
Point-Set Embeddings of Plane 3-Trees?

Rahnuma Islam Nishat, Debajyoti Mondal, and Md. Saidur Rahman

Graph Drawing and Information Visualization Laboratory,

Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology (BUET), Dhaka - 1000, Bangladesh.

nishat.buet@gmail.com, debajyoti mondal cse@yahoo.com, saidurrahman@cse.buet.ac.bd

Abstract. A straight-line drawing of a plane graph G is a planar drawing of G, where each vertex

is drawn as a point and each edge is drawn as a straight line segment. Given a set S of n points in

the Euclidean plane, a point-set embedding of a plane graph G with n vertices on S is a straight-line

drawing of G, where each vertex of G is mapped to a distinct point of S. The problem of deciding if

G admits a point-set embedding on S is NP-complete in general and even when G is 2-connected and

2-outerplanar. In this paper, we give an O(n2) time algorithm to decide whether a plane 3-tree admits

a point-set embedding on a given set of points or not, and find an embedding if it exists. We prove an

Ω(n logn) lower bound on the time complexity for finding a point-set embedding of a plane 3-tree. We

then consider a variant of the problem, where we are given a plane 3-tree G with n vertices and a set S

of k > n points, and present a dynamic programming algorithm to find a point-set embedding of G on

S if it exists. Furthermore, we show that the point-set embeddability problem for planar partial 3-trees

is also NP-complete.

Keywords. Point-set embedding, Plane 3-tree, Lower bound, NP-complete.

1 Introduction

A straight-line drawing Γ of a plane graph G is a planar drawing of G, where each vertex is drawn

as a point and each edge is drawn as a straight line segment. The problem of computing a straight-

line drawing of a graph, where the vertices are constrained to be located at integer grid points is

a classical problem in graph drawing literature [7,16]. One of the variants of this problem is to

compute a planar embedding of a graph on a set of points, where the points are located in the

Euclidean plane [3,10,15].

Let G be a plane graph with n vertices and let S be a set of n points in the Euclidean plane. A

point-set embedding of G on S is a straight-line drawing of G, where each vertex of G is mapped to

? This is a draft of the paper “Point-Set Embeddings of Plane 3-Trees”. Some of these results appeared in prelim-

inary form in the Proceedings of the 18th International Symposium on Graph Drawing (GD 2010). The journal

version is published in Computational Geometry: Theory and Application. The original publication is available at

http://www.sciencedirect.com/science/article/pii/S0925772111000757

a distinct point of S. We do not restrict the points of S to be in general position. In other words,

three or more points in S may be collinear. Figure 1(a) depicts a plane graph G of ten vertices.

Figures 1(b) and (c) depict two sets S and S′ with ten points each. G admits a point-set embedding

on S′ as illustrated in Figure 1(d). But G does not admit a point-set embedding on S shown in

Figure 1(b) since the convex hull of S contains four points whereas the outer face of G has three

vertices.

A rich body of literature has been published on point-set embeddings when the input graph G

is restricted to trees or outerplanar graphs. Given a tree T with n nodes and a set S of n points

in general position, Ikebe et al. [9] proved that T always admits a point-set embedding on S. In

1991 Gritzmann et al. gave a quadratic-time algorithm to obtain an embedding of an outerplanar

graph G with n vertices on a set of n points in general position. Later, Castaneda and Urrutia [5]

rediscovered the result in 1996. A recent improvement on this problem is given by Bose [3]; who

presented an O(n log3 n) time algorithm to compute a straight-line embedding of an outerplanar

graph G with n vertices on a set of n points. Cabello [4] proved that the problem is NP-complete for

planar graphs in general and even when the input graph is 2-connected and 2-outerplanar. Recently,

Garcia et al. gave a characterization of a set S of points such that there exists a 3-connected cubic

plane graph that admits a point-set embedding on S [8].

(c)
S

(b)
S

c

b

a

g

h
f j

e
i

(a)
G

d

a

h g

d
j

c

(d)

ef

b

i

Figure 1. (a) A plane graph G with ten vertices, (b) a set S of ten points, (c) a set S′ of ten points

and (d) a point-set embedding of G on S′.

In this paper, we consider the problem of obtaining point-set embeddings of plane 3-trees.

A plane 3-tree G with n ≥ 3 vertices is a plane graph for which the following hold: (a) G is a

triangulated plane graph; (b) if n > 3, then G has a vertex whose deletion gives a plane 3-tree G′

with n−1 vertices. Any spanning subgraph of a plane 3-tree is a planar partial 3-tree. We give an

O(n2) time algorithm that decides whether a plane 3-tree G admits a point-set embedding on a

given set S of n points or not; and computes a point-set embedding of G if such an embedding exists.

2

We prove an Ω(n log n) lower bound on the time complexity for obtaining a point-set embedding

of a plane 3-tree with n vertices on a set of n points. We then consider a variant of the problem,

where we are given a plane 3-tree G with n vertices and a set S of k > n points, and present a

dynamic programming algorithm to find a point-set embedding of G on S if it exists. We describe an

O(nk4)-time implementation for that algorithm given by Moosa et al. [12]. Furthermore, we prove

that the NP-completeness of point-set embeddability problem holds for planar partial 3-trees.

The rest of this paper is organized as follows. Section 2 presents some definitions and preliminary

results. Section 3 gives an O(n2) time algorithm to obtain a point-set embedding of a plane 3-tree

with n vertices, if it exists. Section 4 shows an Ω(n log n) lower bound on the running time for

computing point-set embeddings of plane 3-trees. Section 5 gives a dynamic programming algorithm

to decide whether a plane 3-tree G with n vertices admits a point-set embedding on a set of k > n

points. Section 6 proves that point-set embeddability problem is NP-complete for planar partial

3-trees. Finally, Section 7 concludes the paper suggesting future work. An early version of the paper

has been presented at the 18th International Symposium on Graph Drawing (GD 2010) [14].

