Drawing Planar Graphs with Reduced Height

Stephane Durocher

Debajyoti Mondal

Department of Computer Science University of Manitoba

September 26, 2014

Straight-line Drawings (Fixed Vs. Variable)

Straight-line Drawings (Fixed Vs. Variable)

Fixed Embedding

Upper Bounds			Lower Bounds	
$\frac{\text{Area}}{2n^2 + O(1)}$ $n^2 + O(1)$ $1.78n^2 + O(1)$ $0.88n^2 + O(1)$ $0.44n^2 + O(1)$	Height $n-2n-20.66n0.66n$ (p	[de Fraysseix et al. 1990] [Schnyder 1990] [Chrobak and Nakano 1998] [Brandenburg 2008] polyline) [Bonichon et al. 2003]	Nested Triangles GraphAreaHeight $0.44n^2 + O(1)$ $0.66n$ [A class of planar 3-treesAreaHeight $0.44n^2 + O(1)$ $0.66n$ [ParaN	Dolev et al. 1984] S [Frati and atrignani 2008, Iondal et al. 2010]

Variable Embedding

Improved Upper Bounds Upper Bounds Triangulations **Triangulations** Polyline drawing with height <u>Height</u> Area $0.88n^2 + O(1) \quad 0.66n$ $4n/9+O(\lambda\Delta) \approx 0.44n+O(\lambda\Delta)$ [Brandenburg 2008] $0.44n^2 + O(1)$ 0.66*n* (polyline) [Bonichon et al. 2003] This is 0.44n + o(n) when Δ is o(n)Planar 3-trees **Planar 3-trees** Area Height $0.88n^2 + O(1) = 0.5n$ [Brandenburg 2008, Straight-line drawing with height $4n/9+O(1) \approx 0.44n+O(1)$ Hossain et al. 2013] Nested Triangles Graph Height Area $0.22n^2 + O(1) = 0.33n$ [Frati and Patrignani 2008]

Idea: Use the Simple Cycle Separator

[Djidjev and Venkatesan, 1997]

Every planar triangulation has a simple cycle separator of size $O(\sqrt{n})$

An *n*-vertex planar graph G

A simple cycle separator of G

 G_o with $2n/3 + O(\sqrt{n})$ vertices

A separator of size $O(\sqrt{n})$

 G_i with $2n/3 + O(\sqrt{n})$ vertices

The Big Picture

Technical Details (Choose an Embedding)

Choose a face which is incident to some edge of the cycle separator as the new outer face.

Technical Details (Construct G_o and G_i)

GD 2014

```
September 26, 2014
```


GD 2014

September 26, 2014

GD 2014

September 26, 2014

Technical Details (Merge D_o and D_i)

Technical Details (Merge D_o and D_i)

Plane 3-Trees

Start with a triangle, then repeatedly add a vertex and triangulate the resulting graph.

Plane 3-Trees

Plane 3-Trees a х F G_3 G_1 W W С b y A planar 3-tree GPlane 3 trees inside each of these triangles has n/2 + O(1) vertices х W 4n/9 + O(1) W_{2} w y

GD 2014

GD 2014

