas-
sifiers on the transformed dataset and observed that some
models show better bug prediction ability when built on
feature-transformed data, compared to their counterparts
that are built on the original data. Our inspection of the t-SNE
plots obtained from the original and transformed datasets
showed that the plots from the transformed datasets often
provide better clustering and separation of the bug and non-
bug data than the original dataset. We believe that our work
on developing feature transformation based bug detection
models will inspire future research that embodies visual-
ization techniques to improve the performance and inter-
pretability of machine learning models in software research.

Acknowledgments
This research is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery
grants, and by an NSERC Collaborative Research and Train-
ing Experience (CREATE) grant, and by two Canada First

Research Excellence Fund (CFREF) grants coordinated by
the Global Institute for Food Security (GIFS) and the Global
Institute for Water Security (GIWS).

References
[1] [n. d.]. jenkinsci/jenkins: Jenkins automation server. https://github.

com/jenkinsci/jenkins
[2] 2020. Novel XGBoost Tuned Machine Learning Model for Software

Bug Prediction. In Proceedings of International Conference on Intelli-
gent Engineering and Management, ICIEM 2020. Institute of Electri-
cal and Electronics Engineers Inc., 376–380. https://doi.org/10.1109/
ICIEM48762.2020.9160152

[3] Rahul Adhao and Vinod Pachghare. 2020. Feature selection using
principal component analysis and genetic algorithm. Journal of Discrete
Mathematical Sciences and Cryptography 23, 2 (feb 2020), 595–602.
https://doi.org/10.1080/09720529.2020.1729507

[4] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt.
2021. Self-Supervised Bug Detection and Repair. (may 2021).
arXiv:2105.12787 http://arxiv.org/abs/2105.12787

[5] Anna C. Belkina, Christopher O. Ciccolella, Rina Anno, Richard
Halpert, Josef Spidlen, and Jennifer E. Snyder-Cappione. 2019. Au-
tomated optimized parameters for T-distributed stochastic neighbor
embedding improve visualization and analysis of large datasets. Nature
Communications 10, 1 (dec 2019), 1–12. https://doi.org/10.1038/s41467-
019-13055-y

[6] Joseph Berkson. 1944. Application of the Logistic Function to Bio-
Assay. J. Amer. Statist. Assoc. 39 (1944), 357–365.

[7] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson.
2019. SZZ unleashed: An open implementation of the SZZ algorithm-
featuring example usage in a study of just-in-time bug prediction for
the jenkins project. In Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on Machine Learning Techniques for Software Quality
Evaluation, MaLTeSQuE. Association for Computing Machinery, Inc,
7–12. https://doi.org/10.1145/3340482.3342742

[8] Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (oct 2001),
5–32. https://doi.org/10.1023/A:1010933404324

[9] Yanshuai Cao and Luyu Wang. 2017. Automatic Selection of t-SNE
Perplexity. (aug 2017). arXiv:1708.03229

[10] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks.
Machine learning 20, 3 (1995), 273–297.

[11] Marco D’Ambros, Michele Lanza, and Martin Pinzger. 2007. “A Bug’s
Life” Visualizing a Bug Database. In Proceedings of the 4th IEEE Inter-
national Workshop on Visualizing Software for Understanding and Anal-
ysis, VISSOFT 2007, Banff, Alberta, Canada, June 25-26, 2007, Jonathan I.
Maletic, Alexandru C. Telea, and Andrian Marcus (Eds.). IEEE Com-
puter Society, 113–120.

[12] Binu Melit Devassy, Sony George, and Peter Nussbaum. 2020. Un-
supervised clustering of hyperspectral paper data using T-SNE.
Journal of Imaging 6, 5 (may 2020), 29. https://doi.org/10.3390/
JIMAGING6050029

[13] Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor
Gyimóthy. 2020. An Automatically Created Novel Bug Dataset and
its Validation in Bug Prediction. Journal of Systems and Software 169
(2020). https://doi.org/10.1016/j.jss.2020.110691

[14] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. 2020. A public unified bug dataset for java and its assess-
ment regarding metrics and bug prediction. Software Quality Journal
28, 4 (dec 2020), 1447–1506. https://doi.org/10.1007/s11219-020-09515-
0

