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Abstract—Changes in spatiotemporal data may often go un-
noticed due to their inherent noise and low variability (e.g.,
geological processes over years). Commonly used approaches
such as side-by-side contour plots and spaghetti plots do not
provide a clear idea about the temporal changes in such data. We
propose ContourDiff, a vector-based visualization over contour
plots to visualize the trends of change across spatial regions
and temporal domain. Our approach first aggregates for each
location, its value differences from the neighboring points over
the temporal domain, and then creates a vector field representing
the prominent changes. Finally, it overlays the vectors along
the contour paths, revealing differential trends that the contour
lines experienced over time. We evaluated our visualization
using real-life datasets, consisting of millions of data points,
where the visualizations were generated in less than a minute
in a single-threaded execution. Our experimental results reveal
that ContourDiff can reliably visualize the differential trends,
and provide a new way to explore the change pattern in
spatiotemporal data.

Index Terms—Spatiotemporal Data, Change Detection, Con-
tour Plot, Vector Overlay

I. INTRODUCTION

The increasing availability of geosensors and remote sensing
technologies have created an abundance of spatiotemporal
data [5]. Most of such data are collected periodically over time.
Common geospatial data visualization approaches include
techniques from a variety of sources such as statistical plots
and charts, exploratory data analysis, cartography, and image
processing [35]. A combination of these approaches enables
us to connect particular phenomena to a spatial reference sys-
tem [14]. Understanding temporal changes in geospatial data
(e.g., soil moisture data or rive-bank erosion) provides valuable
information about geological and hydrological processes [30].
However, the inherent noise and slow rate of change [18]
makes it challenging to visualize the change pattern in such
data. For example, a side-by-side contour plot of the data does
not help detecting changes unless the changes are noticeably
large.

This motivated us to examine ways to visualize the differ-
ential trend in spatiotemporal data. A differential trend at a
spatial point P is the aggregated value differences of P from
its local neighbourhood. Throughout the paper, we consider
two types of trends: increasing and decreasing, and visualize
them using two vectors. The increasing (resp., decreasing)
trends are obtained by considering neighbors that have a higher

(resp., lower) value than that of P . Fig. 1 illustrates the
elevation of three data points p, q, r at different timestamps
t1, . . . , tk. At a timestamp tk, the increasing and decreasing
trends at point q are shown using the blue and black arrows,
respectively. The direction of the black arrow is leftward,
which indicates that historically the left neighbour p has had
a lower elevation than q. The length of the arrow corresponds
to the average value difference over all timestamps. Since the
length of the black arrow is larger than that of blue arrow, we
know that the average slope between p and q is sharper than
the slope between q and r.
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Fig. 1. Illustration for differential (increasing and decreasing) trends.

Our idea is simple yet powerful to summarize temporal
change information on a single visualization (e.g., see Fig. 2).
This can also be seen as a generalization of image gradient [6],
which is a fundamental image processing technique to extract
information based on the color or intensity changes in a single
image. To the best of our knowledge, this is the first attempt
to adapt the image gradient approach to visualize changes in
spatiotemporal data.

We implemented a system — ContourDiff, to examine
whether the vector overlay of differential trends on a con-
tour plot can provide enriched information. ContourDiff first
computes a vector field over the spatial domain and overlays
that along the contour lines of the region of interest. However,
unlike the uniformly spread vector or glyph overlay (e.g., in
wind speed or ocean current visualization [8], [31]), we plot
the directions along the contour lines to keep the visualization
free of visual clutter.

We evaluated ContourDiff by examining the visualizations
using real-life datasets (e.g., motion capture data [13] and
Weather Research and Forecasting model output [21]). Fur-
thermore, we design a standard user interface to enable user
interactions such as to check data distribution and choose
contour thresholds, or to edit vector mapping and map content
properties. We also provide an interactive panel that deploys



Fig. 2. (a) An overview of the ContourDiff system. The contour plot depicts the soil moisture data over Western Canada. The vectors along the isolines show
the historical value differences observed from 2013 to 2015. (b) A zoomed in view of the isolines around the Great Slave Lake. (c) Each blue (resp., black)
vector reveals the increase (resp., decrease) in soil moisture value from the origin to the vector direction.

zooming and panning mechanisms, interchanges different
states of the map on user command, and saves the image.
The overview of the whole system is portrayed in Fig. 2. Our
experiments with real-life datasets reveal the effectiveness of
visualizing differential trends in spatiotemporal data.