2 Preliminaries

In this section, we give definitions that will be used throughout the paper and present some pre-

liminary results.

Let G = (V,E) be a connected simple graph with vertex set V and edge set E. The degree of a

vertex v is the number of edges incident to v in G. We denote by degree(v) the degree of the vertex

v. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If G′

contains all the edges of G that join vertices in V ′, then G′ is called the subgraph induced by V ′. A

graph G is connected if for any two distinct vertices u and v there is a path between u and v in G,

otherwise, G is a disconnected graph. The connectivity κ(G) of a graph G is the minimum number

of vertices whose removal results in a disconnected graph or a single-vertex graph. We say that G

is k-connected if κ(G) ≥ k.

A tree is a connected graph without any cycle. A rooted tree T is a tree in which one of the

vertices, called root, is distinguished from the others. Every edge of T is directed away from the

root. If v is a vertex in T other than the root, the parent of v is the vertex u such that there is a

directed edge from u to v. When u is the parent of v, v is called a child of u. A vertex in T is called

a leaf if it has no children, any other vertex is internal. A descendant of u is a vertex v other than

u such that there is a directed path from u to v. Let i be any vertex of T . We then define a subtree

3

T (i) rooted at i as the subgraph of T induced by the vertex i and all the descendants of i. A rooted

tree T is an ordered rooted tree if the children of any vertex of T are ordered counter-clockwise.

A graph is planar if it can be embedded in the plane without edge crossings except at the

vertices, where the edges are incident. We call such an embedding a plane embedding of the graph.

A plane graph is a planar graph with a fixed plane embedding. A plane graph divides the plane

into some connected regions called the faces. The unbounded region is called the outer face and all

other faces are called inner faces. The vertices on the outer face are called outer vertices and all

other vertices are called inner vertices. If all the faces of a plane graph G are triangles, then G is

called a triangulated plane graph.

We denote by Gn a plane 3-tree with n vertices. Examples of plane 3-trees are shown in Figure 2.

Here, G6 is obtained from G7 by removing the inner vertex c of degree three. Then G5 is obtained

from G6 by deleting the inner vertex b of degree three. G4 is obtained by deleting the outer vertex

g of degree three and G3 is obtained in a similar way.

Gf

e

a

7Gf
c

b g

e

d

g

fG4
f

a

e

dg
a

G

e

d

f

a
b d

G

a

d

356

Figure 2. Examples of Plane 3-trees.

We now have the following fact.

Fact 1. Every plane 3-tree Gn with n > 3 vertices has exactly one inner vertex p which is the

common neighbor of all the three outer vertices of Gn.

We call p the representative vertex of Gn. Let a, b, c be the outer vertices of Gn. The vertex p,

along with the three outer vertices a, b and c, form three triangles abp, bcp and cap. We call those

three triangles the nested triangles around p. For a cycle C in Gn, we denote by Gn(C) the plane

subgraph of Gn inside C (including C). We now define a tree Tn−3 with the inner vertices of Gn

which we call the representative tree of Gn. The representative tree of Gn is an ordered rooted tree

Tn−3 satisfying the following conditions.

(a) If n = 3, Tn−3 consists of a single vertex.

(b) If n > 3, then the root p of Tn−3 is the representative vertex of Gn and the subtrees rooted at

the three counter-clockwise ordered children p1, p2 and p3 of p in Tn−3 are the representative

4

trees of Gn(C1), Gn(C2) and Gn(C3), respectively, where C1, C2 and C3 are the three nested

triangles around p in counter-clockwise order.

Notice that the subscript n − 3 in Tn−3 is the number of internal vertices in Tn−3. Figure 3(a)

depicts a plane 3-tree Gn and Figure 3(b) depicts the representative tree Tn−3 of Gn.

Tn−3
Gn

b

a

c

d
p

eg
f

(b)

fd e

g

p

(a)

Figure 3. (a) A plane 3-tree Gn and (b) the representative tree Tn−3 of Gn.

The following lemma describes the properties of a representative tree [11].

Lemma 1. Let Gn be any plane 3-tree with n ≥ 3 vertices. Then Gn has a unique representative

tree Tn−3 with exactly n−3 internal vertices and 2n−5 leaves. Moreover, Tn−3 can be found in time

O(n). Let T (i) be an ordered subtree rooted at a vertex i of Tn−3. Then there exists a unique triangle

C in Gn such that T (i) is the representative tree of Gn(C).

By Lemma 1, for any vertex p of Tn−3, there is a unique triangle C in Gn such that T (p) is the

representative tree of Gn(C). We denote this triangle C as Cp to show its correspondence with p.

For the rest of this paper, we shall often use an internal vertex p of Tn−3 and the representative

vertex of Gn(Cp) interchangeably.

3 Point-Set Embeddings of Plane 3-Trees

In this section, we give an O(n2) time algorithm to decide whether a plane 3-tree G with n vertices

has a point-set embedding on a set S of n points or not, and obtain a point-set embedding of G on

S if it exists.

Before presenting the details of our algorithm we focus on some properties of the point-set

embeddings of plane 3-trees. Let S be a set of n points in the Euclidean plane. The convex hull of

5

S is the smallest convex polygon that encloses all the points in S. Let G be a plane 3-tree with n

vertices. In any point-set embedding of G the outer face of G is drawn as a triangle and hence the

following fact holds.