[15] Evelyn Fix and Joseph L. Hodges. 1989. Discriminatory Analysis -
Nonparametric Discrimination: Consistency Properties. International
Statistical Review 57 (1989), 238.

https://github.com/jenkinsci/jenkins
https://github.com/jenkinsci/jenkins
https://doi.org/10.1109/ICIEM48762.2020.9160152
https://doi.org/10.1109/ICIEM48762.2020.9160152
https://doi.org/10.1080/09720529.2020.1729507
https://arxiv.org/abs/2105.12787
http://arxiv.org/abs/2105.12787
https://doi.org/10.1038/s41467-019-13055-y
https://doi.org/10.1038/s41467-019-13055-y
https://doi.org/10.1145/3340482.3342742
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/1708.03229
https://doi.org/10.3390/JIMAGING6050029
https://doi.org/10.3390/JIMAGING6050029
https://doi.org/10.1016/j.jss.2020.110691
https://doi.org/10.1007/s11219-020-09515-0
https://doi.org/10.1007/s11219-020-09515-0

Feature Transformation for Improved Software Bug Detection Models ISEC 2022, February 24–26, 2022, Gandhinagar, India

[16] Denis Gracanin, Kresimir Matkovic, and Mohamed Eltoweissy. 2005.
Software visualization. Innov. Syst. Softw. Eng. 1, 2 (2005), 221–230.

[17] Heena Gupta and V. Asha. 2020. Impact of Encoding of High Car-
dinality Categorical Data to Solve Prediction Problems. Journal of
Computational and Theoretical Nanoscience 17, 9 (dec 2020), 4197–4201.
https://doi.org/10.1166/jctn.2020.9044

[18] Maen Hammad, Somia Abufakher, and Mustafa Hammad. 2014. A
visualization approach for bug reports in software systems. Interna-
tional Journal of Software Engineering and its Applications 8, 10 (2014),
37–46. https://doi.org/10.14257/ijseia.2014.8.10.04

[19] Awni Hammouri, Mustafa Hammad, Mohammad M. Alnabhan, and
Fatima Alsarayrah. 2018. Software Bug Prediction using Machine
Learning Approach. International Journal of Advanced Computer Sci-
ence and Applications 9 (2018).

[20] Steffen Herbold, Alexander Trautsch, and Fabian Trautsch. 2020. On
the feasibility of automated prediction of bug and non-bug issues.
Empirical Software Engineering 25, 6 (nov 2020), 5333–5369. https:
//doi.org/10.1007/s10664-020-09885-w

[21] John H Holland. 1992. Genetic algorithms. Scientific american 267, 1
(1992), 66–73.

[22] Andre Hora, Nicolas Anquetil, Stephane Ducasse, Muhammad Bhatti,
Cesar Couto, Marco Tulio Valente, and Julio Martins. 2012. BugMaps:
A tool for the visual exploration and analysis of bugs. In Proceedings of
the European Conference on Software Maintenance and Reengineering,
CSMR. 523–526. https://doi.org/10.1109/CSMR.2012.68

[23] Leif Jonsson. 2018. Machine Learning-Based Bug Handling in Large-
Scale Software Development. Ph. D. Dissertation. Sweden.

[24] Neli Kalcheva, Maya Todorova, and Ginka Marinova. 2020. Naive
Bayes Classifier, Decision Tree and AdaBoost Ensemble Algorithm–
Advantages and Disadvantages. KNOWLEDGE BASED SUSTAINABLE
DEVELOPMENT (2020), 153.

[25] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. 2021. A
review on genetic algorithm: past, present, and future. Multimedia
Tools and Applications 80, 5 (feb 2021), 8091–8126. https://doi.org/10.
1007/s11042-020-10139-6

[26] Kaitlin Kirasich, T. Smith, and Bivin Sadler. 2018. Random Forest vs
Logistic Regression: Binary Classification for Heterogeneous Datasets.