II. RELATED WORK

A. Common Geospatial Visualizations

Box plots are commonly used to visualize the data distribu-
tion through summary statistics. Surface box plots generalize
the standard box-plots in two and three-dimensions, where the
surfaces are computed based on the three quartiles at each
two-dimensional point. Surface box plots and various other
extensions [11] have been proposed to portray the distribution
of geophysical variables over a long period of time. Potter et
al. [19] proposed a hybrid summary plot for two-dimensional
data distributions that incorporates a collection of descriptive
statistics and density information.

Geospatial data over time are often visualized using a series
of contour plots and heatmaps. Such plots commonly use
various color schemes to leverage humans’ natural ability to
differentiate colors [34]. A rich body of literature examines
effective ways of visualizing geospatial data using colormaps.
Color blending [32] widely appears in analyzing correlations
among a pair of variables over a spatial domain. Spaghetti plot
is an approach to represent ensemble data in an inter-twining
time-series manner. Spaghetti plots [23] are conventionally
used by meteorologists to examine the uncertainty exhibited by
spatial ensembles. Sometimes the ensemble data are overlaid
on color maps or contour plots to have a deeper understanding

of the ensembles. Potter et al. [20] presented an approach to
examine the uncertainty in ensemble data by presenting an
isoline for each member of the ensemble data.

However none of the mentioned charts or visualizations
can readily visualize differential trends. In addition, potential
attempts to blend contour maps from different timestamps and
overlay isolines, become unreadable due to visual clutter as the
number of timestamps grow.

B. Visualizing Time-varying Dataset

Separate plots for each timestamp or small multiple plots
are difficult to explore when the number of timestamps is
large. Therefore, various approaches such as animation, and
timestamp maps have been proposed in the literature. Slocum
et al. [24] proposed MapTime that explores spatiotemporal
datasets associated with point locations through animated
maps in automatic or user-controlled frame rate. One limitation
of animation is that change blindness can cause people to
not recognize minor changes [17]. Moreover, memorizing
different states of changes can be tiresome, even if users
can interact by jumping to different timestamps. Andrienko et
al. [2] proposed a time window technique for the animation of
object movement, where route fragments passed by the moving
objects are shown specifying time lengths. Tempo-Vis [1] also
provides time-based interactive exploration using a time-slider
by which users can navigate through different time points and
explore social network activities. However, animation or such
interactive approaches are difficult to adapt for identifying
subtle differences even between two consecutive windows.



TransGraph [7] provides a visual mapping of volumetric
data into a 2D plane that abstracts data evolution over time
in different levels of detail. Weber et al. [29] presents a new
approach for the visualization of time-series data with periodic
behavior using SpiralGraphs. An interactive framework for the
3D visualization of the time-series of Web graphs has been
proposed by Itoh et al. [10] where Intra-graph, Inter-time, and
Inter-facet relations were used enabling users to explore the
evolution of time sequences.

C. Directional Representations

Some geospatial data are inherently directional, e.g., such
as wind flow and ocean current. Vector mapping is commonly
used to visualize such geographic features [27]. For example,
Auer et al. [3] used the gradient tensor field to visualize large
scale trends on the background and strongly expressed features
at their position as local visualization. They used earthquake
and climate datasets to show the trends of change based on
the most persistent maxima of their dataset. Kersting and
Döllner [12] specified a visual mapping of vector data by
scene graph and project rendered 2D textures onto georef-
erence geometry such as terrain surfaces. Telea and Wijk [26]
presented a clustering approach for a given vector field with
arrow count and generates compact vector field visualization
using a hierarchical simplification of vector data.

Wittenbrink et al. [31] visualized uncertainty in an envi-
ronmental dataset using a number of vector glyphs such as
uncertainty glyphs or arrow glyphs. The glyph length or area
was scaled based on the magnitude of their data points to show
the direction of uncertainty for ocean current and wind dataset.
Sanyal et. al. [23] used circular graduated glyphs over a regular
grid to visualize ensemble uncertainty in meteorological data.
GlyphSea [16] is an interactive application that uses glyphs
to encode the orientation of vectors in seismology and astro-
physics data. Hlawatsch et al. [9] proposed Flow radar glyphs
to visualize time-dependent processes in a static way that show
the distribution of uncertainty, directional information and its
temporal behavior.

Although our visualization uses vectors to depict the re-
lationships among different spatial locations, our context is
different for the following reasons.

• First, the data points in our dataset do not need to be
directional.

• Second, the magnitudes associated with the directions are
of two types, increasing or decreasing, based on whether
the associated location has a higher value than that of its
neighbors.