Fact 2. Let G be a plane 3-tree with n vertices and S be a set of n points. If G admits a point-set

embedding on S, then the convex hull of S contains exactly three points of S.

By Fact 2, G has no point-set embedding on S if the convex hull of S does not contain exactly

three points of S. We thus assume that the convex hull of S contains exactly three points. One

may observe that the outer vertices of G can be mapped to the three points on the convex hull of

S in six ways, and hence we need to check whether G admits a point-set embedding on S or not for

each of those six mappings. In the remaining of this section we give an algorithm to check whether

G admits a point-set embedding on S for a given mapping of the outer vertices of G to the three

points on the convex hull of S.

Let Tn−3 be the representative tree of Gn and let p be the root of Tn−3. Let Cp1 , Cp2 , Cp3 be the

three nested triangles around p. By Lemma 1, Gn(Cp1), Gn(Cp2) and Gn(Cp3) are three plane 3-

trees which have the corresponding unique representative trees Tn1(p1), Tn2(p2) and Tn3(p3), where

n1, n2 and n3 are the number of internal vertices of Tn1(p1), Tn2(p2) and Tn3(p3), respectively.

Let C be a cycle in Gn. We denote by Γ (C) the embedding of C on some points of S. We call a

mapping of p to a point x ∈ S a valid mapping of p if the proper interiors of Γ (Cp1), Γ (Cp2) and

Γ (Cp3) contain n1, n2 and n3 points, respectively. Let Rx1 , Rx2 and Rx3 be the proper interiors of

Γ (Cp1), Γ (Cp2) and Γ (Cp3), respectively. Figures 4(a) and (b) illustrate a valid mapping of p. We

now have the following lemma.

Lemma 2. Let G be a plane 3-tree with n vertices, let a, b and c be the three outer vertices of G,

and let p be the representative vertex of G. Let S be a set of n points such that the convex hull of

S contains exactly three points. Assume that G has a point-set embedding Γ (G) on S for a given

mapping of a, b and c to the three points on the convex hull of S. Then p has a unique valid mapping

for the given mapping of a, b and c.

Proof. Since Γ (G) is a point-set embedding of G on S, p has a valid mapping to a point x ∈ S

such that Rx1 , Rx2 and Rx3 contain n1, n2 and n3 points, respectively. Suppose for a contradiction

that the mapping of p is not unique. Then p must have a valid mapping to a point z ∈ S, z 6= x,

such that Rz1 , Rz2 and Rz3 contain n1, n2 and n3 points, respectively. Observe that for any subset

of points that is collinear with one of the outer vertices, only the vertex that is closest to the

respective outer vertex can be a choice for z. It is now straightforward to observe that among Rx1 ,

6

Rx2 and Rx3 , one must contain the point z. Without loss of generality we assume that Rx1 contains

z. Then Rz1 must be a proper subset of Rx1 as depicted in Figure 4(c). Hence, the number of points

in Rx1 and Rz1 cannot be n1 simultaneously, a contradiction. ut

Rx2

Rx1

Rx3

Rz2

Rz1

Rz3

Tn(p)22

Tn(p)33

Tn(p)11

(a) (b) (c)

z

x x

p

Figure 4. Unique mapping of the representative vertex.

Based on Fact 2 and Lemma 2 we devise Algorithm 1, which we callPoint-set-embedding. The

Algorithm 1 Point-set-embedding
1: {S is a set of n points and Gn is a plane 3-tree with n vertices}
2: {The representative vertex of Gn is p and Cp is a mapping of the outer face of Gn(Cp)}
3: if Gn(Cp) is a triangle and the interior of Cp contains no points of S then

4: return TRUE

5: end if

6: for each point u ∈ S interior to Cp do

7: {Assume that p is mapped to u. Let Cp1 , Cp2 and Cp3 be the nested triangles around p. Let Tn1(p1), Tn2(p2)

and Tn3(p3) be the representative trees of Gn(Cp1), Gn(Cp2) and Gn(Cp3)}
8: if the number of points interior to Cp1 , Cp2 and Cp3 are respectively n1, n2 and n3 then

9: return Embed(Cp1) ∧ Embed(Cp2) ∧ Embed(Cp3)

10: end if

11: end for

12: return FALSE

Algorithm Point-set-embedding recursively finds valid mappings of the representative vertices.

A naive approach to find a valid mapping of a representative vertex p is as follows. For each point

u ∈ S interior to Γ (Cp), we assume u as the representative vertex and check whether Γ (Cp1), Γ (Cp2)

7

and Γ (Cp3) contains the required number of points. One can easily compute a valid mapping of

p in O(n2) time. Now, if we compute the mappings of the representative vertices for the plane

3-trees Gn(Cp1), Gn(Cp2) and Gn(Cp3) in a recursive fashion, we can obtain a point-set embedding

of G. Since there are n − 3 representative vertices, computation of the final embedding takes

O(n) × O(n2) = O(n3) time. In the rest of this section we give a faster method to find a valid

mapping of a representative vertex and use it to implement Algorithm Point-set-embedding in

O(n2) time.