[27] Wentian Li, Jane E. Cerise, Yaning Yang, and Henry Han. 2017. Ap-
plication of t-SNE to human genetic data. Journal of Bioinformatics
and Computational Biology 15, 4 (aug 2017). https://doi.org/10.1142/
S0219720017500172

[28] Firoz Mahmud, Md Enamul Haque, Syed Tauhid Zuhori, and Biprodip
Pal. 2014. Human face recognition using PCA based Genetic Algorithm.
In Proc. of the 1st International Conference on Electrical Engineering
and Information and Communication Technology, ICEEICT. Institute
of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/
ICEEICT.2014.6919046

[29] Ruchika Malhotra. 2015. A systematic review of machine learning tech-
niques for software fault prediction. Applied Soft Computing Journal
27 (feb 2015), 504–518. https://doi.org/10.1016/j.asoc.2014.11.023

[30] K. F. Man, K. S. Tang, and S. Kwong. 1996. Genetic algorithms: Concepts
and applications. IEEE Transactions on Industrial Electronics 43, 5 (1996),
519–534. https://doi.org/10.1109/41.538609

[31] Aimin Miao, Jiajun Zhuang, Yu Tang, Yong He, Xuan Chu, and Shaom-
ing Luo. 2018. Hyperspectral Image-Based Variety Classification of
WaxyMaize Seeds by the t-SNEModel and Procrustes Analysis. Sensors
18, 12 (2018). https://doi.org/10.3390/s18124391

[32] Sushruta Mishra, Pradeep Kumar Mallick, Lambodar Jena, and Gyoo-
Soo Chae. 2020. Optimization of Skewed Data Using Sampling-Based
Preprocessing Approach. Frontiers in Public Health 8 (2020), 274. https:
//doi.org/10.3389/fpubh.2020.00274

[33] Debajyoti Mondal, Manishankar Mondal, Chanchal K. Roy, Kevin A.
Schneider, Yukun Li, and Shisong Wang. 2019. Clone-World: A visual
analytic system for large scale software clones. Vis. Informatics 3, 1

(2019), 18–26.
[34] Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and

Kevin A. Schneider. 2018. On the Use of Machine Learning Techniques
Towards the Design of Cloud Based Automatic Code Clone Validation
Tools. In 18th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2018, Madrid, Spain, September 23-24,
2018. IEEE Computer Society, 155–164.

[35] Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and
Kevin A. Schneider. 2019. CloneCognition: machine learning based
code clone validation tool. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE. ACM, 1105–
1109.

[36] SakibMostafa andDebajyotiMondal. 2021. On the Evolution of Neuron
Communities in a Deep Learning Architecture. CoRR abs/2106.04693
(2021). arXiv:2106.04693

[37] Sammar Moustafa, Mustafa Y. ElNainay, Nagwa El Makky, and Mo-
hamed S. Abougabal. 2018. Software bug prediction using weighted
majority voting techniques. Alexandria Engineering Journal 57, 4 (dec
2018), 2763–2774. https://doi.org/10.1016/j.aej.2018.01.003

[38] Behzad Soleimani Neysiani and Seyed Morteza Babamir. 2020. Auto-
matic Duplicate Bug Report Detection using Information Retrieval-
based versus Machine Learning-based Approaches. In Proc. of the 6th
International Conference on Web Research (ICWR). 288–293. https:
//doi.org/10.1109/ICWR49608.2020.9122288

[39] C. Lakshmi Prabha and N. Shivakumar. 2020. Software Defect Pre-
diction Using Machine Learning Techniques. In Proceedings of the 4th
International Conference on Trends in Electronics and Informatics, ICOEI
2020. Institute of Electrical and Electronics Engineers Inc., 728–733.
https://doi.org/10.1109/ICOEI48184.2020.9142909

[40] Rakesh Rana, Miroslaw Staron, Christian Berger, Jörgen Hansson, Mar-
tin Nilsson, and Wilhelm Meding. 2014. The Adoption of Machine
Learning Techniques for Software Defect Prediction: An Initial Indus-
trial Validation. In Knowledge-Based Software Engineering - 11th Joint
Conference, JCKBSE 2014, Volgograd, Russia, September 17-20, 2014.
Proceedings (Communications in Computer and Information Science,
Vol. 466), Alla G. Kravets, Maxim Shcherbakov, Marina V. Kultsova,
and Tadashi Iijima (Eds.). Springer, 270–285.