• Third, the directions are not ‘flows’, rather they depict
historical relations among different spatial locations.

III. CHALLENGES

The driving question of our research has been whether
differential trends can be visualized effectively over the spatial
domain using a vector based approach.

Since we are interested in visualizing historical trends over
the most recent contour plot, it is natural to first create a

Fig. 3. Direct vector overlay creates a cluttered representation of vectors over
the contour map.

contour plot for the most recent timestamp t, and then compute
a vector field. Fig. 3 illustrates such a visualization, where
the aggregated differential trends (vectors) over all timestamps
have been plotted them on the contour plot.

One can notice several challenges associated with this initial
vector representation:

• The geographic isolines may themselves be wiggly and
staggered. Thus the vectors generated may cross them-
selves. Even if the image is zoomed in to visualize a
small 100× 100 grid, the vectors are not clearly visible,
tangled, and overlapped. This suggests that the vector
rendering should be adaptive to the spatial resolution to
avoid overlapping.

• The data may be noisy, and thus may create vectors
with random directions, which suggests that a reasonably
larger neighborhood and timestamp may be chosen.

• The changes may be increasing or decreasing and span-
ning over the whole region under consideration, and
hence appropriate measures need to be taken to reveal
a discernible pattern.

• Moreover, slow computation of both contour and vectors
poses difficulty to interact with the visualization.

IV. CONTOURDIFF

In this section, we describe the methodology of how the
challenges mentioned in Section III have been tackled and
discuss the implementation details to produce a ContourDiff
visualization. The workflow in Fig. 4 illustrates an overview
of various implementation steps.

A. Vector Field Computation

1) Processing the Dataset: Let N be the number of times-
tamps in the dataset. We preprocess each timestamp, T1, T2, ...,
TN to create a primary structure that facilitates the computa-
tion of the background contour map and overlaid vectors. For
a geospatial variable V (represented as an one dimensional
non-negative matrix), we create a tuple (x, y, v), where x
and y are the screen coordinates computed from the latitude
and longitude information and v is the normalized value:

(V−max(V ))
(max(V )−min(V )) , where max(V ) and min(V ) is respectively
the maximum and minimum values calculated from variable
V .



Fig. 4. A complete illustration for the workflow to compute a ContourDiff visualization.

2) Computing the Background Plot: For the background
of our visualization, we choose contour plot of the most
recent timestamp. A contour map is generated based on the
normalized values of a geospatial variable of interest. The
reason for using such a contour map is that it provides
an intuitive idea for the underlying data distribution. We
show the data distribution on the system interface (Fig. 2A),
which allows users to interactively choose the desired isoline
thresholds. If the user does not want to choose thresholds,
then we use lower quartile (25th percentile), median (50th

percentile) and upper quartile (75th percentile) as the default
isoline thresholds. While one reason to choose the quartile is
that it mimics the standard box plot, the other is that it places
the contour lines sufficiently far apart so that the vectors don’t
overlap much the contour lines. After rendering the contour
map for the latest timestamp, we overlay the vectors computed
from this and all the other timestamps on top of the generated
map.

We construct a graph G from the previously generated
contour map by extracting information from the contour lines.
Each vertex of G can be defined as [l, p, x, y], where x, y are
the coordinates of a point on a polygonal path p of isoline
l. Two vertices (points) of G are adjacent if they appear
consecutively on the polygonal path. We set the weight of an
edge of the graph G to be the Euclidean distance between the
end points. We remove the isolated vertices and small paths
from G to remove visual clutter.

3) Neighbor Selection and Vector Creation: For every
spatial location s, we first computed the rate of change dv

ds ,
where v is a function that varies over the spatial domain and ds
corresponds to the change in the spatial domain. We then cat-
egorized them into increasing and decreasing changes. Finally,
we aggregated them separately to form two representative
vectors. More specifically, while considering a neighborhood
of s, we used k-hop neighbors, where k ∈ {1, 2}. For k ≤ 2
and T timestamps, we obtain 24Ṫ vectors for each data point.
We then group the vectors in two groups based on whether

s has a smaller value than its neighbors or not. Finally, we
aggregate the vectors in these two groups separately to obtain
the increasing and decreasing differential trends at s.