We first compute a convex hull of S. If G admits a point-set embedding on S, then the convex

hull contains exactly three points of S. For a given mapping of the three outer vertices a, b, c of

G to the three points on the convex hull of S, we sort the points interior to the triangle abc by

increasing polar angle around a in clockwise order. We then put the sorted list in an array Aa as

illustrated in Figure 5. For the points with the same slope, we keep a pointer to the point closest

aA

Ab

Ac

14

1 2 3 5 9 10 11 1412 134 6 7

kp hg mn

4

ijm n h o q

1 3

ji

5

f eo l

8(1)

6 8 9 1311 122(1) 7(2)

q

10(1)

gl e f pd

d

k

b

a

k

i

h

q f j

d g p

o
n

l m

c

e

1 2 5 6 8

k i f j d e ml

13(1)3

q h

4(2) 147(1)

g

9 10

p o

11 12

n

Figure 5. Illustration for the construction of the arrays Aa, Ab and Ac.

to a from the other points with the same slope. The point closest to a is the parent of the other

points with the same slope. Let x and y be any two points, where y has a pointer to x. Then y

is a child of x. We also maintain a count of the children of a parent in Aa. In a similar way we

construct Ab and Ac sorted by polar angle around b and c. Clearly, the construction of these three

arrays takes O(n log n) time.

8

We next take any point u ∈ S, interior to the triangle abc, and draw straight lines through (u, a),

(u, b) and (u, c) which intersect bc, ac, ab at p, q and r, respectively as illustrated in Figure 6.

Thus the region inside the triangle abc gets split into six disjoint regions which we denote as

x1, x2, . . . , x6. The regions x1, x2, x3, x4, x5, x6 are bounded by the triangles aur, auq, cuq, cup,

bup, bur, respectively. Moreover, by x7, x8 and x9 we denote the three lines shared by region x1

and x6, x2 and x3, x4 and x5, respectively. In the remaining of this section we also denote by xi,

1 ≤ i ≤ 9, the number of points of S in region xi.

x8

p

c

x

x

x1

6 5

2

7

a

x

r x x

9

4

3
x

x

q

u=g

b

Figure 6. Computation of the mapping of the representative vertex.

Let Tn−3 be the representative tree of G and let p be the root of Tn−3. Let n1, n2 and n3 be

the number of vertices of the three subtrees rooted at the three children of p. We now formulate a

set of nine linear equations and solve them under three constraints to check whether u is a valid

mapping for p. The three constraints are x2+x8+x3 = n1, x4+x9+x5 = n2 and x1+x7+x6 = n3

which can be obtained easily. For the graph of Figure 5, the constraints are x2 + x8 + x3 = 4,

x4 + x9 + x5 = 3 and x1 + x7 + x6 = 6.

The nine equations can be obtained using the three straight lines (u, a), (u, b) and (u, c) as

follows. The straight line (u, a) splits the triangle abc into two disjoint regions x1 + x5 + x6 + x7

and x2 + x3 + x4 + x8. The number of points in those regions are x1 + x5 + x6 + x7 = ui−1 and

x2 + x3 + x4 + x8 = |Aa|−ui−ua, where ui is the index of u in Aa and ua is the number of children

of u in Aa. The number of points on x9 is equal to ua which gives another equation x9 = ua. Let

uj and uk be the indices of point u in Ab and Ac, respectively and let ub and uc be the counts

of children of u in Ab and Ac, respectively. We then can derive six other equations using (u, b)

9

and (u, c) in a similar way as described above. The nine equations for any point u, interior to the

triangle abc, are given below.

x1 + x5 + x6 + x7 = ui−1, x2 + x3 + x4 + x8 = |Aa|−ui−ua, x9 = ua,

x5 + x9 + x4 + x3 = uj−1, x2 + x1 + x7 + x6 = |Ab|−uj−ub, x8 = ub,

x3 + x8 + x2 + x1 = uk−1, x4 + x9 + x5 + x6 = |Ac|−uk−uc, x7 = uc.

When the vertex g of Figure 5 is mapped to the point u of Figure 6, the equations become

x1 + x5 + x6 + x7 = 8, x2 + x3 + x4 + x8 = 5, x9 = 0, x5 + x9 + x4 + x3 = 3, x2 + x1 + x7 + x6 = 10,

x8 = 0, x3 + x8 + x2 + x1 = 7, x4 + x9 + x5 + x6 = 5 and x7 = 1.

If we get a unique solution of the set of linear equations, then u is a valid mapping of p by

Lemma 2. A simple Gaussian elimination to solve a system of t equations for t unknowns requires

O(t3) time. Here t = 9 and hence we can verify whether u is a valid mapping of p in O(1) time.

Similarly, we check the points inside the triangle abc, other than u, to obtain a valid mapping of p.

Since there are O(n) points inside the triangle abc, this step takes O(n)×O(1) = O(n) time.

Finally, we find the valid mappings of representative vertices for the smaller plane 3-trees in

a recursive manner and obtain a point-set embedding of G. At each recursive step we construct

three sorted arrays in O(n logn) time and find the mapping of the representative vertex in O(n)

time. Since there are O(n) representative vertices, computation of the final embedding takes O(n)×
(O(n logn) +O(n)) = O(n2 log n) time.

We now recall that initially we computed a convex hull that takes O(n log n) time and there

are six ways for mapping the three outer vertices of G to the three points on the convex hull

of S. Therefore, the time taken for deciding whether G admits a point-set embedding on S is

(O(n logn)+6×O(n2 log n)) = O(n2 logn). However, we can remove the factor log n from the time

complexity as explained below.

One can observe that the bottle-neck of Algorithm Point-set-embedding is to construct three

sorted arrays at each recursive step; which takes O(n log n) time at each step and O(n2 log n) time in

total. But if we assume that the points are in general position, we can construct the sorted arrays for

all the points collectively at the initial step of the algorithm in O(n2) time1 using arrangements [1].