[41] Zeeshan Ali Rana, M. Awais Mian, and Shafay Shamail. 2015. Im-
proving Recall of software defect prediction models using associa-
tion mining. Knowledge-Based Systems 90 (dec 2015), 1–13. https:
//doi.org/10.1016/j.knosys.2015.10.009

[42] Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten
Berger. 2020. Feature-oriented defect prediction. In Proc. of the 24th
ACM International Systems and Software Product Line Conference,
Roberto Erick Lopez-Herrejon (Ed.). ACM, 21:1–21:12.

[43] Jacek undefinedliwerski, Thomas Zimmermann, and Andreas Zeller.
2005. When Do Changes Induce Fixes? SIGSOFT Softw. Eng. Notes 30,
4 (may 2005), 1–5. https://doi.org/10.1145/1082983.1083147

[44] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data
using t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–
2605.

[45] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. 2010. Naïve
Bayes. Encyclopedia of machine learning 15 (2010), 713–714.

[46] Shamima Yeasmin, Chanchal K. Roy, and Kevin A. Schneider. 2014.
Interactive visualization of bug reports using topic evolution and ex-
tractive summaries. In Proceedings - 30th International Conference on
Software Maintenance and Evolution, ICSME 2014. Institute of Electri-
cal and Electronics Engineers Inc., 421–425. https://doi.org/10.1109/
ICSME.2014.66

[47] Yongli Zhang. 2012. Support vector machine classification algorithm
and its application. In Communications in Computer and Information
Science, Vol. 308 CCIS. Springer, Berlin, Heidelberg, 179–186. https:
//doi.org/10.1007/978-3-642-34041-3_27

https://doi.org/10.1166/jctn.2020.9044
https://doi.org/10.14257/ijseia.2014.8.10.04
https://doi.org/10.1007/s10664-020-09885-w
https://doi.org/10.1007/s10664-020-09885-w
https://doi.org/10.1109/CSMR.2012.68
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1142/S0219720017500172
https://doi.org/10.1142/S0219720017500172
https://doi.org/10.1109/ICEEICT.2014.6919046
https://doi.org/10.1109/ICEEICT.2014.6919046
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1109/41.538609
https://doi.org/10.3390/s18124391
https://doi.org/10.3389/fpubh.2020.00274
https://doi.org/10.3389/fpubh.2020.00274
https://arxiv.org/abs/2106.04693
https://doi.org/10.1016/j.aej.2018.01.003
https://doi.org/10.1109/ICWR49608.2020.9122288
https://doi.org/10.1109/ICWR49608.2020.9122288
https://doi.org/10.1109/ICOEI48184.2020.9142909
https://doi.org/10.1016/j.knosys.2015.10.009
https://doi.org/10.1016/j.knosys.2015.10.009
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1109/ICSME.2014.66
https://doi.org/10.1109/ICSME.2014.66
https://doi.org/10.1007/978-3-642-34041-3_27
https://doi.org/10.1007/978-3-642-34041-3_27

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Steps to Solution
	1.3 Contributions

	2 Related Research
	2.1 Machine Learning Approaches to Software Bugs
	2.2 Visual Analytics of Software Bugs
	2.3 Dimensionality Reduction Approaches

	3 Technical Background
	3.1 t-SNE algorithms
	3.2 Genetic Algorithms
	3.3 Support Vector Machine (SVM)
	3.4 Random Forest
	3.5 K Nearest Neighbors
	3.6 Logistic Regression
	3.7 Naive Bayes

	4 Our Approach (GA+t-SNE)
	5 Experimental Design
	5.1 Dataset Description
	5.2 Dataset Preparation
	5.3 Execution of Algorithms

	6 Results
	6.1 Discussion on RQ1.
	6.2 Discussion on RQ2.

	7 Limitations and Avenue for Future Research
	8 Conclusion
	Acknowledgments
	References