4) Speeding Up the Computation: We leveraged the matrix
computation libraries to gain computational speed, hence for-
mulated the vector computation process using shifted matrices.
To compute the vectors for the 1-hop neighbors, we pad the
M ×N matrix with 1 row and 1 column of zeroes and create
a (M + 2)× (N + 2) matrix. We shift the matrix in all eight
directions to obtain an M × N matrix and then subtract the
original matrix from the shifted matrix. For 2-hop neighbors,
we pad the original matrix with 2 rows and 2 columns of
zeroes and create a (M + 4)× (N + 4) matrix. But we shift
this matrix in 16 directions to find M × N matrix in each
direction.

Let ~VX(ti) be a vector representing an increasing trend for
the data point X at a timestamp ti. After the shifting and
subtraction, we get a matrix of M×N vectors in 24 directions
for X in a timestamp. For each data point, we aggregate all
these 24 vectors to compute ~VX(ti), i.e.,

~VX(ti) =
∑23

i=0
~VX(Pi)×I(Pi), where I(Pi) is an indicator

variable which is set to 1 for the increasing trend, and 0
otherwise. Similarly, we also compute the decreasing trends.

We compute the aggregated vector ~VX by aggregating all
the 2D vector components for all timestamps t1, t2,. . . ,tn, as
follows. ~VX =

∑n
i=1

~VX(ti).
Let uX be the vertex in the weighted graph G that cor-

responds to the location X . The vector ~VX represents the
differential trends acting on its adjacent edges. Therefore,
while calculating the final vector, we scale the magnitude of
the vector by the average weight w of the edges adjacent to
uX . Thus the final vector is formulated as ~V = w ~VX .

B. Vector Rendering and Quadtree

Hierarchical data structure [22] and adaptive representation
of the spatial information [4] are common ways to deal with
large spatial data. Since a large number of vectors correspond



Fig. 5. Illustration for the ContourDiff visualization on a synthetic dataset. Figures 5A indicates design of a synthetic data with contour thresholds 0, 0.25 and
0.5. Figure 5B shows design of similar data at a different timestamp with changed contour thresholds 0, 0.4 and 0.6. Figures 5C and 5D indicates generated
vectors of synthetic data 1 and synthetic data 2 respectively. Finally Figure 5E shows vectors generated from both dataset overlapped on top of generated
contourmap from dataset 1.

Fig. 6. ContourDiff Visualization for (A) Soil Moisture and (B) Soil Liquid
Water over the Grate Slave Lake in Canada.

Fig. 7. Detecting small change from timelapse photos of a human motion

to a large rendering time, we maintain the vectors in a quadtree
data structure [22]. We allow users to choose the leaf size of
the quadtree (Fig. 2A). By choosing a lower resolution, users
can decrease the number of vectors to be rendered and can
achieve fast interaction speed (in a few seconds).

C. Visualization Interface

We created a standard graphical interface by following the
principal for grouping interactive controls with similar func-
tionalities, to provide users with an intuitive workflow [28].
The contour map is the primary visualization view (Fig. 2A),
which is colored using standard perceptual color maps. We
design vectors as ‘free-flow’, i.e., vectors can be presented
from 0 to 360 degree angle. The control panel provides options
to choose colors for both the contour plots and the vectors. We
also provide several direct interaction features such as zoom,
pan, change navigation and image-save capabilities (Fig. 2C).

The control panel has been organized according to the
task process. The first set of controls (from top-to-bottom)
are for selecting dataset, where users can choose thresholds
for the contours as necessary. The next set of controls are
for controlling vector overlay. One may choose to plot only
increasing or decreasing, or both trends. Users can also choose
quadtree leaf size to adjust rendering speed. The last set of
controls are for choosing colormaps, or scaling the vectors
using different types of data mappings (e.g., logarithmic,
linear, exponential).

D. Case Studies

Case Study 1 (Trend Validation using Synthetic Data):
To validate the system functionality, we examined ContourDiff
with different synthetic datasets. Here is an example where
we take a two-dimensional standard normal distribution of
40,000 samples to create contour plots for two timestamps, as
illustrated in Fig. 5A and Fig. 5B. The corresponding vectors
at each timestamps are depicted in Fig. 5C and Fig. 5D,
respectively. One can immediately see from the vector sizes
that the rate of change along the contour lines is much higher
at timestamp-B than that of timestamp-A. Fig. 5E illustrates
the differential trends over the contour map of Fig. 5A after
aggregating the vectors of Fig. 5A and Fig. 5B. One can see
from Fig. 5E that the vectors indicated by blue arrows show
the increasing (low to high) changes along the contour lines.
The black arrows depict the opposite trend.