At each recursive step we can update those arrays in such a way that the total number of updates

1 Let S = {p1, p2, . . . , pn} be a set of n points. Each point p ∈ S in the primal space corresponds to a line p∗ in

the dual space. Consequently, S corresponds to an arrangement of n lines in the dual space, where each line is

intersected by n − 1 other lines. The order of the intersection points on p∗ correspond to the sorted order of the

slopes of the segments between p and S \ {p} in the primal space. This sorted slope sequence can be used to find

the required sorted array for p in O(n) time.

10

after all the recursive steps becomes O(n2). Thus, the time required to decide whether G admits a

point-set embedding on S becomes O(n2) +O(n log n) + 6×O(n2) = O(n2).

The above argument holds even when we do not restrict the points to be in general position.

Recall that while computing a sorted array Aa, in case of a tie we only need to find the point

closest to a, where the closest point y is the parent of all other points with the same slope. For our

algorithm, it suffices to place the children of y in Aa consecutively after y in any order. Since we do

not need to sort the children of y, each sorted array can be computed using arrangements in O(n)

time. Hence, all the arrays can be computed in O(n2) time. Even in this case, one can update those

arrays at each recursive step in such a way that the total number of updates after all the recursive

steps becomes O(n2). Therefore, we have the following theorem.

Theorem 1. Given a plane 3-tree G with n vertices and a point-set S of n points, Algorithm

Point-set-embedding computes a point-set embedding of G on S in O(n2) time if such an em-

bedding exists.

We now analyze the time complexity of Algorithm Point-set-embedding in some restricted

cases. Let G be a plane 3-tree with n vertices and let T be the representative tree of G. Suppose that,

for each internal vertex u of T the ratio of the number of vertices in the three subtrees rooted at

three children of u is x : y : z. Without loss of generality we assume that x ≥ y ≥ z. One can easily

find that running time of the Algorithm Point-set-embedding can be written as O(n) + T (n),

where the term O(n) is to obtain the embedding of the outer face of G and the term T (n) ≥ T (n−3)

is the time to obtain the embedding of n−3 internal vertices of G. Since at each recursive step we

take O(n log n) time to obtain a valid mapping of a representative vertex, T (n) can be defined

recursively as follows. T (n) ≤ T (nx
x+y+z) + T (ny

x+y+z) + T (nz
x+y+z) + cn log n ≤ 3T (nb) + cn log n.

Here c is a constant hidden in O(n log n) term and b = x+y+z
x . We observe that, for b =

√
3,

T (n) = 3T (n√
3) + cn log n = O(n2); for b = 2, T (n) = 3T (n2) + cn log n = O(n1.58); and for b = 3,

T (n) = 3T (n3) + cn log n = O(n log2 n). Therefore, we obtain the following theorem.

Theorem 2. Let G be a plane 3-tree with n vertices and S be a set of n points. If the representative

tree of G is a complete ternary tree, it can be decided whether G admits a point-set embedding on

S in O(n log2 n) time.

4 Lower Bound

In this section, we reduce the sorting problem to prove anΩ(n log n) lower bound on time complexity

for computing a point-set embedding of a plane 3-tree with n vertices on a set of n points.

11

Theorem 3. The lower bound on the running time of the problem of computing point-set embed-

dings of plane 3-trees with n vertices is Ω(n log n).

Proof. We reduce sorting problems into the problem of computing point-set embeddings of plane

3-trees in the sense that point-set embedding algorithm can be used to solve sorting problems with

little additional work.

Let L = (x1, x2, . . . , xn) be a list of n unsorted numbers to be sorted and let the smallest number

in L be xmin. Without loss of generality we assume that xi > 0, 1 ≤ i ≤ n, since if there exists an

xi ≤ 0 we can obtain a list L′ of nonzero positive numbers by adding 1− xmin to all xi, 1 ≤ i ≤ n.

One can observe that the sorted order of the numbers in L′ yields a sorted order of the numbers

in L. Suppose that we have an algorithm X that computes a point-set embedding of a plane 3-tree

with n vertices in f(n) time. We show that Algorithm X can be used to solve a sorting problem of

n numbers in time f(n) +O(n), where the O(n) represents additional time to convert the solution

of X to the solution of the sorting problem.

Let xmax be the maximum number in L which can be found in O(n) time. We make a set S of

two-dimensional points (xi, x
2
i), 1 ≤ i ≤ n, and let S′ = S ∪{(xmax+1, 0), (0, 0)}. Let G be a plane

3-tree of n+2 vertices such that its representative tree T has the following properties. (a) The left

child and the right child of each internal vertex of T are leaves. (b) The subgraph induced by the

internal vertices of T is a path of n−1 vertices. Figures 7(a), (b) and (c) illustrate S′, G and T ,

respectively. We now use Algorithm X to compute a point-set embedding of G on S′.

In a point-set embedding Γ (G) of G on S′, the outer vertices of G are mapped to the convex

hull of S′ by Fact 2. The convex hull of S′ contains the points (0, 0), (xmax +1, 0) and (xmax, x
2
max)

which we denote by a, b and c, respectively. Let the representative vertex p of G be mapped to a

point z ∈ S′ in Γ (G) and let the proper interiors of the triangles abz = Cp1 , bcz = Cp2 , caz = Cp3

be Rz1 , Rz2 , Rz3 , respectively. Since p is also the root of T with two leaves, two of the regions Rz1 ,

Rz2 and Rz3 do not contain any point of S. One can observe that such two regions can be obtained

if z is the second smallest (or the second largest) number of L. Suppose that the region Rz2 (or Rz1)

contains all the points of S′ other than a, b, c and z. We now consider the point-set embedding of

G(Cp2) (or G(Cp1)). Let p1, p2 and p3 be the left, middle and right child of p in T . If the children

are leaves, we have no vertices left to consider. Otherwise, p2 is an internal vertex. Since the left

child and the right child of p2 are leaves, p2 must be mapped to the next smallest number or (next

largest number) to ensure two regions which do not contain any points of S′, maintaining the plane

embedding of G.

12

(x ,x3
2)3

(x ,x4
2)4

(x ,x2
2)2

(x ,xn
2)n

(x ,x1
2)1 max +1x()0,

(a)
S

(b)
G

(c)
T

Figure 7. Illustration for the proof of Theorem 3.

Thus the sequence of x-coordinates of the mappings of the internal vertices of T from the root

gives an increasing (or decreasing) order of the numbers in L. Moreover, we can check whether the

obtained order is increasing or decreasing in constant time. Thus, we can use Algorithm X to solve

the sorting problem which implies that the lower bound of Algorithm X is equal to the lower bound

Ω(n log n) on the running time of sorting problems. ut

5 Generalized Case

In this section, we consider the problem of computing a point-set embedding of a plane 3-tree G,

when the number of given points is greater than the number of vertices of G.

A brute force approach to solve this problem is to try all possible mappings of the vertices of G

to the given points and to check whether for each mapping the embedding has any edge crossing

or not. If the total number of vertices is n and the number of given points is k > n, then at most
kCn × n! different mappings are possible. Clearly, this approach is impractical for large n and k.

We now present a dynamic programming technique to solve the problem. Here we formally define

the input and output of the problem Feasibility Checking.

Problem: Feasibility Checking.

Input: A plane 3-tree G and a mapping of the three outer vertices a, b and c of G to three different

points of S.

Output: If G is drawable with the given mapping of a, b and c, then the output is True. Otherwise,

the output is False.

13

We denote the mapping of a vertex v to a point w ∈ S by vw. We denote by Fp(ax, by, cz) the

Feasibility Checking problem of any vertex p of T , where the three outer vertices a, b and c of

G(Cp) are mapped to points x, y and z, respectively. We solve this decision problem by showing

that the optimal solution of the problem consists of the optimal solutions of the subproblems. The

following lemma proves this optimal substructure property.

Lemma 3. Let G be a plane 3-tree with the representative tree T . Let p be any internal vertex of

T with the three children p1, p2, p3 in T and let a, b, c be the outer vertices of G(Cp). Then the

solution to the Feasibility Checking problem of p is True if and only if the solutions to the Feasibility

Checking problems of p1, p2 and p3 are True.

Proof. Let G(Cp1), G(Cp2) and G(Cp3) be three plane 3-trees with the representative vertices

p1, p2 and p3 and the outer vertices {a, b, p}, {b, c, p} and {c, a, p}, respectively. By definition,

Fp1(ax, by, pw), Fp2(by, cz, pw) and Fp3(cz, ax, pw), for some {w, x, y, z} ∈ S, are the Feasibility

Checking problems of p1, p2 and p3, respectively. The vertex p is an inner vertex ofG and therefore, p

must be mapped to a point of S inside the triangle xyz. Since the mappings of a, b, c are preassigned

and the mapping of p is the same in the embeddings Γ ′
p1 , Γ

′
p2 and Γ ′

p3 , those three embeddings can

be combined to get the embedding Γ ′
p of G(Cp). Thus the solution of the Feasibility Checking

problem of p consists of the solutions of the Feasibility Checking problems of p1, p2 and p3 and

hence, the solution to the Feasibility Checking problem of p is True if and only if the solutions to

the Feasibility Checking problems of p1, p2 and p3 are True. ut

We can readily find the overlapping subproblems property of the Feasibility Checking problem.

Overlapping subproblem occurs when a recursive algorithm visits the same problem more than once.

Figure 8 illustrates an example where the same subproblem F (ex, fy, bz), for some {x, y, z} ∈ S,

occurs in two different embeddings.

We now prove Theorem 4 which states a recursive solution of Feasibility Checking problem.

Theorem 4. Let G be a plane 3-tree with the representative tree T and let p be any vertex of T .

Let a, b, c be the three outer vertices of G(Cp) and p1, p2, p3 be the three children of p when p is

an internal vertex of T . Let Fp(ax, by, cz) be the Feasibility Checking problem of p, where x, y and

14

z are three points in S. Then Fp(ax, by, cz) has the following recursive formula.

Fp(ax, by, cz) =

False if x, y and z are collinear;

True if x, y, z are not collinear and p is a leaf;

False if p is an internal vertex and no point of S is inside the triangle xyz;∨
∀m{Fp1(ax, by, pm) ∧ Fp2(by, cz, pm) ∧ Fp3(cz, ax, pm)}, where m ∈ S is inside

the triangle xyz, otherwise.

Proof. First we consider the case when x, y and z are collinear. We then assign Fp(ax, by, cz) =

False because three non-collinear points are necessary to draw a triangle. The next case is x, y, z

are not collinear and p is a leaf. We then assign Fp(ax, by, cz) = True since three non-collinear

points are sufficient to draw a triangle. In the next case, p is an internal vertex and no point of S

is inside the triangle abc. We assign Fp(ax, by, cz) = False since p cannot be placed inside Cp. In

the remaining case we define Fp(ax, by, cz) recursively according to Lemma 3. ut

f

e ga

f

e g

a

bb

Figure 8. Illustration for overlapping subproblem.

Based on the recursive structure of Theorem 4, Nishat et al. [14] devised an O(nk8)-time im-

plementation for Feasibility Checking. Recently, Moosa et al. [12] showed that a slightly modified

implementation takes only O(nk4) time, which was also pointed out by an anonymous reviewer

in our initial submission of this paper presenting an O(nk8)-time implementation for Feasibility

Checking. In the following we first describe the O(nk4)-time implementation technique.