Case Study 2 (Geological Trends): In this case we ex-
amined the soil moisture and soil liquid water content over
Western Canada. Fig. 6A and B illustrate a zoomed in view
over the Grate Slave lake area. To validate the differential
trend, we worked with a hydrological modeling expert. After
familiarizing the expert with ContourDiff using synthetic data,
we discussed the real-life dataset. The expert pointed out that
the soil moisture is saturated at the water body, which could
be the reason that we see major differential trends (large
vectors) mainly alongside the water body (Fig. 6A). The expert
also pointed out that the decreasing trends (black arrows) are
larger towards the land compared to the increasing trends
(blue arrows) which are inside the water body. This indicates
a sharp drop in soil moisture content as we move away
from the water body. He mentioned that such findings may
sometimes give valuable information about the hydrological
model that generated this soil moisture data, as well as creates



Fig. 8. (left) Time spent for each step of ContourDiff for WRF geospatial variables with three timestamps: March 2013, March 2014, March 2015. (right)
Scalability analysis as the number of timestamps grow.

the ability to ask new research questions. Furthermore, he
indicated that the soil moisture consists of soil ice and liquid
water content. With limited presence of soil ice, we observe a
similar differential trend for soil liquid water (Fig. 6B).

Case Study 3 (Detecting Small Change): ContourDiff is
able to interpret small changes in image or numeric data. We
show this in Fig. 7, using the motion capture images of a
human gradually standing up [13]. We primarily use images
of Fig. 7A1 and Fig. 7A2 to produce the image Fig. 7B.
Image Fig. 7A3 shows the person approaching the final state.
Although it is challenging to interpret detailed body movement
from almost identical images, ContourDiff visualization could
reveal both the significant change (head and shoulder) and an
overall understanding of the movement (upward motion).

V. PERFORMANCE ANALYSIS

The machine used to develop and evaluate ContourDiff
has an Intel(R) Core(TM) i7-8700 Processor with 3.2 GHz
processing speed with 16 GB RAM and 1920×1080 display
resolution. To examine the scalability of the system, we
used Weather Research and Forecasting (WRF) model output
data [15]. We used different climatic parameters (monthly
data from 2013 to 2015): Surface Skin Temperature (TSK),
Planetary Boundary Layer Height (PBLH), Soil Liquid Water
(SH2O), Ground Long Wave (GLW), Soil Moisture (SMOIS).
Each timestamp contained 699× 639 datapoints with a spatial
resolution of 4km over western Canada.

Fig. 8(left) shows the time taken at different stages of
ContourDiff, where computing the vectors is clearly the most

time consuming step. For PBLH, the time is highest as the
values have the most standard deviation for all 3 datasets.
SMOIS and SH2O has similar characteristics, and thus total
time is also similar. Fig. 8A illustrates the growth of data
(data points and data size) as the number of timestamps (files)
grows. Since each file contains the same number of elements,
increase of file size linearly increases the number of elements.
Fig. 8B illustrates the time spent for each dataset as the number
of timestamps grows. We can observe that ContourDiff scales
well with the increasing number of timestamps, i.e., it can
process over 1 million data points under a minute.

VI. LIMITATIONS AND FUTURE WORK

Since we investigated the feasibility of visualizing differen-
tial trends, our effort was primarily invested on identifying the
challenges, examining the computational aspects, and devel-
oping a general system to explore the potential of ContourDiff
in revealing changes pattern in real-life datasets. With the
insights gained, it would be interesting to further examine the
ContourDiff approach targeting specific application domain
with expert evaluation and controlled user studies. It would
also be interesting to compare ContourDiff against side-by-
side visualization or animation by controlling data variability.
Although ContourDiff can process millions of data points in
a minute, the vector computation can be done in parallel.
Hence we plan to use GPU to leverage its parallel processing
capability to speed up computation. Additionally, it would be
interesting to conduct a usability study for our interface to find
bottlenecks and improve the current system.



VII. CONCLUSION

We propose ContourDiff, a vector-based visualization ap-
proach that overlays vectors over contour map to analyze
the trends of change across spatial regions and temporal
domain. We also provide an interactive system for the users
to explore ContourDiff visualization. We evaluated our system
using both synthetic and real-life datasets, which shows the
potential of the system to detect small differential trends even
in noisy data. While ContourDiff lays out the ground work
for visualizing differential trends, it would be interesting to
examine how the system can be improved further for various
domain specific data analysis. It would also be interesting to
investigate our work in the context of deep learning based
approaches for change detection [25], [33]. We believe the
approach will inspire future research on visualizing differential
trends in geospatial data and changes in timelapse images.
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