Let G be a plane 3-tree with n vertices and let S be a set of k points. Let T be the representative

tree of G. Recall that each vertex i of T corresponds to a unique triangle Ci in G. Since the number

of nodes in T is O(n), there are O(n) such triangles. Each triangle Ci can be mapped to three

points of S in O(k3) possible ways. We now find the solutions to the subproblems by a bottom-up

computation. To avoid recomputation of the solutions, we store the solutions to the subproblems in

a table FC[1 : n, 1 : k, 1 : k, 1 : k]. Each entry of the table initially contains null to denote that the

entry is yet to be filled in. During the computation, the solution of Fi(ax, by, cz) is stored into the

15

entry FC[i, x, y, z]. When a subproblem is first encountered during the computation, its solution is

stored in the table. Each subsequent time the subproblem is encountered, the value stored in the

table is looked up and returned.

We now use Theorem 4 for the bottom-up computation. For each leaf i, we mark each of

the O(k3) possible mappings of Ci as False or True depending on whether the three points

corresponding to that mapping are collinear or not in O(1) time. For each internal vertex i,

we mark each of the O(k3) possible mappings of Ci as follows. Let a, b, c be the three vertices

on the boundary of Ci in anticlockwise order and we want to mark the mapping ax, by, cz, for

some {x, y, z} ∈ S. Let i1, i2 and i3 be the three children of i that correspond to the triangles

abi, bci and cai, respectively. If there exists a mapping of i to a point m ∈ S interior to Ci

such that FC[i1, x, y,m] ∧ FC[i2, y, z,m] ∧ FC[i3, z, x,m] = True, then FC[i, x, y, z] is marked

True. Otherwise, FC[i, x, y, z] is marked False. Since the computation is bottom-up, the values

of FC[i1, x, y,m], FC[i2, y, z,m] and FC[i3, z, x,m] are already computed and can be retrieved in

O(1) time. Therefore, the time required to compute FC[i, x, y, z] is at most the number of possible

choices for the mapping of i, which is O(k). Since there are O(nk3) entries to be computed, the

whole computation takes O(nk4) time.

Observe that this technique only tests the point-set embeddability of G on S. To compute an

embedding of G on S, we either use a table similar to FC or table FC itself to store the computed

mappings of the vertices during the bottom-up computation. We then do an O(n)-time top-down

computation to find an embedding of G on S.

6 Point-Set Embeddings of Planar Partial 3-Trees

In this section, we prove that deciding point-set embeddability is NP-complete for planar partial

3-trees. Cabello [4] reduced the NP-complete problem 3-partition to prove that deciding point-set

embeddability is NP-complete for 2-outerplanar graphs. We prove that the graph he constructed

in his reduction is a planar partial 3-tree.

The input of 3-partition problem is a natural number B and a set S of 3n natural numbers

a1, . . . , a3n with B/4 < ai < B/2. The problem is to decide whether S can be partitioned into n

subsets such that each subset contains exactly three elements of S and the sum of the elements of

each subset is exactly B. For a given instance of 3-partition problem, Cabello constructed a planar

graph G as follows.

– Start with a 4-cycle with vertices v0, . . . , v3, and edges (vi−1, vi mod 4), 1 ≤ i ≤ 4.

16

– For each ai in the input, make a path Bi consisting of ai vertices, and put an edge between

each of those vertices and the vertices v0, v2.

– Construct n−1 triangles T1, . . . , Tn−1. For each triangle Ti, put edges between each of its vertices

and v2, and edges between two of its vertices and v0.

– Make a path C of (B + 3)n vertices, and put edges between each of the vertices in C and v0.

Furthermore, put an edge between one end of the path and v1, and another edge between the

other end and v3.

Figure 9(a) depicts a plane embedding of G. To show that G is a planar partial 3-tree, we first

construct a triangulated planar graph G′ from G by adding edges to G. We then prove that G′ is

a plane 3-tree. In the following we describe the edges that we add to G to construct G′.

– Add edges (v1, v3) and (v0, v2).

– For each Bi, 1 ≤ i ≤ 3n, let the two end vertices be w′
i and w′′

i . Add the edges (w′′
i , w

′
i+1),

1 ≤ i < 3n and (w′
1, v1).

– For each triangle Ti, 1 ≤ i ≤ n− 1 let the two vertices that are adjacent to both v0 and v2, be

u′i and u′′i . Add the edges (u′′i , u
′
i+1), 1 ≤ i < n− 1 and (u′′n−1, v3).

– For each vertex v on C that is not adjacent to v1 add an edge (v1, v).

Figure 9(b) depicts a plane embedding of G′, where the edges added to G are drawn with dashes.

It is straightforward to observe that G′ is a triangulated planar graph. We now prove that G′ is a

plane 3-tree showing that we can delete the vertices of degree three recursively such that at each

step the resulting graph remains triangulated. Such a sequence of deletions of degree three vertices

is as follows.

– First we delete the (B+3)n vertices on the path C sequentially starting from the end vertex that

is adjacent to v1. Observe that such deletions yield a vertex of degree three on C in successive

steps.

– Next for each triangle Ti, 1 ≤ i ≤ n− 1, we delete the vertex of Ti that is not adjacent to v0.

– Then for each triangle Ti, 1 ≤ i ≤ n − 1, in the order Tn−1, Tn−2, . . . , T1, we first delete the

vertex u′′i and then the vertex u′i.

– Finally, we delete the vertices of the paths Bi, 1 ≤ i ≤ 3n, in the order w′′
3n, . . . , w

′
3n, w

′′
3n−1,

. . . , w′
3n−1, . . . , w

′′
1 , . . . , w

′
1. We now remove v0 to obtain the base triangle with vertices v1, v2

and v3.

We now have the following theorem.

17

1v

2v

3v

0v

a1

a3

Tn−1

C

1v

2v

3v

a1

a3

Tn−1

C
0v

G G

w /
1

T
1T

1

w

u

/un−1
/

n n

/

(a) (b)

/
1

n3
//

Figure 9. Illustration for (a) G and (b) G′.

18

Theorem 5. It is NP-complete to decide whether a planar partial 3-tree with n vertices has a

point-set embedding on a set of n points in the Euclidean plane.

7 Conclusion

We have given an O(n2) time algorithm that decides whether a plane 3-tree G with n vertices admits

a point-set embedding on a set S of n points or not; and computes a point-set embedding of G if

such an embedding exists. Since a plane 3-tree G has only a linear number of planar embeddings,

we can check point-set embeddability for all the embeddings of G and determine whether G has a

planar embedding on the given set of points in polynomial time when the embedding of G is not

fixed.

We have proved an Ω(n log n) lower bound on the time complexity for obtaining point-set

embeddings of plane 3-trees. Beside obtaining a point-set embedding of a plane 3-tree, we have

considered a generalized problem, where the given point-set has more than n points. We have given

a polynomial-time space-efficient algorithm to solve the problem. It is a challenge to find simpler

algorithms for obtaining point-set embeddings of plane 3-trees both in the restricted and generalized

cases.

Moosa et al. [12] tried to give an improved algorithm for computing point-set embeddings of

plane 3-trees in terms of running time. Let abc be a triangle with n points in its proper interior and

let n1, n2 be two integers such that n1 + n2 ≤ n. Their algorithm uses binary search to find two

points x and y on line bc, such that triangles abx and acy contain n1 and n2 points, respectively.

If the length of line segment bc is |bc| and the distance between the closest pair of points is d,

then this approach will take time proportional to O(log |bc|
d) (see Lemma 14.1 in [2]), which is a

major problem since we assume that the points are not necessarily in general position. Recently,

Moosa et al. [13] and Durocher et al. [6] independently proposed two different modifications to

avoid this problem that yields an O(n4/3+ε)-time algorithm for computing point-set embeddings

of plane 3-trees, for any fixed ε > 0. Both of these algorithms use triangular range search data

structure. Finding an algorithm for computing point-set embeddings of plane 3-trees with running

time faster than O(n4/3+ε) is still open.

We have shown that the NP-completeness proof of the point-set embeddability problem given by

Cabello [4] holds for planar partial 3-trees. Cabello mentioned that the technique of his NP-hardness

proof does not seem possible to extend to show the NP-hardness of point-set embeddability problem

for 3-connected planar graphs. Therefore, it would be interesting to investigate the complexity of

the problem for planar partial 3-trees that are 3-connected.

19

Acknowledgment

This work is done in Graph Drawing & Information Visualization Laboratory of the Department

of CSE, BUET established under the project “Facility Upgradation for Sustainable Research on

Graph Drawing & Information Visualization” supported by the Ministry of Science and Information

& Communication Technology, Government of Bangladesh. We thank the anonymous referees for

their useful suggestions, which helped us to improve the results and the presentation of our paper.

References

1. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane, Handbook of Computational Geometry. Elsevier

(2000)

2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Ap-

plications. Springer-Verlag (2000)

3. Bose, P.: On embedding an outer-planar graph in a point set. Computational Geometry: Theory and Applications

23(3), 303–312 (2002)

4. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. Journal of Graph

Algorithms and Applications 10(2), 353–363 (2006)

5. Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point sets. In: Proceedings of the 8th

Canadian Conference on Computational Geometry (CCCG 1996). pp. 312–318 (1996)

6. Durocher, S., Mondal, D., Nishat, R.I., Rahman, M.S., Whitesides, S.: Embedding plane 3-trees in R2 and R3. In:

The 19th International Symposium on Graph Drawing (GD 2011). Lecture Notes in Computer Science, Springer

(2011 (to appear))

7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)

8. Garćıa, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On embedding triconnected cubic graphs on point sets.

Electronic Notes in Discrete Mathematics 29, 531–538 (2007)

9. Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane.

Discrete & Computational Geometry 11, 51–63 (1994)

10. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph

Algorithms and Applications 6(1), 115–129 (2002)

11. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of plane 3-trees. Journal of Graph

Algorithms and Applications 15(2), 177–204 (2011)

12. Moosa, T.M., Rahman, M.S.: Improved algorithms for the point-set embeddability problem for plane 3-trees.

CoRR abs/1012.0230 (2010), http://arxiv.org/abs/1012.0230

13. Moosa, T.M., Rahman, M.S.: Improved algorithms for the point-set embeddability problem for plane 3-trees. In:

The 17th International Computing and Combinatorics Conference (COCOON 2011). Lecture Notes in Computer

Science, vol. 6842, pp. 204–212. Springer (2011)

14. Nishat, R.I., Mondal, D., Rahman, M.S.: Point-Set embeddings of plane 3-trees - (Extended Abstract). In: The

18th International Symposium on Graph Drawing (GD 2010). Lecture Notes In Computer Science, vol. 6502, pp.

317–328. Springer-Verlag (September 21–24 2010)

20

15. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17(4),

717–728 (2001)

16. Schnyder, W.: Embedding planar graphs on the grid. In: The first annual ACM-SIAM symposium on Discrete

algorithms. pp. 138–148 (1990)

21

